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Abstract
The primary focus of the current study is to examine the effect of magnetohydrodynamics on the peristaltic motion of
Eyring–Powell fluid. The Navier–Stokes equations, renowned for their intricate nature, form the foundation of the mathemat-
ical model utilised in this investigation. However, the model has been simplified through specific assumptions to facilitate
analysis. The model assumes explicitly a long wavelength and a low Reynolds number. This study also investigates the effect
of wall characteristics on peristalsis in the presence of a magnetic field. Additionally, variable liquid properties such as varying
viscosity and thermal conductivity are also considered in the study. The governed nonlinear equations are solved with multiple
slip conditions to obtain the velocity, temperature, concentration and streamline profiles. Different waveforms on velocity
profiles are also studied. A parametric evaluation makes the analysis more accessible, and the results are graphically depicted
using MATLAB R2023a software. The findings of this study shed light on the substantial impact of the magnetic parameter
and varying viscosity on fluid properties.
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List of symbols

c Wave speed
g Acceleration due to gravity
M Magnetic parameter
B0 Magnetic intensity
u Radial velocity
w Axial velocity
x Non-dimensional axial distance
y Non-dimensional radial distance
E1 Wall tension parameter
E2 Mass characterization parameter
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E4 Wall rigidity parameter
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μ Dynamic viscosity
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ε Amplitude ratio
φ Angle of inclination of the channel
λ Wavelength
ψ Streamline function
θ Non-dimensional temperature
σ Concertation
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1 Introduction

Peristalsis, a series of muscular contractions that resemble
waves, helps food move through the digestive system. It
happens in the stomach after beginning in the oesophagus,
where strong waves of smooth muscle transport eaten food
pellets. As part of the digestive process, food is subjected to
churning movements in the stomach and then transferred to
the small intestine. This movement results in the formation
of chyme, a liquid mixture. The presence of chyme in the
small intestine reactivates peristalsis, the rhythmic contrac-
tion and relaxation of intestinal muscles. Extending a portion
of the intestine makes it possible to observe its undulating
movements more clearly. These movements aid in the pas-
sage of nutrients through the walls of the small intestine,
allowing them to access the circulatory system. Peristalsis in
the large intestine facilitates water absorption from partially
digested food into circulation and optimises the overall pro-
cess. The remaining waste items are subsequently expelled
using the rectum and anus. Peristaltic motion is thought to
be the primary mechanism for spermatozoa movement in
the cervical canal, bile transport in the bile duct, and urine
transport in the ureter. Due to their wide range of uses, flu-
ids with non-Newtonian properties are preferable to those
with Newtonian properties. Engineering, science, and busi-
ness are a few examples. Several models in the scientific
and general literature can be used to understand these fluids’
range of flow behaviour. This idea is used in various engi-
neering devices, including dialysis machines, roller pumps,
and heart–lung machines. Given the importance of peristal-
sis, numerous researchers [1–5] have studied it inmechanical
and physiological situations with different geometries.

When the strain rate and the distracting speed compo-
nent are equal at the limit, a phenomenon known as the wall
slide occurs. This phenomenon takes on more importance
in situations of fractional slip when working with circular
systemsmadeupof foams, emulsions, suspensions, andpoly-
mer arrangements. The wall-sliding effect during peristaltic
flow can be used for various purposes, including cleaning
prosthetic heart valves, inner depressions, and other biologi-
cal applications. Shehzad et al. [6] investigated the peristaltic
mechanism in a curved channel with a radial magnetic field
and Carreau-Yasuda (CY) fluid while the slip condition was
considered at the channel. The peristalsis of a Bingham fluid
was studied by Lakshminarayana et al. [7] in an inclined
tapered porous conduit with elastic walls. Joule heating and
slip were both examined in their studies. The peristalsis of
a tangent hyperbolic liquid in a curved conduit was investi-
gated by Farooq et al. [8]. Conditions relating to temperature,
concentration, and velocity slip were studied. Low Reynolds
number and long wavelength approximation were employed
to analyse the effect of slip parameters on temperature, veloc-
ity, and concentration. Imran et al. [9] investigated peristalsis

in a flexible conduit by considering the impact of hall cur-
rent and ion slip. The mathematical model developed was
predicated on the assumptions of a low Reynolds number
and a long wavelength. In addition, magnetohydrodynamics
(MHD) Casson fluid slip flow in an inclined channel with
changing fluid characteristics was investigated by Prasad
et al. [10].

