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Abstract
Highly accurate location data have become essential in nearly all contemporary global applications, including but not limited
to route planning, processing traffic data, identifying common routes, map matching, and enhancing agricultural productivity.
However, the abundance of unnecessary and redundant data leads to various challenges, especially concerning storage,
processing, and transmission. Despite the existence of numerous studies aimed at addressing these GNSS data management
challenges, the reduction problem is either partially resolved, or enhancements are made to existing solutions in nearly all
of them. In this study, a novel reduction method is introduced, offering both a high reduction rate and accuracy, suitable for
operation on mobile devices in both offline and online modes. The proposed method uses windowing with reference points
during the decision phase to decrease the number of points. By utilizing the angle and its threshold between the decision
point and reference points, we achieved a method characterized by low algorithmic complexity and a high reduction rate,
suitable for online operation on mobile devices. Experiments and comparisons revealed that the proposed method had a
91.01% reduction in GNSS data which is 7.73% lower, a 5.8744e−04 RMSE error which is 2e+7 times better, and a 14.54
ms running time which is 25% faster than RDP algorithm. The results indicate that incorporating the proposed method into
current methodologies could be beneficial, particularly in scenarios where real-time, high-precision location data are essential.

Keywords Line simplification · Trajectory compression · GNSS data · Douglas–Peucker algorithm · Mobility data

1 Introduction

Technological advances over the years have also enabled the
production of transportation that are increasingly powerful,
efficient, and facilitate transportation. In addition, devel-
opments in the field of communication have given a new
direction to mobility. One of the most important develop-
ments is satellite systems. Satellite systems can be used
individually or as a set, depending on their intended use. The
Global Navigation Satellite System (GNSS) is a generic term
that describes any constellation. GNSSs provide services on
a global or regional basis. These are positioning, navigation,
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and timing (PNT) services [1–3]. Currently, China has Bei-
Dou, the EuropeanUnion’sGalileo, Russia’sGLONASS, the
United States’ GPS, India’s IRNSS, and Japan’s QZSS. All
of them are actively serving both regionally and globally.

The free, open, and reliable nature of GNSSs and the
advances in obtaining position information using satellites
and mobile computing techniques have enabled the develop-
ment of hundreds of applications that affect today’s modern
life and are an integral part of it. Using these applications,
a considerable amount of trajectory data is generated, rep-
resenting the mobility of various moving objects such as
humans, animals, land, sea, and aircraft [7–12].

The trajectory of a moving object is a successive time
sequence of location points [10]. A trajectory is usually rep-
resented as a series of line segments connecting successive
pairs of locations observed for each object (see Fig. 1). The
trajectory T of a moving object on the Euclidean plane is an
infinite series of time-stamped positions.

That is, sets of values (id, ti , xi , yi ), i ∈ {1, . . . , N , . . .}
where ti corresponds to the timestamp referring to the instan-
taneous time for an object defined as id (xi , yi ) points [10].
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Fig. 1 Sample trajectory data from the 20090706033310.plt file in the
Geolife [4–6] dataset

Unlike a trajectory, a path is the route between two points
regardless of time. Here, the main difference between the
path and the trajectory is that the trajectory contains a times-
tamp [13].

In addition to location information such as latitude, lon-
gitude, and altitude, trajectories contain multiple values and
hemispheres where data is taken, as well as satellite infor-
mation. Due to frequent sampling by numerous different
applications, extra and powerful hardware is needed to pro-
cess the large amount of data obtained. Moreover, a large
volume of disk space for storage, high bandwidth for trans-
ferring data, and more energy than necessary during the
operation are required for all these systems [7, 10, 14, 15].
This situation causes an increase in the large amount of data
currently stored. More methods and applications have been
developed in different fields, such as data processing, reduc-
tion, and storage, to cope with the increasing amount of data
and use it wisely [2, 3, 16]. These developed methods are
used not only in big data processing and data mining but also
in many other applications such as image processing, geo-
graphic information systems (GISs), and computer graphics
[9, 17–20].

