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Abstract
Machine learning-based IDSs have demonstrated promising outcomes in identifying and mitigating security threats within
IoT networks. However, the efficacy of such systems is contingent on various hyperparameters, necessitating optimization to
elevate their performance. This paper introduces a comprehensive empirical and quantitative exploration aimed at enhancing
intrusion detection systems (IDSs). The study capitalizes on a genetic algorithm-based hyperparameter tuningmechanism and
a pioneering hybrid feature selection approach to systematically investigate incremental performance improvements in IDS.
Specifically, our work proposes a machine learning-based IDS approach tailored for detecting attacks in IoT environments.
To achieve this, we introduce a hybrid feature selection method designed to identify the most salient features for the task.
Additionally, we employed the genetic algorithm (GA) to fine-tune hyperparameters of multiple machine learning models,
ensuring their accuracy in detecting attacks. We commence by evaluating the default hyperparameters of these models on the
CICIDS2017 dataset, followed by rigorous testing of the same algorithms post-optimization through GA. Through a series of
experiments, we scrutinize the impact of combining feature selection methods with hyperparameter tuning approaches. The
outcomes unequivocally demonstrate the potential of hyperparameter optimization in enhancing the accuracy and efficiency
of machine learning-based IDS systems for IoT networks. The empirical nature of our research method provides a meticulous
analysis of the efficacy of the proposed techniques through systematic experimentation and quantitative evaluation. Consol-
idated in a unified manner, the results underscore the step-by-step enhancement of IDS performance, especially in terms of
detection time, substantiating the efficacy of our approach in real-world scenarios.

Keywords Intrusion detection systems (IDSs) · Machine learning (ML) · Hyperparameters tuning · Genetic algorithm

1 Introduction

Due to advances in network technology, the Internet is
witnessing a significant surge in connected devices and appli-
cations. The number of Internet of Things (IoT) devices
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skyrocketed by 18%, hitting 14.4 billion in 2022. Fore-
casts from the State of IoT—Spring 2022 report project
indicated that an additional 27 billion connected devices
expected to join the internet by 2025 [1]. The proliferation of
wireless connections and the diverse distribution of internet-
connected devices, ranging from sensors and smartphones
to autonomous systems and critical applications, has led to
the emergence of numerous cyber threats. [2, 3]. Exploit-
ing wireless connection vulnerabilities can compromise the
CIA triad principles, encompassing confidentiality, integrity,
and availability. McAfee Labs’ survey revealed a staggering
118% surge in ransomware attacks during the first quarter
of 2019. Moreover, the use of PowerShell witnessed a sig-
nificant 460% rise in handling attacks on vulnerable devices
[4].
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Securing both IoT devices and their associated networks
is paramount to safeguarding against cyber threats. Orga-
nizations allocate substantial funds to enhance security,
considering the most significant challenges lie in sectors
like healthcare, banking, telecommunications, energy, and
government. Numerous cryptographic methods are being
suggested to thwart attacks targeting these environments.
[5]. The effectiveness of current methods is limited by the
dynamic network structure and the heterogeneous distribu-
tion of IoT devices. As a result, there is a pressing demand
for systems capable of detecting attacks in computer net-
works, with a specific focus on the IoT environment. These
systems are known as intrusion detection systems (IDSs).
Intrusion detection systems (IDSs) are designed to monitor,
recognize, and assess events within a computer system or
local domain, aiming to identify malicious activities. These
systems provide a range of options for effectively manag-
ing threat and vulnerability risks. [6]. IDS systems can be
categorized into three main types: signature based, anomaly
based, and specification based. Signature-based IDS com-
pares current traffic patterns with known attack signatures to
identify matches, effectively detecting known attack types.
However, it may struggle with detecting unknown or zero-
day attacks. On the other hand, anomaly-based IDS detects
anomalies by comparing them with profiles of normal sys-
tembehavior, allowing it to identify deviations fromexpected
patterns. In specification-based IDS, deviations from system
standards are flagged as potential attacks. This type combines
the advantages of both signature-based and anomaly-based
IDS, offering a more comprehensive approach to intrusion
detection. Intelligent artificial-based anomaly detection sys-
tems arewidely favored in the literature due to their numerous
advantages [7–9]. These methods excel at early detection
of new or mutated attacks through models trained with
existing samples. However, determining the optimal hyper-
parameters during model construction and training poses a
challenge, as these systems rely on various algorithms. To
enhance the intrusion detection performance of AI-based
IDS, it is crucial to fine-tune the hyperparameters of the uti-
lized machine learning algorithms and deep learning models
[10]. Traditionally, hyperparameter tuning involves manu-
ally testing various values for the hyperparameters to assess
the model’s performance. However, this method is time-
consuming and subjective, relying on human observation,
leading to questions about its reliability [11]. To address
these limitations, automating the hyperparameter optimiza-
tion process becomes essential, saving time and reducing
human effort. This automation can be achieved through
different algorithms such as grid search, random search,
Bayesian, and genetic algorithms.

In this work, we developed an anomaly-based IDS system
by leveragingmultiplemachine learningmodels and employ-
ing the genetic algorithm for hyperparameter tuning. The

CICIDS2017 dataset was chosen for training and testing our
model. Initially, the dataset underwent pre-processing, and
various machine learning models with their default parame-
terswere used to detect and classify attacks and their variants.
Next, we introduced a hybrid feature selection method to
identify the most relevant features for the task. The used ML
models that performed best in the initial stage were retrained
using the selected sub-feature group from the proposed fea-
ture selection method. Finally, we optimized the selected
models’ detection accuracy by employing the genetic algo-
rithm to select the best-performing hyperparameters.

2 Motivation

The growing prevalence of cyber threats has intensified the
need for robust and efficient intrusion detection systems
(IDSs) to safeguard critical computer networks. In this study,
we present a novel and comprehensive approach for devel-
oping an anomaly-based IDS system. By harnessing the
power of multiple machine learning models and integrating
the genetic algorithm for hyperparameter tuning, we aim to
significantly improve the system’s detection accuracy and
adaptability. Our research utilizes the CICIDS2017 dataset,
a widely recognized benchmark dataset in the field, for train-
ing and testing the proposedmodel. To address the challenges
posed by dynamic network structures and the diverse distri-
bution of Internet of Things (IoT) devices, we meticulously
preprocess the dataset. We systematically evaluate various
machine learning models, exploring their default parameters
to detect and classify attacks and their variants accurately.
Recognizing that feature selection plays a crucial role in
enhancing performance, we introduce a hybrid feature selec-
tion method to identify the most relevant features for our
task. Taking the analysis one step further, we retrain the algo-
rithms that exhibit optimal performance in the initial stage,
utilizing the selected sub-feature group from our proposed
feature selection method. This step ensures that our IDS sys-
tem is fine-tuned to focus on themost discriminative features,
enhancing its precision in detecting and classifying anoma-
lous activities. The second side of our contribution lies in
the application of the genetic algorithm for hyperparame-
ter tuning for more polishing of the proposed IDS model’s
performance. By automating this process, we reduce human
intervention and ensure that our IDS system is optimized to
deliver the best possible results. The genetic algorithm helps
fine-tune the machine learning models’ hyperparameters,
leading to enhanced accuracy, adaptability, and robustness in
the proposed IDS system. Our research is expected to signifi-
cantly advance the field of intrusion detection by introducing
a comprehensive IDS system that outperforms existing solu-
tions. The combination ofmultiplemachine learningmodels,
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hybrid feature selection, and genetic algorithm-based hyper-
parameter tuning contributes to a versatile and efficient
system capable of detecting a wide range of cyber threats,
ultimately fortifying the security of critical computer net-
works and IoT environments.