Understanding fluid dynamics, especially as it pertains
to describing natural fluids, necessitates the study of heat
transport characteristics. To keep homeostasis, the human
body uses four ways to transfer heat: conduction, radiation,
convection, and evaporation. In these operations, heat is dissi-
pated from awarmer environment to a cooler one. Therefore,
internal and external factors like temperature affect the heat
transfer rate between the components. The effect of flexible
wall elasticity on the peristaltic motion of an incompressible
viscous fluid was investigated in a study by Radhakrishna-
macharya and Srinivasulu [11]. Incorporating heat transfer
phenomena in a two-dimensional uniformduct broadened the
scope of this investigation. A two-dimensional asymmetric
channel was used to study the consequences of heat transmis-
sion. The movement of a viscous, incompressible fluid, set
in motion by the propagation of sinusoidal waves, is respon-
sible for the apparent asymmetry. Changing the amplitudes
and phases of the peristaltic wave patterns on the walls pro-
duced asymmetry in the channel. Srinivas and Kothandapani
[12] adopted a wave frame reference that propagated at the
same rate as the wave in their study. The momentum and
energy equations were linearised using the long wavelength
approximation and a small Reynolds number. Thermody-
namic irreversibilities due to heat transfer were studied by
Khan et al. [13] in the context of magneto-Carreau nano-
liquid peristalsis. Extensive wavelengths and low Reynolds
numbers were the primary focus of the studies. Both vary-
ing viscosity and thermal conductivity were accounted for
in the research. Heat and mass transfer characteristics in
MHD peristaltic flow within a narrow, permeable channel
were studied by Vaidya et al. [14] by considering the impact
of varying thermal conductivities in their analysis. Porous
boundaries, wall characteristics, long wavelengths, and low
Reynolds values were meticulously examined. Rajashekhar
et al. [15] studied the intricate dynamics of peristaltic motion
in a Ree-Eyring liquid using a model that considers a uni-
formly compliant conduit. The effects of different thermal
conductivities and viscosities were investigated.

The study of magnetohydrodynamics (MHD) in fluid
flows offers valuable insights into the complex interaction
between electromagnetic fields and fluid movement. Inte-
grating these ideas has shown value in many areas, laying
the groundwork for many practical applications. Magnetic
fields can direct tailored drug delivery systems in biomedical
applications. This approach ensures exactmedication admin-
istration, decreasing side effects and maximising therapy.
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MHDalso improves industrial fluid transportation efficiency.
Magnetic fields can manipulate fluid flows in numerous sec-
tors to optimise manufacturing processes, reduce energy
consumption, and improve operational efficiency. Due to its
relevance to the flow of conductive physiological fluids like
blood, the study of MHD flow in a channel with elastic,
rhythmically contracting walls is essential. In addition, theo-
retical studies on peristaltic MHD compressor operation are
required.As a bonus, patientswith arterial problems like arte-
rial stenosis or arteriosclerosis can benefit from the magnetic
field’s influence by using it as a blood pump during cardiac
treatments. Hayat et al. [16] created a mathematical model
for the peristaltic motion of a Johnson–Segalman fluid with
MHD in a planar flow structure using nonlinear partial dif-
ferential equations. The Lie-group method was used to find
a complete solution for the basic nonlinear partial differen-
tial equation. Assuming long-wavelength and low-Reynolds
number conditions, Srinivas et al. [17] explored the peri-
staltic transport of the magnetohydrodynamic heat transfer
in a channel with slip conditions and elastic wall properties.
The impacts of temperature-dependent variable features on
the peristaltic mechanism of a third-order fluid are studied by
Lathif et al. [18] in a symmetric channel. Viscous dissipation
andMHD fluids were considered as well. Tanveer and Malik
[19] sought to provide a comprehensive analysis linking the
novel concept of a porous medium with modified Darcy’s
law. Nanofluid mobility is studied using the Ree-Eyring fluid
model. The study also included the factors such as chang-
ing viscosity, MHD, viscous diffusion, and thermo-diffusion
(Soret) effects affecting flow kinetics. Khan and Rasfat [20]
studied the effects ofMHD on compressible Jeffrey fluid and
the impact of thermal radiation on heat transmission.