Trajectory reduction refers to the methods used to decide
which points from the raw trajectory should be discarded or
which points should be retained in the raw trajectory [14].
For example, when it is necessary to store and process the
trajectory data obtained by taking samples at 5-second inter-
vals of a fleet of 1000 vehicles, the storage and time costs will
increase considerably, and the operationswill be complicated
[4]. Using an appropriate method, a correct representation of
an original trajectory can be brought by removing unneces-
sary points while preserving the major distinctive elements
[15]. For the vehicle fleet in the example above, a trajectory

set consisting of 1000 * 24 * 60 * (60 / 5), that is, 17.280.000
points, will be acquired in a day. However, using trajectory
reduction methods, this number of points can be reduced to
1%–20% of this number.

One of the important considerations for trajectory reduc-
tion algorithms is to decrease the amount of the trajectorydata
while shrinking information loss [7, 21]. The raw points, in
other words, the remaining points on the original trajectory,
are called simple trajectories [14]. Although this simplified
trajectory can be used in calculations more efficiently than
the original ones, the results of bothwill not be quite different
from each other. In addition, the processing time of the calcu-
lationwith the simplified trajectory will bemuch shorter than
that of the original trajectory [14]. The most advanced trajec-
tory reduction methods often involve either high algorithmic
complexity [22, 23] or insufficient reduction rates [24, 25].
This leads to the quick depletion of memory, computational
power, energy resources, and storage [26].

Shape and displacement refer to the differences in shape
and position between the simplified and the versions of a
trajectory. This difference is due to the method used in the
algorithms. The positional accuracy of the original trajec-
tory affects the positional accuracy of its simplified version
[27]. Topological errors that can be made during simplifica-
tion include coincident lines, line crossings, and collapsed
zero-length lines. Therefore, the performances of various
trajectory simplification methods need to be evaluated in dif-
ferent ways [12, 28].

In this study, a trajectory data reduction system is pre-
sented that can work both online and offline alternately and
transfer the reduced and accumulated data to the cloud when
it has Internet access. An effective reductionmethodwith low
computational complexity has been proposed to work online
on mobile devices. The proposed method has an acceptably
low dissimilarity rate, consumes less energy, and can operate
at low bandwidth. To illustrate the proficiency and operation
of the method proposed in this study, a mobile application
has beendeveloped that collects and reducesGNSS trajectory
data on a mobile device. It sends reduced data to a database
in the cloud while online. However, it stores the reduced data
on the mobile device until it is online again. The proposed
method has been tested on this developed mobile application
and has been found to be very successful.

The rest of this paper is organized as follows: In Sect. 2,
we present the studies conducted in the literature. In Sect. 3,
we introduce the proposedmethod in this study. In Sect. 4, the
features of the mobile application developed for testing the
online operation of the method are described. In Sect. 5, we
compare and analyze the proposed method with the classical
RDP algorithm in terms of reduction results, reduction rate,
root-mean-square error (RMSE), and runtime. In Sect. 6, the
novelty of the proposed method, its robustness, and superi-
ority compared to methods in the literature are explained.
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Additionally, the results and future research directions are
discussed.

2 Literature Review

Douglas andPeucker (1973) proposed amethod known as the
iterative endpoint-fitting algorithm, also called the Douglas–
Peucker (RDP) algorithm. The Douglas–Peucker algorithm
segments the data and removes points that are within the ε

parameter distance from each other. This effectively reduces
the points on the trajectory. The degree of simplification is
controlled by the ε parameter, which defines the maximum
distance between the original points and the simplified curve
[29]. Although it has a high reduction rate, the shortcomings
of this method lie in visual difference due to reduction based
on the epsilon value and its offline operation.

Katsikouli et al. (2014) proposed an algorithm that can
reduce large volumes of location and sensor data online. This
method utilizes topological persistence to identify significant
features in the data stream at a large scale. Additionally, they
demonstrated that the reduction for each new location data
point using this method can be achieved with O(1) time com-
plexity [30]. While producing a high reduction rate in a short
running time, thismethod’sweakness is the visual difference.