The rest of the paper is organized as follows: Section 2
illustrates the most important previously conducted works in
this domain. Section 3 elaborates on our chosen research
methodology, detailing the approaches and techniques
employed in our investigation. Section 4 introduces our pro-
posed approach. Following this, in Sect. 5 we delve into
the Model Evaluation Metrics employed to assess the per-
formance of our proposed approach. In Sect. 6, we provide
insights into theHardware and Software Platform utilized for
our experiments, offering transparency on the computational
environment. Subsequently, in Sect. 7 we present our Exper-
imental Results, showcasing the outcomes of our empirical
studies. Section 8 is dedicated to a comprehensive Compari-
son Study. In Sect. 9, we extend our investigation by Testing
the proposed method using different datasets, examining its
robustness and generalizability. Finally, in Sect. 10 we draw
together our findings and insights, culminating in the conclu-
sion, where we summarize the key contributions of our work
and discuss avenues for future research.

3 RelatedWork

3.1 Machine Learning-Based IDSs

A good number of studies propose using artificial intel-
ligence, deep learning, and machine learning approaches
for attack detection using different datasets [12, 13]. For
example, in [12], the authors apply popular supervised and
unsupervised algorithms to detect attacks in theCICIDS2017
dataset. Particularly, a combination of machine learning and
deep learningmethods has been used to compare the obtained
results. The hyperparameters in this work have been tuned
manually to choose the values that can give the best results.
It has been stated that kNN, DT, and NB algorithms gave
higher performance compared with the other used algo-
rithms. In [14], a model based onmachine learning algorithm
has been proposed. Particularly, the ensemble margin tech-
nique has been used to conduct a voting process between
multiple algorithms, and the algorithms with the highest
votes were selected to provide the highest accuracy. The
deep learning methods have been utilized for feature extrac-
tion, and SVM and kNN algorithms have been adopted for
conducting the classification process. The proposed method
has been tested using multiple datasets including UNSW-
NB15, CICIDS2017, and NSL-KDD and the results have
been compared. Furthermore, the outputs of the kNN and

SVMmethods are integrated with the Dempster–Shafer clas-
sifier method. This integration method has increased the
accuracy rate, and 99.84% of success has been achieved in
the detection of the U2R attack. In [15], authors focused
on machine learning-based IDS using CICIDS2017 dataset.
Firstly, three different machine learning approaches namely
decision tree, random forest, and SVM are implemented to
detect the attacks in the dataset. Then, a machine learn-
ing model called the voting classifier (VC) determines the
output class with the highest probability between multi-
ple decision. This method improves the detection accuracy
to reach 96.25%. Similarly, [16] employed different clas-
sification algorithms in order to detect the attacks in the
CICIDS2017 dataset and compares their results. It has been
stated that the random forest gave the best results between
the adopted algorithms. In [17], the paper begins by outlin-
ing the importance of IDS in the field of network security
and the limitations of traditional IDS techniques. The pro-
posed hybrid algorithm aims to overcome these limitations
by improving the accuracy of detection while minimizing
false alarms. The authors then explain the principles of tabu
search and genetic algorithms and describe how they can
be combined to form a hybrid algorithm. The tabu search
algorithm is used to explore the search space and generate
candidate solutions, while the genetic algorithm is used to
optimize these solutions. The proposed IDS system consists
of two main components: the training phase and the detec-
tion phase. In the training phase, the system learns the normal
behavior of the network and creates a profile for each net-
work user. In the detection phase, the system monitors the
network traffic in real-time and compares it to the learnedpro-
files to detect any anomalies. The paper presents the results
of experiments conducted on theKDDCup 99 dataset, which
is a standard dataset for evaluating IDS systems. The results
show that the proposed hybrid algorithm outperforms tra-
ditional IDS techniques in terms of detection accuracy and
false alarm rate.

3.2 Hyperparameters Tuning for IDSs

Theuse of artificial intelligencemethods in attackdetection is
increasing due tomany features such as scalability, computa-
tional ability, and increasingly accurate detections. However,
these methods have a large number of parameters, and it is
important to increase the accuracy rate by optimizing these
parameters. As a result, hyperparameter tuning research has
gained popularity in the literature [5–12]. Different types of
hyperparameter tuning approaches such as grid search, ran-
dom search, andBayesian have been adopted in the literature.

In [18], the goal of the study is to find the best accu-
racy for network attack detection by fine-tuning various
LSTMhyperparameters including optimizers, loss functions,
learning rates, and activation functions and comparing their
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performance on the CICIDS2017 dataset. The best accu-
racy obtained after the hyperparameter tuning process was
99.54%. Similarly, [19] demonstrated that tuning hyperpa-
rameters had an impact on the performance of machine
learning algorithms. Some hyperparameters such as learn-
ing rate, iteration numbers, and optimizers have been tuned
to select the best values for each of which. The study focused
on DDoS attacks and employed simple neural networks and
LSTM algorithms for detecting them. The simple neural net-
work obtained an accuracy of 100%when it has been trained
using CAIDA and DARPA datasets.

In [20], author proposed machine learning approaches for
DDoS attack detection based on CICDDoS2019, which con-
tains 12 different DDoS attacks. Firstly, data pre-processing
is performed, which includes organizing, cleaning, and scal-
ing the data samples. Second, a hybrid feature selection
method is presented for extracting the best features. Next,
grid search was used to tune the hyperparameter by selecting
the best parameters to improve detection performance, and
the model was trained using the selected best features. It has
been stated that the GB model obtained the highest accuracy
of 99.97% among all the applied algorithms. In [21], NSL-
KDD and CICIDS2017 datasets have been used for training
a proposed neural network IDS system. Authors focused on
the effect of hyperparameter tuning on the model accuracy.
Grid search algorithm has been used for tuning hyperpa-
rameters including the number of hidden layers, number of
neurons, the activation function, the optimizer, the batch size,
and the number of epochs. The study has been conducted
to show with experimental results that the smallest change
in hyperparameters affects the accuracy of machine learning
models. After conducting the hyperparameterd optimization,
the accuracy value with the best hyperparameters reached
99%. Similarly, machine learning-based DoS and DDoS
attacks detection was carried out using various datasets
including ISCXIDS2012,CICIDS2017,CSE-CIC-IDS2018,
and CICDDoS2019 in [22]. The hyperparameters of vari-
ous algorithms were optimized by the grid search algorithm.
After parameter optimizations, the RF and DT algorithms
obtained an accuracy value of over 98% for all four datasets.