In recent studies, researchers focused on the impact of
varying fluid properties, including viscosity and thermal con-
ductivity. Fluid dynamics analysis and comprehension get
more complicatedwhen changeable fluid parameters are con-
sidered. The presence of changing qualities like viscosity,
density, and thermal conductivity makes fluid flow phenom-
ena dynamic. The observed variation is due to changes in
temperature, pressure, and fluid system composition. Vari-
able fluid characteristics are essential in conditions with a
wide range of temperatures, high pressures, and complex
flow geometries. Jet engine combustion processes vary in
temperature and pressure in aerospace engineering. These
differences change fluid characteristics, which affect the
engine performance. In biological systems, temperature and
cellular composition affect viscosity, density, and blood flow.
Complex mathematical models and computer methods are
needed to analyse fluid systems with changeable proper-
ties. Analytical and numerical simulations are essential for
capturing the intricate interaction between fluid dynamics
and property fluctuations. Accurate predictions are crucial

in engineering, industrial, and scientific research. Under-
standing the effects of changeable fluid characteristics helps
to optimise systems, enhance energy efficiency, and pro-
vide robust solutions for practical applications. The complex
yet essential aspect of fluid dynamics drives engineering
and science. Rajashekhar et al. [21] studied the peristaltic
transport of Casson liquid in an inclined porous tube heated
by convection. The effects of varying viscosity and thermal
conductivity on flow were investigated by considering that
viscosity varies in the radial plane and thermal conductivity
is temperature dependent. The effects of a compliant wall
and diverse liquid characteristics on the peristaltic flow of a
Rabinowitsch liquid in an inclined channel were explored by
Vaidya et al. [22]. The study also found a link between the
channel’s width and the liquid’s thickness. Manjunatha et al.
[23] studied the peristaltic behaviour of a Bingham liquid in
a porous tube with changing liquid properties that was con-
vectively heated. Recently Balachandra et al. [24] examined
the effects of slip on a Ree-Eyring liquid peristaltic flow in an
inclined channel, highlighting the role of variable viscosity
and velocity slip parameters in generating velocity profiles.
Rajashekhar et al. [25] investigated the role of heat trans-
mission and electroosmosis on MHD peristaltic pumping in
a microchannel with multiple slip effects and diverse fluid
properties.

When conducting a comparative study between the
Eyring–Powell model and other non-Newtonian fluid mod-
els, several advantages of the former become apparent. The
derivation of this concept is based on liquid kinetic theory
rather than empirical relationships. Another benefit is its abil-
ity to accurately demonstrate Newtonian behaviour across a
wide range of shear rates, including low and high values. In
their study, Hayat et al. [26] examined the influence of con-
vective conditions and chemical activities on the peristaltic
flow of Eyring–Powell fluid. Hina [27] extensively studied
slip andMHDon Eyring–Powell fluid peristaltic transport. A
study examined the conduit’s dynamic character in a channel
with a compliant wall structure. By incorporating heat and
mass transfer processes, the study improved its understand-
ing of the system’s behaviour under different circumstances.
Tanveer et al. [28] investigated the peristaltic mechanics of
Eyring–Powell nanofluid compliance with the curved tube
walls, enhancing the system’s diverse properties. A compre-
hensive approach was used to analyse this data, applying
mass, momentum, energy, and concentration conservation
principles. This multifunctional method analysed the intri-
cate interaction of elements affecting fluid dynamics in a
dynamic environment. Yasin et al. [29] significantly con-
tributed to the field with their collective perspective inquiry.
The study examined the impact of slip and Hall current
on peristaltic transport, specifically in MHD Eyring–Pow-
ell fluid. The effect of variable fluid properties on Eyring
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Powell Fluid Peristaltic Transport was investigated by Bal-
achandra et al. [30], with a specific focus on the inclined
uniform channel.

The current study, in detail, examines the mechanism
of peristalsis, a crucial biological and industrial activity.
Understanding this phenomenon is crucial since it affects
many physiological and technical systems. The theoreti-
cal study focuses on fluid dynamics, heat transport, and
mass transmission to explain the peristaltic flow. The anal-
ysis relies on the fundamental concepts to understand the
complicated behaviour of peristalsis.Additionally, peristaltic
flow parameters such as fluid properties, conduit configura-
tion, external forces, and wall compliance are investigated.
This study aims to comprehensively understand the intri-
cate relationship among these various components and their
combined impact on peristaltic motion through analysis.
The research builds a solid foundation by incorporating
earlier knowledge and investigations. The current investiga-
tion studies the effect of magnetic field in peristaltic flow.
Eyring Powell fluid rheology, which characterises shear-
thinning non-Newtonian fluids, is also essential; hence, it
is considered in the current study. Understanding their peri-
stalsis behaviour is crucial since biological and industrial
applications use such fluids. The study also considers fluid
parameters like varying viscosity, density, and thermal con-
ductivity. These features must be examined under diverse
situations to understand the peristaltic flow. This study is
significant for young researchers, engineers, and practition-
ers exploring and applying peristaltic transport in many
applications. It uncovers peristaltic flow mechanics and
determinants, enabling biological and industrial advances.
The present mathematical model improves transport systems
in numerous domains by improving our understanding of
peristalsis, benefiting science and practice.