Qian andLu (2017) proposed amethod that simplifiesGPS
location data using the enhanced Douglas–Peucker (EDP)
algorithm. The EDP algorithm, working in conjunction with
Enhanced Spatial-Temporal Constraints (ESTC), simplifies
location data while preserving critical points. The study sug-
gests that the speed profile can uniquely define a trajectory
and can be used to evaluate the effectiveness of simplifi-
cation. When applied to two sample GPS trajectories, the
proposed ESTC-EDP simplification method yielded more
effective results compared to the traditional DP algorithm
[31]. This method’s weakness is the possibility of not select-
ing some critical points and providing a relatively lower
reduction rate.

Chen et al. (2019) presented an online navigation reduc-
tion framework that attempts to detect the position change
with the spatial-directional matching (SD-Matching) algo-
rithm that aligns the sparse and noisy GPS location points
working in the mobile environment to the road network. The
framework stages consist of online trajectory mapping and
motion reduction [32]. The inclusion of preprocessing stages
in this method may result in a slow operation.

Xu et al. (2019) proposed a new method that can be
applied to vehicle trajectory data by combining the crossroad-
rank (CRRank) algorithm and the origin–destination entropy
with flow (ODEF) algorithm. ODEF works based on entropy
to assess the centrality and calculate the importance of a
point’s traffic flow. CRRank depends on eigenvector cen-
trality, which seizes reciprocally reinforcing affinities of

intersection, path, and OD pairs. Furthermore, CRRank also
evaluates the irreplaceability of a point and the spatial asso-
ciations between adjacent points [33]. Due to the presence
of preprocessing stages in this method, it can run slowly.

Zhang et al. (2019) proposed a trajectory reduction
method, which they named WDA, using a combination of
the road width (W), the vehicle driving direction (D), and the
turning angle (A). This method decides whether the vehicle
travel points are linear concerning W and D within an allow-
able error range and then chooses the points atwhich a vehicle
turns considerably relating to A [25]. The algorithm assesses
the limitations of road shapes on the trajectories of vehicles.
Thus, it can detect whether the motion forms an approximate
curve or a straight line that points to a rotating track.

Liu et al. (2020) proposed a new line simplification
algorithm that relies on RDP-based, monotonic chains, and
duality. First, to simplify the original lines, the method uses
the traditional D-P algorithm and then divides the reduced
lines into monotonous chains. The dichotomy is then oper-
ated to effectively investigate the junction locations of the
chains and to process the crossing chains. By doing so, the
method solves its intersection problems [20]. While the pro-
posed method addresses self-intersection problems, it does
not take into account issues related to area preservation
after polyline simplification. Similar to the RDP algorithm,
the proposed method neglects the bending characteristics of
curves.

Iiyamaet al. (2022) proposed an approachnamedSQUISH-
E(mu) with Stay Areas (SESA), which is a rapid batch
compression technique for trajectory data based on identi-
fied stay areas. A stay area pertains to a location where a
user remains stationary for a specific duration, such as wait-
ing at a traffic light or a bus stop. Additionally, SESA divides
the trajectory into smaller sub-trajectories using these identi-
fied stay areas and employs the SQUISH-E(mu) compression
method on each sub-trajectory. Through experiments con-
ducted on trajectory datasets, it has been demonstrated that
SESA manages to reduce compression time by about 65%
[34]. Despite the improvement in speed, the method still
offers relatively slow performance due to its complexity.

Al Jawarneh et al. (2023) proposed a method named Geo-
RAP to process geospatial data streams online. A method
named GeoRAP, designed to process geospatial data streams
online, has been proposed. GeoRAP simplifies the working
area using the RDP algorithm and then minimizes response
time while maintaining accuracy through a spatial strati-
fied sampling method. This method is developed to excel
in various online and batch geospatial processing work-
loads, especially with large datasets, aiming to provide high
throughput and accuracy [35]. Being an RDP-based method,
it operates only offline.

Sasaki et al. (2023) introduced a framework for a model-
less feedback system driven by tourist tracking data. The
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system utilizes tourist routes collected through mobile appli-
cations to visualize the differences between geomedia rec-
ommendations and the actual routes chosen by tourists.
The mobile collaborative framework is used to reorganize
tourist routes. This process includes extracting the location
where user-generated content (UGC) is recorded, abstract-
ing locations where tourists stay, discarding locations where
users remain stationary, and simplifying the remaining loca-
tion points. Subsequently, the heatmap system visualizes
heatmaps for hot streets,UGC-oriented hot spots, and indoor-
oriented hot spots. Experimental results indicate that this
method can create a more suitable route for hot street visu-
alization compared to the raw and simplified routes in terms
of geometry [36]. Due to the relatively complex nature of the
method, its weakness is running time.