In [11], hyperparameter tuning method has been pro-
posed as a combination of grid search and random search
approaches to improve the performance of deep learning
model classification performance. Data preparation and pre-
processing operations were performed on the NSL-KDD
and CSE-CIC-IDS2018 datasets. Grid search was conducted
through all hyperparameters to find the best value for each
of which. In order to reduce the time of the grid search algo-
rithm, hyperparameter setting was combined with random
search, and the process was carried out without a specific
order or criteria. In [23], Bayesian optimization algorithm
has been adopted for hyperparameter tuning. The authors

used an unsupervised learning algorithm for feature extrac-
tion, while they used deep learning techniques for intrusion
detection. Activation function and weight hyperparameters
were tuned to increase the performance of the adopted deep
learning model. As a result of the evaluation using the BoT-
IoT dataset, the accuracy value increased to 99.99% thanks
to the hyperparameter setting.

In [24], the paper addresses the need for effective network
intrusion detection systems for cloud IoT devices. It high-
lights the use of CNN architecture and transfer learning. In
this case, the knowledge learned from a base dataset is trans-
ferred to the IDS on cloud IoT devices. Five CNN model
trained and two datasets are used: CICIDS2017 and CSE-
CICIDS2018. It discusses the accuracy, precision, recall, and
F1 score achieved by the system. After hyperparameter tun-
ing, accuracy was obtained at 0.9999 for both datasets. In
[25], authors emphasize the importance of anomaly-based
detection, where abnormal patterns or behaviors are identi-
fied as potential attacks. The model is trained using a deep
neural network (DNN), and tuning hyperparameters and a
filter-based feature selection approach are used to get the
highest performance on the UNSW-NB15 dataset. Without
data balancing, the proposed model has an accuracy of 84%.
The final score after data balancing is 91%. Similarly, in [26],
the paper presents a novel approach for intrusion detection in
IoT environments by combining deep reinforcement learn-
ing, feature selection, and optimal hyperparameters. The
proposed system combines filter-based, wrapper-based, and
embedded feature selectionmethods. Feature selectionmeth-
ods are applied to the NLS-KDD dataset to select related
features. The optimal hyperparameters for the deep rein-
forcement learning (DRL) algorithm are determined using
a swarm-based metaheuristic optimization algorithm called
the whale optimization algorithm (WOA). Proposed method
increases accuracy with feature selection methods. In addi-
tion, selecting the appropriate hyperparameter is critical to
the efficiency of IDS performance.

In [27], attack detection performance was evaluated with
stacked LSTM and bi-directional LSTM techniques applied
toUNSW-NB15 andBoT-loT datasets.With hyperparameter
optimization, theLSTMmethod gives an accuracy of 96.60%
in the UNSW-NB15 dataset, while the result for the BoT-
loT dataset is 99.99%. Bi-directional LSTM gives 96.41%
and 99.99% accuracy values for these datasets, respectively.
In a recent paper [28], authors propose a model for detect-
ing attacks in BoT-IoT dataset. The proposed model uses
a kNN classifier and feature selection techniques to iden-
tify and classify network intrusions. The authors claim that
their model is more efficient and accurate than existing mod-
els. In addition, to enhance data quality and choose the
best-performing features, the principal component analysis
(PCA), univariate statistical test, and genetic algorithm (GA)
are utilized for feature selection. With the GridSearchCV
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Table 1 Brief information about
some previously conducted
works

References Year Methods Hyperparameter tuning
algorithm

Datasets

[12] 2021 ANN, DT, k–NN, NB,
RF
CNN, SVM, EM,
k–means
SOM

– CICIDS2017

[14] 2021 SVM, k–NN – UNSW–NB15
CICIDS2017
NSL–KDD

[15] 2022 DT, RF, SVM – CICIDS2017

[16] 2020 CNN, NB, RF – CICIDS2017

[31] 2020 LSTM Manually CICIDS2017

[19] 2019 Basic Neural Network Manually CAIDA and DARPA

[32] 2021 RF, DT, DT, RF Gridsearch – ISCXIDS2012
– CICIDS2017
– CSE–CIC–IDS2018
– CICDDoS2019

[20] 2021 GB Gridsearch CICDDoS2019

[11] 2021 DNN Gridsearch, Random
search

CSECIC–
IDS2018

[23] 2020 DNN Bayesian BoT–IoT

[24] 2023 CNN BO–TPE – CICIDS2017
– CSE–CICIDS2018

[25] 2023 DNN – UNSW–NB15

[26] 2022 Deep reinforcement
learning

– NLS–KDD

[27] 2022 LSTM
Bi–Directional LSTM

– UNSW–NB15
Bot–loT

[28] 2023 kNN Grid search Bot–loT

[29] 2023 LGBM GA DS2OS

[30] 2022 SVM
RF

– BoT-IoT

hyperparameter tuning method, the best parameters of the
kNN algorithm were selected, and the optimum result was
found. The authors propose an advanced and optimized light
gradient boosting machine (LGBM) technique to identify
intrusive activities in the Internet of Things (IoT) network in
[29]. The dataset utilized in this study was initially designed
for anomaly detection in IoT service accesses and is known
as the distributed smart space orchestration system (DS2OS).
The proposed approach is used genetic algorithm (GA) to
optimize the hyperparameters. The paper aims to improve
the accuracy of intrusion detection in IoT networks by using
the proposedmodel. The paper compares the proposedmodel
with other machine learning techniques such as support vec-
tor machine (SVM), random forest (RF), and decision tree
(DT). The results show that the proposed model outperforms
other machine learning techniques in terms of accuracy, pre-
cision, recall, and F1 score. In [30], The authors suggest that

traditional intrusion detection systems (IDSs) are not effec-
tive in detecting attacks in IoT networks due to the unique
characteristics of these networks, such as the large num-
ber of devices, the heterogeneity of devices, and the limited
resources of devices. The proposed framework consists of
anomaly detection andmulti-class classification. The authors
use UNSW BoT-IoT dataset to evaluate the performance of
the proposed framework.Random forest algorithm is used for
multi-class classification, and the SVM algorithm is applied
for anomaly detection. Hyperparameters are tuned for both
scenarios. The results show that the proposed framework out-
performs traditional IDS in terms of accuracy, precision, and
recall. The Table 1 illustrates a brief information about some
important works conducted previously in this domain.