Xiong et. al (2023) proposed a method that utilizes
the Spark big data processing engine to compress large
amounts of GPS trajectory datasets in parallel. By paralleliz-
ing classical trajectory compression algorithms such as RDP,
Top-Down Time-Ratio (TD-TR), SQUISH, and Velocity-
Aware Douglas–Peucker (V-DP), the study evaluates the
performance of these algorithms. The experiments demon-
strate that, with a Spark cluster of 14 nodes, the dataset
can be compressed in just 438s. Furthermore, the parallel
algorithms achieve an average storage cost savings of 26%,
reaching up to 40% [37]. The method cannot distinguish
between trajectories coming from the same source. It needs
improvement with processes such as an appropriately sized
time window, vehicle trajectory prediction, and candidate
road segment pre-fetching.

Zhao et al. (2023) proposed a method to solve the maxi-
mum angular prediction problem to achieve real-timemotion
planning for tractors and multiple towed vehicles. The aim
was to detect discrepancies between planned and executed
trajectories and to reduce the trajectory for obstacle-free
path planning. A trajectory reduction method was suggested,
taking into account the dynamics of the trajectory, and a
controller-based reduction approach was proposed. This was
intended to reduce the mismatch between the original and
reduced trajectories. The method led to the efficient creation
of trajectories in a dynamic environment without obstacles
[38]. The increase in the length of the tractor introduces noise
in terms of position accuracy. Therefore, the method is rela-
tively less resilient to noise.

3 Proposed Trajectory ReductionMethod

To reduce the GNSS trajectory data, we developed a method
that is classified as Unconstrained Extended Local Process-
ing, which is one of the line simplification classes proposed
by McMaster [39]. The components and symbols of the tra-
jectory reduction used in this study are shown in Fig. 2.

Fig. 2 Components and symbols of a trajectory reduction used in the
study

Fig. 3 Original and reduced trajectories

According to the figure, the original trajectory is symbol-
ized as T , and its simplified version is T ′, Pn(x, y) is a
point, and its coordinates at timestamp n, E(Pn+1Pn+2) is
the vertex between points Pn+1 and Pn+2, θ(Pn) is the direc-
tion angle between the lines (Pn−1Pn) and (Pn Pn+1),�(Pn)
is the angular difference between the lines (Pn−1Pn) and
(Pn Pn+1).

The method determines whether the new incoming loca-
tion data, Pn(x, y), are a turning point each time it reads
from a GNSS receiver while operating online or reads GNSS
data from a file while operating offline. A location data that
is determined as a turning point is saved in a database. The
original and reduced trajectories shown in Fig. 3 are used as
an example of the turning point determination process with
the proposed method. In the decision phase, the three-cell
window system shown in Fig. 4 is used.
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Fig. 4 Proposed windowing system for the sample trajectory data

In the first step, the starting point of the trajectory is added
to the third cell of the empty window. In the second step, the
first point is shifted to the left of the second cell, and the
second point is added to the third cell. In the third step, the
points in the second and third cells are shifted to the left,
and the third point is added to the third cell. At this stage,
the directions of the edge between the point in the first cell
and the point in the second cell and the edge between the
points in the second and third cell are calculated. The direc-
tion angles between these two edges are determined. If the
difference between these angles is less than a predetermined
threshold level, it is assumed that there is not much differ-
ence between the directions of the two edges, and the point
in the third cell is discarded. If the difference between the
direction angles is greater than the threshold value, as in step
#4 in Fig. 4, a turning in the trajectory is considered, and
the fourth point is selected as a new point of the reduced
trajectory. Each selected point is saved in the database. The
coordinates of each selected point of the reduced trajectory,
its angular location relative to the previous point, and the
displacement amount are stored in the database.

The method starts by determining the window size and
threshold value. The window size is important in terms of
the desired precision when determining the turning point.
An excessively large window size will require numerous ref-
erence points, resulting in a low reduction ratio and a higher
similarity to the original trajectory. Therefore, a 3-cell or 4-
cell window size is adequate. Lowering the threshold value
results in a reduced trajectory that is closer to the original
trajectory but with a lower reduction rate.

The error due to line simplification, i.e., the error due to
the difference in position between the original trajectory T
and the simplified version T ′, which is called the displace-
ment error, is measured by the perpendicular distance of the

original point to its simplified trajectory, as shown in Fig. 2.
The overall performance of the simplification can be calcu-
lated by the RMSE in Eq. (1). In the equation, xn and yn are
the coordinates of the original point Pn , and x1n and y1n are
the coordinates of perpendicular point P1

n on the simplified
trajectory.

RMSE =
√

1

N
�N ((xn − xln) + (yn − xln))

2 (1)

To reduce GNSS data, a method that is better than the
existing methods in the literature and can work online has
been developed. The method is explained by the pseudocode
shown in Algorithm 1.

Algorithm 1 Pseudocode of the proposed method
Require: W : window, ω: window size, ρini t : angle threshold
Output: T ′ : reduced trajectory
1: while p ← read(GNSSReciever) do
2: for i ← 1 to ω do
3: ρthreshold ← ρini t

2(i−1)

4: θi ← arctan (
p
Wi

) ∗ 180
π

5: if θi ≥ ρthreshold then
6: W ← ShiftLeft(W , ω − 1)
7: Wω ← p
8: T ′ ← p
9: break
10: end if
11: end for
12: end while

In Algorithm 1, window size and angular threshold values
are used as input parameters. The number of angular thresh-
olds varies with window size. Angular threshold values are
assigned by dividing each cell of the window in half, starting
with the initial threshold value being assigned to the first cell.
This is done to increase precision and is given in Eq. (2).

ρthreshold = ρini t

2(i−1)
(2)

In Eq. (2), ρthreshold represents the threshold value to be
used for the currently calculated window cell. On the other
hand, ρini t is used to decide according to the angular position
ofW1 and is initially determined by considering the window
size. i shows the index value of thewindow cell to be decided.
For example, for a 3-cell window, if the angular threshold
value forW1 is set as ρini t = π

2 , forW2, ρ2 = π
2 ∗ 1

2(2−1) = π
4 ,

for W3, it is determined as ρ3 = π
2 ∗ 1

2(3−1) = π
8 .

At the output of the method, a reduced coordinate
sequence is produced.Themethod runs as long as there is data
acquisition. If the method is used online, data are streamed
from the device’s GNSS receiver. Otherwise, data are read
from a file while operating offline. When the point data is
acquired from a sensor or read from a file, it is checked
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within an iteration whether the threshold value of that cell
is exceeded for each of the cells in the window. If any of
the threshold values are exceeded, the point in that cell is
considered to be a turn, the iteration is terminated, and the
turning point is added to the reduced trajectory sequence.
After determining the turning point, the points in the win-
dow are shifted left by one, and the next point in the original
trajectory is added to the window. If the newly acquired point
is not the turning point, no changes are made to the window.

To determine the relative position of two points in Algo-
rithm 1, the calculation given in Eq. (3) is performed.

θ = tan−1
(
x

y

)
∗ 180

π
: {x,y‖x = xn − xn−i ;

y = yn − yn−i }
(3)

In this equation, θ indicates the angular value of a point
in the plane, the latitude and longitude information of each
point in the x and y plane. xn−i and yn−i variables are the
longitude and latitude information of the cell to be used in
the calculation by reference in the window, and xn and yn
are the longitude and latitude information of the point whose
angular position is to be calculated according to the reference
point.