Our proposed approach stands out from surveyedmethod-
ologies by integrating a robust optimization technique—the
genetic algorithm. This method is particularly valuable for
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addressing complex, nonlinear relationships within the algo-
rithm. Mirroring the process of natural selection, the genetic
algorithm ensures the survival of the fittest set of parameters,
thereby optimizing the algorithm for the specific task at hand.
This sophisticated optimization sets our approach apart, pro-
viding a more nuanced and effective solution compared to
conventional tuning methods. The result is the identification
of optimal parameters, enhancing the adaptability and over-
all performance of our approach. Additionally, our approach
introduces a novel hybrid feature selection method, a criti-
cal factor in improving the accuracy and detection time of
intrusion detection systems. This method strategically com-
bines various feature selection techniques, leveraging their
respective strengths to identify and retain the most relevant
features for the detection process. This contributes not only
to increased detection accuracy and reduced overhead time
but also ensures the model’s robustness by focusing on the
most influential features within the dataset. By synergizing
the power of a genetic algorithm for algorithmic tuning with
the effectiveness of a hybrid feature selection method, our
proposed approach offers a comprehensive and innovative
solution that surpasses conventional methods found in the
literature.

4 ResearchMethod

4.1 Machine learning Algorithms

Artificial Intelligence (AI) is a broad field encompassing
various technologies and methodologies aimed at endowing
machines with human-like intelligence. Within AI, machine
learning (ML) and deep learning (DL) stand out as key sub-
fields. Machine learning involves algorithms and statistical
models that enable systems to improve their performance on
a specific task over time, learning from data without explicit
programming. Deep learning, a subset of machine learning,
focuses on neural networks with multiple layers (deep neu-
ral networks) to simulate the intricate processing patterns
of the human brain. These technologies find applications
across diverse domains, including natural language process-
ing, computer vision, speech recognition, cyber security, and
autonomous systems [33–45], showcasing their versatility
and impact on various facets of modern technology.

4.1.1 Decision Tree

A decision tree (DT) was introduced by Quinlan [46] as a
supervised learning algorithm that expresses groupings and
divisions using a binary tree flow chart. DT typically begins
with a single node before branching out to other possibilities
results. Each of these results generates new nodes that branch
out into other instances [47]. As a result, in order to classify

a data point, one should start at the decision tree’s root and
work their way up the tree until they reach the leaf node,
which is represented by the branch that each test’s result
indicates. The resultant classification is given by the name of
the class at the leaf node.

4.1.2 Random Forest (RF)

Random forest (RF) [48], developed by Breiman, aims to
provide low classification error by creating a large number
of decision trees from randomly selected data [49]. Since
they make the same sorts of prediction errors, randomly pro-
duced trees are less related and could reduce overfitting the
model. Each tree created gives a vote for the classification,
and the one with the most votes is determined to be the final
prediction.

4.1.3 Naïve Bayes (NB)

NB is a method based on Bayes’ theorem and using prob-
abilistic classifiers. This method assumes that each feature
is independent of the others. Without taking advantage of
the interactions and relationships between features that are
important in distinguishing between classes, thismethodmay
not perform well in complex tasks. However, it has advan-
tages in terms of ease of use, simplicity, and the ability to
work with low training examples [9].

4.1.4 XGBoots

Presented by the Distributed Machine Learning Community
(DMLC) XGBoost was primarily created utilizing gradient-
boosted decision trees for speed and performance [50].
XGBoost first generates ordered decision trees, after which
all data are chosen by assigning a weight value that is ini-
tially constant but varies depending on the analysis [51]. This
algorithm has a high tolerance for missing values, and clas-
sification is done by strengthening an already trained model
with new data. It is an effective method for optimum use of
resources and reduction of computation time.

4.1.5 Stochastic Gradient Descent Classifier (SGD)

The stochastic gradient descent (SGD) [52] method, which
is effective and simple, employs approximate gradients com-
puted from subsets of the training data and updates the
parameters in real time. With its ability to handle large
datasets and handle training instances individually, SGD
classifier provides several benefits.
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4.2 Optimization Methods and Techniques

4.2.1 Feature selection

Feature selection is the process of identifying the most rele-
vant features or variables that can predict the target variable
in a dataset. There are multiple algorithms can be used for
conducting feature selection. In this work, we chosen to use
two feature selection approaches in hybridized manner each
of these approaches will be described briefly in this section:

Mutual Information-based Feature Selection (MIFS):
MIFS [53] is a feature selection method that is based on the
mutual information measure between the input features and
the target variable in a dataset. It selects a subset of features
that maximize the mutual information with the target vari-
able while minimizing the mutual information between the
selected features. The MIFS algorithm works in a sequen-
tial manner, where it starts by selecting the feature with the
highest mutual information with the target variable. In each
subsequent step, it selects the feature that has the highest
mutual information with the target variable, conditioned on
the previously selected features. The algorithm stops when a
predefined number of features have been selected orwhen the
mutual information between the selected features is above a
certain threshold.

Sequential Feature Selection (SFS): SFS [54] is a type of
wrapper feature selection method that selects the best subset
of input features by evaluating the performance of a machine
learning algorithm on each subset of features. SFS works
by iteratively adding or removing features from the current
subset until the best-performing subset is found. The SFS
algorithmstartswith an empty subset of features and adds one
feature at each time based on some selection criterion, such
as maximum accuracy or minimum error. At each step, the
algorithm evaluates the performance of the machine learning
algorithm on the subset of features and selects the feature that
improves the performance as possible. The algorithm contin-
ues until the predefined number of features or some stopping
criterion is met. SFS can be performed in a forward or back-
ward manner. Forward selection starts with an empty subset
and adds features one at a time, while backward selection
starts with the full set of features and removes one feature
at a time. Backward selection can be more computationally
efficient as it avoids evaluating all possible feature subsets.

4.2.2 Hyper Parameter Tuning GA

The genetic algorithm [55] was developed and introduced
in 1960 by John Holland, University of Michigan students,
and colleagues. This algorithm is based on inspiring by nat-
ural evolutionary processes [56]. Particularly, this algorithm
simulates natural selection, known in evolutionary theory as
survival of the fittest. For the solution of an optimization

problem, the suitability of each parameter set is checked,
and the most suitable parameters are tried to be determined.
The search space is represented as a grouping of individuals
known as chromosomes. Gene refers to the set of character-
istics that identify an individual. In order to select the most
suitable parameters, the goodness of each chromosome [57]
should be evaluated with a "Fitness Function". Mutation,
crossover, and selection processes are used in the evalua-
tion process to ensure natural selection. The best individuals
are chosen to progress through crossover, mutation, or selec-
tion [58] until a new population is formed. As a result, the
optimization problem’s solution is determined to be the pop-
ulation’s fittest or best members, who are then identified.