In n iterations, a turning decision is made for each new
point obtained from the GNSS receiver or a file. There-
fore, the algorithmic complexity required for the selection
of each point in the developed method is O(n), as it will be
proportional to the size of the data. The complexity of the
pseudocode shown in Algorithm 1 is O(n), as the algorithm
will run as long as there is a data stream from the GNSS
receiver. In the studies conducted in the literature, the algo-
rithmic complexity of the developed methods is O(n), O(n2),
and O(nlogn). The method developed in this study performs
more efficiently than the existing methods in the literature
[25, 32, 40] because of its low algorithmic complexity. There-
fore, when the point is obtained, it can be detected whether
it is a turn while running online. The method shown in Algo-
rithm1 can also run offline on existing data or datasets instead
of reading data from theGNSS receiver. In this way, an effec-
tive reduction can be performed on both online and offline
data.

4 Testing the DevelopedMobile Application
andMethod

In this study, a mobile application with edge computing [41]
was developed to test and visualize that the developedmethod
also works online on mobile devices. Android Studio (ver-
sion 2020.3.1) IDE, Dart (version 211.7808) language, and
Flutter (version 65.2.2) SDK software were used for applica-
tion development. The application performs data reduction

Fig. 5 The diagram of the edge system used in this study

Fig. 6 Mobile application’s main menu

on the mobile device by using edge computing when data
are read from the sensors of the device and then stored in
the database existing in the cloud via a gateway. An example
diagram of the application is shown in Fig. 5.

The developed application, whose interface is shown in
Figs. 6 and 7, has been tested in real environments on the
Samsung Galaxy M51 (SM-M515F) mobile device with
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Fig. 7 Mobile application’s home screen

the Android 11 operating system. Using the application,
Google’s cloud-based Firebase Real-time Database [42, 43]
was used to store the retained points. Thus, a real-time tra-
jectory data stream is provided frommoving objects. Using a
cloud-based database,more than one trajectory stream can be
created simultaneously. Deng et al. (2017) mentioned that if
multiple trajectory flows occur simultaneously while record-
ing trajectories to the cloud database, flow inconsistencymay
occur at the input and output [29]. In addition, they presented
their studies with the assumption that the method they devel-
oped works in the absence of coincidence. To overcome the
problemmentioned here, users must register to use the appli-
cation. In this way, users must log in, and trajectories are
stored separately for each user. In addition, to distinguish
between two trajectory records belonging to each user, a field
with the name isStart that stores the true value is added to
the first record added to the database when each trajectory
record is started. Therefore, multiple trajectories of each user
can be stored in the same database. The altitude, isSelected,
isStart, latitude, longitude, speed, and timeStamp values of
each point are stored in the cloud database. The timestamp
value of the GNSS’s atomic clock is stored in the timeS-
tamp field. By doing so, we aimed to prevent the time shift
that will be encountered in the process of reassembling the
data that is thought to be done in the future. Because we
want to create a dataset for testing the method offline and

comparing results online, all the points obtained are saved in
the database. The isSelected field stores a Boolean value to
distinguish the points that are detected as a turn during the
online test of the method. Using this field, the consistency of
the developed reduction method was checked.

The application consists of a login screen, a menu, and
a main screen. By logging in, only the logged-in user on
Firebase can access and add their data. When the Start GPS
Tracking button is pressed from the main menu, the GNSS
location data acquisition and reduction process is initiated.
Likewise, when the application is run, the GNSS location
data acquisition and reduction process starts automatically.
The Upload to Cloud button allows the transfer of reduced
data that cannot be transferred to the cloud database in envi-
ronments where there is no internet connection or where it
is weak. Clicking the Download from Cloud button, the data
saved in the cloud database by the user is downloaded to the
mobile device and displayed on the map. The reduced and/or
downloaded GNSS location data from the cloud database is
visualized as shown in the screen shown in Fig. 6 by program-
ming the Google Maps API. Again, at the top of the main
screen, the latitude, longitude, altitude, and speed informa-
tion of the most recently obtained location are displayed.
In addition, the latitude, longitude, altitude, speed, and time
stamp information of past locations are listed at the bot-
tom of the screen. On the map, the origin, reduced points,
and selected points are, respectively, depicted with blue, red,
and green markers. Likewise, in the list of visited locations,
selected points are highlighted with a green tick mark, and
reduced points are shown with a pale gray cross mark. It has
been observed that the developed application is efficient in
terms of testing the method and obtaining successful results.