4.3 Dataset

The performance of the model is evaluated using the
CICIDS2017 [59] dataset published by the Canadian Insti-
tute. The dataset was collected using simulation environment
over the course of five days, including attacks and normal
traffic scenarios, which produced data that was very close
to reality. This dataset covers the abstract characteristic atti-
tudes of 25 users in accordance with the HTTP, HTTPS, FTP,
SSH, and email protocols. According to the 2016 McAfee
Report, the dataset consists of a variety of different attacks,
including brute force FTP, brute force SSH,DoS,Heartbleed,
web, infiltration, botnet, and DDoS attacks, which were not
present in any of the previous datasets [12]. Each data sam-
ple in the dataset has about 80 features. Although the dataset
has a distinct advantage, it does have some drawbacks such
as including NaN values and distribution of attacks on eight
CSV files [15]. However, these disadvantages can be solved
by pre-processing the dataset. Figure 1 shows information
about the classes of the original dataset.

5 Proposed Approach

The proposed method comprises four major phases: pre-
processing, feature selection, classification, and hyperparam-
eter tuning. Thefirst phase is pre-processing phasewhichwill
be described in the next section.

5.1 Pre-Processing

It is a crucial phase in the improvement of anymachine learn-
ing framework and is mostly used to organize and clean raw
data in order to make sure that it is suitable for the cre-
ation and training of any machine learning model. In the
pre-processing phase, we performed exploratory data analy-
sis to understand the dataset distribution using visualization
techniques. Subsequently, data cleaning and feature scaling
were applied to normalize the range of features. Categorical
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Fig. 1 The data distribution in the classes of the CICIDS2017 dataset

data were converted into numerical data using label encod-
ing. This critical pre-processing phase significantly enhances
classification results. The following are the pre-processing
steps that have been conducted in this work:

5.1.1 EDA

Exploratory data analysis (EDA) is conducted to investigate,
summarize, and visualize the data distribution in the dataset.
This step aids researchers in comprehending and interpret-
ing the dataset through various techniques. EDA provides
valuable insights into data types, category distributions, the
presence of NaN data and duplicates, and the identification
of outlier points that require cleaning. Additionally, correla-
tion values between features are observed after completing
the data analysis.

5.1.2 Data Cleaning

Following the completion of EDA, the data cleaning process
is initiated to prepare the dataset for training machine learn-
ing models effectively. Empty and infinite values, along with
duplicate rows, are removed to enhance model performance
and reduce computation time. Additionally, certain attacks
(classes) with limited samples and minimal impact on model
performance are excluded from the dataset. The final dataset
includes Brute Force, DoS, PortScan, and DDoS attacks.

5.1.3 Handling Imbalanced Data

In this work, the attack detection process was carried out
in two distinct scenarios. In the first scenario, the dataset’s
data were classified as either attack or benign, represent-
ing a binary classification task. In the second scenario, the
data were categorized as benign or attack, and the detected

attacks were further classified into four different attack fam-
ilies, forming a multi-class classification problem. So, we
handled the imbalanced data in two different scenarios based
on the type of classification process to be conducted:

Binary Classification Initially, we merged the attack data
with different labels in the dataset (Brute Force, DoS,
PortScan, and DDoS attacks) and assigned them a common
"attack" label, thus transforming the dataset into a binary
classification format. Subsequently, we observed that the
number of "Benign" data points exceeded the number of
"attack" data points. To address this class imbalance and
improve performance, we employed the SMOTE algorithm.
By utilizing this technique, we increased the number of sam-
ples in the "attack" class from 421,603 to 2,072,444, thereby
equalizing its data samples with the "Benign" class.

Multi-Class Classification Following pre-processing, the
dataset consists of 2,072,444 benign samples and 421,603
attack samples, distributed among four different classes. To
address the class imbalance, we developed a hybrid data-
balancing technique, comprising both downsampling and
upsampling processes. Initially, we performed downsam-
pling to equalize the number of benign data samples with
that of the attack data classes, resulting in 421,603 benign
samples. Subsequently, SMOTE was applied to increase the
data samples in each attack class to reach 421,603 sam-
ples each. This approach effectively balanced the dataset,
enabling more reliable and accurate model training.

5.1.4 Feature Scaling and Label Encoding

When training a model with features of varying scales, the
process can become complex, time-consuming, andmay lead

123



Arabian Journal for Science and Engineering

to occasional model failures [20]. To circumvent these chal-
lenges, scaling techniques are employed. In this study, we
utilized the StandardScaler, which standardizes the values of
numerical columns in the dataset while preserving the vari-
ances in the value ranges. The StandardScaler is represented
using the following question:

z = x − μ

σ

where z is the standardized value. x is the original value of
the feature. μ is the mean of the feature. σ is the standard
deviation of the feature.

Additionally, since the CICIDS2017 dataset contains
multi-class data with non-numeric values, we associated
these values numerically using the Label encoder. Each
class was assigned a numeric value starting from 0, and the
machine learning algorithms leveraged these numerical rep-
resentations for performing multi-class classification. This
approach ensures compatibility and efficiency in the model
training process.

5.2 ProposedModel OptimizationMethod

After pre-processing the dataset, we utilized our proposed
data-balancing technique to achieve an even distribution
of samples across classes. This process led to the creation
of two datasets: one with two classes (benign and mali-
cious) and another with five classes (one benign and four
types of attacks), allowing the application of our method
to both binary and multi-class classification. Following this,
we devised a multi-stage experimental process to pinpoint
the optimal machine learning algorithm for enhancing per-
formance in attack detection. Initially, we evaluated machine
learning algorithms with their default hyperparameters using
the balanced dataset. From this assessment, we identified the
top three algorithms for subsequent stages. In the following
stage, we introduced a hybrid feature selection method to
optimize the dataset, enhancing the performance of machine
learning algorithms in attack detection. The feature selection
process involved a novel hybrid approach combining mutual
information, a well-established feature selection method,
with sequential feature selection. Initially, mutual informa-
tion was employed to identify the best 35 features from the
original 80. Subsequently, sequential forward feature selec-
tion further refined the feature set, ensuring themost effective
features for accurate attack detection. This feature selection
method was applied to both binary and multi-class classi-
fication datasets. For the binary classification dataset, the
proposed feature selection yielded six selected features: Des-
tination Port, Flow Duration, Bwd Packet Length Max, Flow
Bytes/s, Bwd IAT Std, and Bwd URG Flags. Meanwhile,
the multi-class classification dataset featured six selected

features: Destination Port, Flow Bytes/s, Flow IAT Mean,
Fwd IAT Std, Bwd IAT Max, and Bwd IAT Min. Subse-
quently, the top threemachine learning algorithms, identified
in the previous stage, were retested using the reduced fea-
ture dataset for both binary and multi-class datasets. This
process led to the selection of two algorithms—RF and
XGBoost—that demonstrated the best results. In the final
stage, a hyperparameter tuning process was proposed for
the selected algorithms, RF and XGBoost, to further refine
their performance. Employing a genetic algorithm during
hyperparameter tuning optimized the algorithms, resulting
in enhanced performance. Experimental results underscore
the varied outcomes of differentmachine learning algorithms
with default parameters when hybrid feature selection meth-
ods are employed. Furthermore, the effectiveness of our
approach is evident in the improved results achieved after
hyperparameter optimization. The methodology is visually
summarized in the flow diagram (Fig. 2), and a detailed anal-
ysis of our findings is presented in the subsequent sections.

6 Model EvaluationMetrics

In this section, we provide a comprehensive overview of the
machine learning metrics employed in the study to assess
the performance and efficacy of the proposed model. These
metrics play a crucial role in quantifying the model’s ability
to generalize and make accurate predictions.

6.1 False Positive (FP), False Negative (FN), True
Positive (TP), True Negative (TN)

Thesemetrics provide insights into the specific types of errors
made by the model.

FP: The number of instances predicted as positive but is
actually negative.

FN: The number of instances predicted as negative but is
actually positive.

TP: The number of instances predicted as positive is actu-
ally positive.

TN: The number of instances predicted as negative is actu-
ally negative.

6.2 Accuracy (ACC)

Accuracy represents the ratio of correctly predicted instances
to the total instances in the dataset. Accuracy provides an
overall measure of the model’s correctness in predictions.

Accuracy = T P + T N

T P + T N + FP + FN
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Fig. 2 Proposed model

6.3 Precision

Precision is the ratio of correctly predicted positive observa-
tions to the total predicted positives. Precision focuses on the
accuracy of positive predictions.

Precision = T P

T P + FP

6.4 Recall (Sensitivity)

Recall is the ratio of correctly predicted positive observations
to the all observations in the actual class. Recall emphasizes
the model’s ability to capture all relevant instances of the
positive class.

Recall = T P

T P + FN

6.5 F1 Score

F1 score is the harmonic mean of precision and recall, pro-
viding a balanced measure between the two. F1 score is
particularly useful in imbalanced datasets, where the class
distribution is skewed.

F1− Score = 2× Precision× Recall

Precision+ Recall

6.6 ConfusionMatrix

A confusion matrix is a tabular representation that sum-
marizes the performance of a classification algorithm. It
compares the predicted classes against the actual classes and
is especially useful for evaluating the performance of amodel
on a dataset with known class labels.

7 Hardware and Software Platform

The proposed model was implemented using Python, with
various libraries, including Scikit-learn, Optuna, skopt, and
others, employed throughout the research. Experiments were
conducted on a computer with an 13th Gen Intel (R)
Core (TM) i9-13980HX 2.20 GHz processor, 32 GB RAM,
NVIDIA DeForce RTX 4090 16GB GPU and Windows 11
operating system.
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8 Experimental Results

Initially, the CICIDS2017 dataset underwent pre-processing
to enhance its suitability for training machine learning
algorithms. Subsequently, a data-balancing technique was
employed to address class imbalance. Five distinct machine
learning classification algorithms were applied using default
hyperparameter values, and results were obtained for both
binary and multi-classification scenarios. From this initial
exploration, the top three performing machine learning algo-
rithms were identified. Following the algorithm selection, a
hybrid feature selection approach was implemented on the
dataset. The previously chosen three machine learning algo-
rithmswere then retrained and tested to assess their detection
performance. From this phase, the two algorithms demon-
strating the highest accuracy values were chosen for further
refinement through hyperparameter tuning. The hyperparam-
eter tuning process utilized the genetic algorithm, leveraging
the Optuna library. This algorithmic approach incorporates
mutation, crossover, and selection processes to iteratively
discover the optimal algorithm and parameters. The results
obtained from hyperparameter tuning were compared based
on detection accuracy, F1 score, and computational time,
providing insights into the impact of this tuning process
on the intrusion detection system’s performance. Given that
the research covered both binary classification and multi-
class classification scenarios, the outcomes were categorized

accordingly. The experimental findings and methodologies
employed in this study are visually represented in Fig. 3.

We initially explored five machine learning algorithm-
s—XGBoost, random forest, decision tree, bagging, and
extra tree algorithms. Through the evaluation process, we
identified themost optimal classifier capable of achieving the
task with superior performance. We enhanced the intrusion
detection system’s detection performance through multiple
stages. In the following sections, we will describe the results
obtained from the multi-class classification and binary clas-
sification experiments in details separately.

8.1 Multi-Class Classification Results

In the first scenario, we proposed classifying attacks in the
dataset into their respective families. Initially, we addressed
the dataset’s imbalance using our hybridized balancing
approach. Subsequently, our proposed three stages of opti-
mization were applied. The first stage involved training
five different machine learning algorithms on the balanced
dataset, from which the top three algorithms were selected.
In the second stage, we applied the hybridized feature selec-
tion method, refining the dataset’s best features. The chosen
three machine learning algorithms were then tested after the
feature selection process, and the top two algorithms were
selected. Finally, we employed the genetic algorithm to tune
hyperparameters for the chosen two algorithms. The opti-
mized hyperparameter values were utilized, and these two

Fig. 3 The Experimental Framework
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algorithms were trained and tested to select the best opti-
mizedmodel. Results are presented under three subtitles: first
stage results, second stage results, and third stage results.

8.1.1 First Stage Results

In the first stage, we trained five ML algorithms—XGBoost,
random forest, decision tree, bagging, and extra tree—using
their default hyperparameters. The dataset underwent hybrid
data balancing before training. Table 2 illustrates the obtained
results. Notably, the XGBoost classifier demonstrated supe-
rior performance with a detection accuracy and F1 score of
99.98%. Despite the extra tree algorithm’s comparatively
lower performance, it still achieved a high detection accu-
racy of 99.96% and an F1 score of 99.96%. Additionally, the
XGBoost algorithm outperformed others in computational
time, completing the task in 70.15 seconds. We proceeded to
the next step with XGBoost, RF, and bagging algorithms.

8.1.2 Second Stage Results

In this stage, our proposed hybrid feature selection approach
was applied to identify the optimal features from the dataset.
Subsequently, the three ML algorithms were trained using
these selected features to optimize both detection accuracy
and training time. The multi-class classification dataset fea-
tured six selected features: Destination Port, Flow Bytes/s,
Flow IAT Mean, Fwd IAT Std, Bwd IAT Max, and Bwd
IAT Min. The results, showcased in Table 3, reveal a slight
decrease in detection accuracy across all algorithms. How-
ever, this is deemed acceptable given the significant reduction
in computational time for all ML algorithms. Notably,
XGBoost maintained its superior performance, achieving
99.95% accuracy and an F1 score of 99.95%. Furthermore,
the computational time of XGBoost notably decreased from
70 seconds to 23 seconds.At the end of this stage,we selected
the best twoML algorithms in this scenario XGBoost and RF
algorithms.