5 Results of the ProposedMethod

In the literature, there are studies on GNSS data reduction
or line simplification. In this study, a method that has been
observed to work efficiently in the field of GNSS data reduc-
tion has been developed. It is thought that the proposed
method can be used effectively and easily not only for GNSS
data but also in areas such as computer graphics and cartog-
raphy. Because the data in these fields, such as GNSS data,
incorporate a coordinate system.

The proposed method and the RDP algorithm, which is
widely used in the literature, are compared.Theparameters of
both methods and the comparison results are shown in Table
1. The comparison was made using the Microsoft Geolife
dataset file “20090522094234.plt". Moreover, examples of
visual comparisons are shown in Figs. 8 and 9.

Figure8 depicts the dataset output when the proposed
method is run with an angular threshold of θ = 5◦ and a
three-cell window, according to the results in Table 1. On the
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Table 1 Parameters and comparison results of the proposed method
and RDP on “20090522094234.plt"

Proposed method RDP Algorithm

# of coordinates 2560 2560

# of reduced coordinates 230 35

Reduction rate 91.01 % 98.63 %

Runtime (ms) 14.54 19.24

RMSE value 5.8744e−04 1.1176e+03

Threshold θ = 5◦ ε = 0.001

Window size 3 –

Fig. 8 Visual comparison of original and reduced trajectories for the
proposed method

Fig. 9 Visual comparison of original and reduced trajectories for the
RDP Algorithm

Table 2 Parameters and comparison results of the proposed method
and RDP on “20081028002304.plt"

Proposed method RDP Algorithm

# of coordinates 328 328

# of reduced coordinates 64 37

Reduction rate 80.49 % 88.72 %

Runtime (ms) 12.6 18.81

RMSE value 1.1442e−04 1.3558e+02

Threshold θ = 10◦ ε = 0.0001

Window size 3 –

Fig. 10 Visual comparison of original and reduced trajectories for the
proposed method

other hand, Fig. 9 depicts the dataset output when the RDP
algorithm is run with a threshold of perpendicular distance
ε = 0.001. Under these conditions, the proposed method
reduces the dataset consisting of 2560 points to 230 points
by processing it in 0.014539s. It was observed that the reduc-
tion rate of the proposedmethod was 91.01%, and the RMSE
value was 5.8744e−04. The RDP algorithm processed the
same dataset in 0.019237s, reducing it to 35 points. It was
observed that the reduction rate of the RDP algorithm was
98.63%, and the RMSE value was 1.1176e+03. According
to these results, the reduction rate of the RDP is 7.73% better
than the proposed method in this study. However, the pro-
posed method has approximately 2e+7 times lower RMSE
error than the RDP. Furthermore, our method is 24.4% faster
than the RDP.

Another comparison of the results and the parameters
of both methods are shown in Table 2. The compari-
son was made using the Microsoft Geolife dataset file
“20081028002304.plt". Moreover, examples of visual com-
parisons are shown in Figs. 10 and 11.
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Fig. 11 Visual comparison of original and reduced trajectories for the
RDP Algorithm

Figure10 depicts the dataset output when the proposed
method is run with an angular threshold of θ = 10◦ and a
three-cell window, according to the results in Table 2. On the
other hand, Fig. 11 depicts the dataset output when the RDP
algorithm is run with a threshold of perpendicular distance
ε = 0.0001. Under these conditions, the proposed method
reduces the dataset consisting of 328 points to 64 points by
processing it in 0.012565s. It was observed that the reduc-
tion rate of the proposed method was 80.49%, and the RMSE
value was 1.1442e−04. The RDP algorithm processed the
same dataset in 0.018817s, reducing it to 37 points. It was
observed that the reduction rate of the RDP algorithm was
88.72%, and the RMSE value was 1.3558e+02. Based on
these findings, the RDPoutperforms our proposedmethod by

8.23% in terms of reduction rate. Nevertheless, our method
exhibits a lowerRMSEerror compared to theRDPalgorithm.
Additionally, the proposed method demonstrates a 49.3%
faster running time than RDP.