8.1.3 Third Stage Results

We conducted hyperparameter tuning to identify optimal
parameters for both the RF and XGBoost algorithms, aiming

Table 3 Second stage optimization results for multi-class classification

Algorithm Accuracy F1
score

Time (Second)

XGBClassifier 0.999504 0.9995 23.56194353

RandomForestClassifier 0.999464 0.9995 17.99695563

BaggingClassifier 0.99932 0.9993 4.260981798

to achieve the highest accuracy values. Table 4 outlines the
default parameter values of these algorithms prior to opti-
mization and their respective values after the tuning process.
Subsequently, applying the optimized parameters for attack
detection, the RF algorithm demonstrated an accuracy of
99.96%, and the XGBoost algorithm achieved 99.97% accu-
racy. So, there are no notable changes in the performance
of the proposed ML algorithms after the hyperparameter
tuning process and feature selection process. Yet, notably,
we observed that comparable performance to the machine
learning algorithms with their default hyperparameters can
be achieved with a reduced computational time. While the
XGBoost algorithm initially required 70 s, it now completes
the task in approximately 42 s. In contrast, we observed a sub-
stantial reduction in the processing time for the random forest
classifier. Initially requiring 891 s, it now completes the task
in just 6.5 s following the feature selection and hyperparam-
eter tuning processes. Table 5 illustrates the results obtained
in this stage. Furthermore, Fig. 4 illustrates the confusion
matrixes for the optimized models.

8.2 Binary Classification Results

In the second scenario, we proposed aggregating all attack
classes in the dataset into a single-class labeled ’attacks’. To
tackle data imbalance, we employed the SMOTE oversam-
pling algorithm, which increased the number of attack data
samples. Subsequently, our three-stage optimization process
was applied to the modified dataset. In the initial stage, we
conducted binary classification using five machine learning
algorithms with their default hyperparameter values. The top
three performing algorithms were then selected for the sub-
sequent stage. In the second stage, our hybridized feature
selection method was applied to identify the most effective

Table 2 First stage optimization
results for multi-class
classification

Algorithm Accuracy F1 score Time

XGBClassifier 0.99977420 0.99980000 70.14908648

RandomForestClassifier 0.99971347 0.99970000 891.35473275

BaggingClassifier 0.99966414 0.99970000 916.54004097

DecisionTreeClassifier 0.99960721 0.99960000 120.90044785

ExtraTreesClassifier 0.99958255 0.99960000 303.94238830
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Table 4 Best hyperparameters of
XGBoost and RF chosen by GA Algorithms Parameters Default Best values

XGBoost max_depth 6 9

learning_rate 0.3 0.0399

n_ estimators 100 496

min_child_weight 1 4

gamma 0 0.6290

subsample 1 0.9858

colsample_bytree 1 0.6961

reg_alpha 1 1.7520054800488898e-06

reg_lambda 1 0.1845

RF max_depth None 30

min_samples_leaf 1 2

min_samples_split 2 10

n_estimators 100 200

Table 5 Third stage optimization
results for multi-class
classification

Algorithm Accuracy F1 score Time (Second)

XGBClassifier 0.9997 0.9998 42.016361951828

RandomForestClassifier 0.9996 0.99954 6.564135789871216

Before hyperparameter tuning After hyperparameter tuning

Fig. 4 The confusion matrices of xgboots and RF algorithms after the hyperparameter optimization for Multi-Class Classification
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Table 6 First stage optimization
results for binary-class
classification

Algorithm Accuracy F1 score Time (Second)

XGBClassifier 0.999629423 0.9996 32.94350481

RandomForestClassifier 0.999533884 1 1470.253617

BaggingClassifier 0.999390092 0.9994 4828.733421

DecisionTreeClassifier 0.999193223 0.9992 282.3575733

ExtraTreesClassifier 0.999118915 0.9991 519.2035694

feature group for optimal results with the machine learning
algorithms. Within this stage, the best two ML algorithms
were chosen to advance to the final stage. In the last stage,
the genetic algorithm was employed to optimize the per-
formance of the two selected machine learning algorithms.
Ultimately, the best ML algorithm was chosen as an opti-
mized IDS system capable of detecting potential attacks with
high performance and minimal computational time. Further
discussion of the case study findings will be presented in
subsequent subsections.

8.2.1 First Stage Results

Initially, we utilized the XGBoost, random forest, bagging,
decision tree, and extra treemachine learning algorithmswith
their default hyperparameters, training them on the balanced
dataset. Table 6 showcases the results, indicating accura-
cies of 99.96%, 99.95%, 99.94%, 99.92%, and 99.91%,
respectively. Similar to the multi-classification scenario, the
XGBoost algorithm exhibited the highest accuracy and the
lowest false-negative value for binary classification. Addi-
tionally, it was noted that the XGBoost algorithm achieved
the task with the shortest computational time. At this stage’s
conclusion, we selected the top three ML algorithms for the
subsequent stage: XGBClassifier, RandomForestClassifier,
and BaggingClassifier.

8.2.2 Second Stage Results

Finally, the hybrid feature selection method was applied
to the balanced dataset. Initially, 35 features were selected
using mutual information, and the sequential feature selec-
tor was then employed to further narrow down the selection
to just six features. For the binary classification dataset, the
proposed feature selection yielded the following selected fea-
tures: Destination Port, Flow Duration, Bwd Packet Length
Max, FlowBytes/s, Bwd IATStd, andBwdURGFlags.After
determining the optimal features, the new dataset was tested
using the default parameters of the XGBClassifier, Random-
ForestClassifier, and BaggingClassifier algorithms. In this
evaluation, XGBoost achieved an accuracy of 99.88%, RF
achieved 99.88%, and Bagging achieved 99.86%. Thus, by
selecting only six features, we achieved nearly the same per-
formance using the XGBoost classifier with only 3.36 s,

Table 7 Second Stage Optimization Results for Binary-Class Classifi-
cation

Algorithm Accuracy F1
score

Time (Second)

XGBClassifier 0.99884 0.9988 3.362487793

RandomForestClassifier 0.99876 0.9988 9.394431114

BaggingClassifier 0.9986 0.9986 3.967015743

compared to 32.94 s in the first stage. As a result of this stage,
we selected the best two ML algorithms, namely XGBoost
and random forest, to be used in the final stage. The results
obtained in this stage illustrated in Table 7.

8.2.3 Third Stage Results

In the concluding phase, we fine-tuned the hyperparameters
of the RF and XGBoost algorithms utilizing a genetic algo-
rithm and the feature-reduced dataset. Table 8 provides a suc-
cinct comparison between the default hyperparameters and
the values refined through genetic algorithm tuning. Addi-
tionally, Table 9 presents the noteworthy results derived from

Table 8 Best hyperparameters of XGBoost and RF with genetic algo-
rithm after hybrid feature selection

Algorithms Parameters Default
values

Best
values

XGBoost max_depth 6 3

learning_rate 0.3 0.4564

n_ estimators 100 333

min_child_weight 1 3

gamma 0 1.1631

subsample 1 2.2589

colsample_bytree 1 0.1548

reg_alpha 1 0.0697

reg_lambda 1 0.0019

RF max_depth None 20

min_samples_leaf 1 1

min_samples_split 2 2

n_estimators 100 600
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Table 9 Third Stage Optimization Results for Binary-Class Classifica-
tion

Algorithm Accuracy F1
score

Time (Second)

XGBClassifier 0. 99,936 0.9995 16.84335375

RandomForestClassifier 0. 99,928 0.9994 20.43308616

this case study, indicating a substantial accuracy improve-
ment for both algorithms—reaching 99.93% for RF and
99.93% for XGBoost compared to the preceding stage. Fur-
thermore, the computational efficiency post-optimization has
been halved compared to the initial stage, as demonstrated in
Table 9. In Fig. 5, the confusionmatrices of the optimized RF
and XGBoost algorithms visually depict the positive impact
of hyperparameter tuning, showcasing reduced false negative
(FN) values and heightened accuracy. This outcome under-
scores the pronounced performance enhancements achieved
through meticulous hyperparameter optimization.

9 Comparison Study

This section presents a comparative study to clearly illustrate
the impact of feature selection and hyperparameter tuning on
the accuracy of machine learning-based IDS detection. Our
findings indicate that, for the multi-class classification case
study, these processes did not yield notable improvements in
the adopted IDS performance. However, a significant reduc-
tion in computational time was observed for all employed
ML algorithms—a crucial metric for IDS systems operating
in real-time scenarios. It has been observed that the proposed
hybrid feature selection approach, coupled with the genetic
algorithm for hyperparameter tuning, demonstrated nearly
identical performance to using the original dataset with com-
plete features but with a significantly reduced computational
time. In conclusion, the proposed feature selection method
with the genetic algorithm enhances the time efficiency of
the IDS systems. Table 10 presents a comparative analysis
of the F1 scores obtained during the experimental studies.
Additionally, Table 11 provides a statistical representation

Before hyperparameter tuning After hyperparameter tuning

Fig. 5 Results of XGBoost and RF algorithms after applying the hybrid feature selection and GA algorithm for Binary Classification
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Table 10 Results of all experiments

Used
algorithm

Multi–Classification F1 score Binary Classification F1 score

Default
Value

After feature
selection Default

After feature
selection
Hyper–parameter opt

Default
Value

After feature
selection Default

After feature
selection
Hyper–parameter
opt

XGBoost 0.9998 0.9995 0.9998 0.9996 0.9988 0.9995

RF 0.9997 0.9995 0.9995 0.9995 0.9988 0.9994

Bagging 0.9997 0.9993 – 0.9994 0.9986 –

DT 0.9996 – – 0.9992 – –

ExtraTrees 0.9996 – – 0.9991 – –

Table 11 Time comparison

Model Binary Multi

Time in default
case (Second)

Time after applying
feature selection +
GA (Second)

Time
improvement
(%)

Time in default
case (Second)

Time after applying
feature selection +
GA (Second)

Time
improvement
(%)

XGBoost 32.94 16.84 48.87 70.15 42.02 40.15

RF 1470.25 20.43 98.61 891.36 6.57 99.26

highlighting a significant enhancement in the time efficiency
of the IDS system subsequent to the application of the pro-
posed optimization procedure.

10 Testing the ProposedMethod Using
Different Dataset

To validate the effectiveness of the proposed method, we
applied it to an additional dataset, specifically the CSE-
CIC 2018 dataset. Our focus was on training the optimized
ML algorithm, namely XGBoost, with hyperparameter val-
ues selected using the genetic algorithm. We opted for a
binary classification scenario over this dataset, initially label-
ing samples as either "attack" or "benign." Subsequently,
we decoded, rescaled feature values, and pre-processed the
data in the dataset. The proposed hybrid feature selection
method was then employed to identify the most relevant fea-
tures, resulting in the selection of three features to optimize
the IDS system’s detection accuracy. The final step involved
using this selected feature dataset to train the XGBoost clas-
sifier with hyperparameter values chosen through the genetic
algorithm. The achieved results demonstrated exceptional
performance, with the proposed approach achieving 100%
accuracy and F1 score, all within a highly competitive com-
putational time. The results obtained by training the IDS
system using this dataset is illustrated in Table 12. Moreover,

Table 12 Third Stage Optimization Results for Binary-Class Classifi-
cation

Algorithm Accuracy F1 score Time (Second)

XGBClassifier 1.0 1.0 5.397483

Fig. 6 The confusionmatrix of theXGBoost trained using the CSE-CIC
2018 dataset

the confusion matrix of the improved XGBoost is illustrated
in Fig. 6.
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11 Conclusion

In conclusion, network attacks have detrimental effects on
network performance and resource utilization, prompting
the development of various methods for efficient attack
detection. Among these methods, anomaly-based detection
systems play a crucial role. This study focused on evalu-
ating the performance of machine learning-based intrusion
detection systems (IDSs) using the CICIDS2017 dataset.
Our proposed hybridized IDS system comprises multiple
stages. Initially, data pre-processing steps were implemented
to cleanse the dataset and eliminate outlier points. Simultane-
ously, a hybridized data-balancing approach was introduced
to address dataset imbalance. In the first stage, we assessed
the performance of multiple machine learning algorithms
with their default hyperparameters to evaluate their efficiency
in attack detection. The subsequent stages involved propos-
ing a hybridized feature selectionmethod, integrating various
feature selection techniques, and employing a genetic algo-
rithm to fine-tune hyperparameters. These stages aimed to
enhance IDSperformance in bothbinary andmulti-class clas-
sification tasks. The experimental results demonstrated that
our hybrid feature selection method, coupled with hyper-
parameter optimization, notably improved the efficiency of
XGBoost and RF algorithms, particularly in terms of com-
putational time.

XGBoost consistently exhibited superior detection accu-
racy in both binary and multi-class classification appli-
cations. The hyperparameter tuning process, applied after
feature selection, significantly reduced both false negatives
and false positives, showcasing improvements of up to 61%
and 62.5% for XGBoost, and 40% and 72.5% for random
forest in binary classification.

The most significant achievement was the substantial
reduction in overhead time, a critical metric for IDS sys-
tems. The proposed hybrid feature selection method, com-
bined with genetic algorithm-based hyperparameter tuning,
resulted in over 40% and 98% reduction in training time for
XGBoost and RF-based IDS, respectively, in both binary and
multi-class detection processes.

To validate the efficiency of our approach across diverse
datasets, we tested it on the CSE-CIC 2018 dataset, achiev-
ing a 100%F1 score in detecting attacks. These findings have
crucial implications for the development of effective IDS sys-
tems, enabling the identification of optimal hyperparameters
and a reduction in feature dimensions for enhanced model
efficiency and performance.

Looking ahead, future research could explore alterna-
tive hyperparameter optimization techniques and feature
selection methods, along with assessing the performance of
machine learning-based IDSs on different datasets.Addition-
ally, experiments could be conducted to evaluate the impact

of hyperparameter tuning and feature selection on the per-
formance of deep learning models.
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