6 Conclusion

GNSS data from applications developed for different pur-
poses are obtained from various sources. Utilizing excessive
amounts of unnecessary data poses various challenges for
computing systems, notably in terms of increased storage
requirements, heightened processing demands, and the gen-
eration of unwanted noise. In this study, we proposed a
novel GNSS data reduction method, providing high reduc-
tion rates, low error rates, and faster processing. This method
was designed to operate seamlessly, both offline and online
on mobile devices for GNSS data. In the proposed method,
the decision phase involves the use of windowing with ref-
erence points to reduce a point. The proposed method has an
acceptably lowdissimilarity rate and can operate in lowband-
width. To demonstrate the operation and efficiency of the
proposed method, we developed a mobile application which
functions as an edge system, collecting and reducing GNSS
trajectory data directly on the mobile device. The mobile
device stores the reduced data on the device until it goes
online. When online, it transmits the data to a cloud-based
database. The developed mobile application, incorporating
the proposed method, has undergone testing, demonstrating
its notable success.

In existing literature, displacement, distortion, and run-
time are commonly used measures for evaluating the per-
formance of algorithms developed for GNSS data reduction.

Table 3 Comparison results of the proposed method and other methods in the literature [44]

Line simplification
Algorithm

Online
Processing

Visual
difference

Displacement in the
‘certain’ case

Displacement in
the uncertain
case

Shape distortion
in the ‘certain’
case

Shape distortion
in the uncertain
case

Reciprocal of the
computation time

Proposed method + *** *** *** *** *** ***

Douglas–Peucker - *** *** *** *** *** *

Zhao–Saalfeld - *** ** ** ** * ***

Reumann–Witkam - *** ** ** ** ** *

Visvalingham–
Whyatt

- *** ** ** ** * *

Distance between
points

+ *** * * * * ***

Opheim - *** * * * * *

Lang - *** ** ** ** * **

Perpendicular
distance

- ** * * * * ***

nth point + * * * * * ***
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Table 3 shows the comparison between some methods found
in the literature and the proposed method in this study. In the
table, more stars indicate a better performance in terms of
the corresponding assessment. As shown in Table 3, a trace
of the methods presented in the literature can also be used
online, similar to the proposed method.

Based on the test results, while operating on identical
datasets and hardware, the proposed method exhibited a run-
time improvement of up to 49%and achieved anRMSEvalue
2e+7 times better than the RDP algorithm.

The novelty of this study lies in its capability to perform
data reduction-both online, at the moment it is obtained, and
at high speed with a low error rate. Only a limited num-
ber of the methods in the literature can perform reduction
processes online, as in this study. However, these methods
generally have higher error rates and/or slower runtimes.
Therefore, in cases where data needs to be processed in the
future, the possibility of having a trajectory different from
the original trajectory exists, leading to potentially incorrect
results.Moreover,whenmethods thatworkonline are applied
on mobile devices with relatively lower bandwidth, battery
life, and processing capacity, the high runtime cost of data
reduction may not be efficient. The proposed method aims
to overcome these challenges.

As a result of the tests and literature review, itwas observed
that the method produced better outcomes compared to the
existing methods in terms of dissimilarity rate, processing
time, and visual distortion. For example, the visual differ-
ence between the output obtained from the nth point method
is significantly greater when compared to the results pro-
duced by the proposedmethod, as the formermethod exhibits
low-performance results in terms of turn detection [44, 45].
In addition, some methods in the literature work offline but
exhibit a low visual difference. However, when evaluating
their effectiveness based on success rates in shape distor-
tions and displacement against the proposed method, they
demonstrate inferior performance. For instance, the widely
used Douglas–Peucker method and its derivatives yield sub-
par results in terms of shape distortion and displacement.
On the contrary, the method proposed in this study not only
addresses the shortcomings of the previous method but also
outperforms in terms of runtime and has the capability to
function online.

Consequently, we have proposed an approach that exhibits
significantly faster runtime and remarkably lower error rates
while maintaining a reasonable reduction rate. Furthermore,
it is believed that existing methods in the literature sel-
dom operate online, underscoring the significance of our
developed method in addressing this notable gap in the lit-
erature. The results obtained in this study indicate that the
proposed method is well-suited for running efficiently on
large datasets. In future research, efforts are aimed at making

the proposed method compatible with parallel programming
to ensure higher performance in processing both online and
offline data.
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