2 Mathematical Formulations

Consider the peristaltic flow of a viscous, incompressible
Eyring–Powell fluidmoving through an axis-symmetric, uni-
form channel. The movement of the fluid along the walls of
the channel is caused by sinusoidal wave trains with wave-
lengths λ and wave speed c.

The expression given below defines the channel’s geom-
etry.

H ′ � a′ + b′ sin
[
2π

λ

(
x ′ − ct ′

)]
(1)

where H ′ is the uniform wave in which a′, b′ and t ′ represent
the radius, wave amplitude, and time, respectively (Fig. 1).

Fig. 1 Geometry of the inclined uniform channel

The incompressibility conditions for the equation of con-
tinuity, equation of momentum and equation for energy are
written as

Continuity Equation:

∂u′

∂x ′ +
∂w′

∂y′ � 0 (2)

Momentum Equation:

(3)

ρ

[
∂u′

∂t ′
+ u′ ∂u′

∂x ′ + w′ ∂u′

∂y′

]
� −∂p′

∂x ′ +
∂τ ′

x ′x ′
∂x ′ +

∂τ ′
x ′y′

∂y′

+ ρg sin φ − σ0B
2
0u

ρ

[
∂w′

∂t ′
+ u′ ∂w′

∂x ′ + w′ ∂w′

∂y′

]
� −∂p′

∂y′ +
∂τ ′

x ′y′

∂x ′ +
∂τ ′

y′y′

∂y′ (4)

Energy Equation:

(5)

ρCP

[
∂T ′

∂t ′
+ u′ ∂T ′

∂x ′ + w′ ∂T ′

∂y′

]

� ∂

∂x ′

(
k

(
T ′) ∂T ′

∂x ′

)
+

∂

∂y′

(
k

(
T ′) ∂T ′

∂y′

)

+ τ ′
x ′x ′

∂u′

∂x ′ + τ ′
y′y′

∂w′

∂y′ + τ ′
x ′y′

(
∂u′

∂y′ +
∂w′

∂x ′

)

Concentration Equation:

(6)

[
∂C ′

∂t ′
+ u′ ∂C ′

∂x ′ + w′ ∂C ′

∂y′

]
� D

[
∂2C ′

∂x ′2 +
∂2C ′

∂y′2

]

+
DKT

Tm

[
∂2T ′

∂x ′2 +
∂2T ′

∂y′2

]
.

where velocity components in the radial and axial directions
are denoted as u′, and w′ respectively. The fluid density is
denoted by ρ, the pressure is denoted by p′ and the extra
stress components are represented by τ ′

x ′x ′ , τ ′
x ′y′ , and τ ′

y′y′ .
Additionally, T ′ and CP represent the temperature, and spe-
cific heat at constant volume, respectively. k

(
T ′) denotes the

variable thermal conductivity, D—the coefficient of mass
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diffusivity, Tm—the mean temperature, KT-the thermal dif-
fusion ratio.

The elastic wall motion equation is given by

L(P) � P − P0, (7)

where P0( � 0) denotes the pressure exerted on the exterior
wall due to muscle tension.

Here, the linear operator L influences membrane stretch-
ing accompanied by the centre of viscous damping and is
denoted as

L � −τ
∂2

∂x2
+ m1

∂2

∂t2
+ n1

∂

∂t
+ n2

∂4

∂x4
+ H , (8)

where n1 is the viscous damping coefficient, n2 is the rigidity
of the plate, m1 denotes the mass per unit area, H denotes
the spring stiffness and τ denotes the elastic tension.

∂p

∂x
� E1

∂3h

∂x3
+ E2

∂3h

∂t2∂x
+ E3

∂3h

∂t∂x2
+ E4

∂5h

∂x5
+ E5

∂h

∂x
,

(9)

The non-dimensional quantities considered are given
below

x � x ′

λ
, y � y′

a′ , u � u′

c
, w � λw′

ca′ ,

τxx � a′τ ′
x ′x ′

cμ
, τxy � a′τ ′x ′y′

cμ
, τyy � a′τy′y′ ′

cμ
,

Re � a′cρ
μ

, ϑ � μ0

ρ
, p � a′2 p′

cλμ
,

θ � T ′ − T ′
0

T1 − T0
, Pr � μCP

k1
Ec � c2

δT0
, Br � Ec Pr,

σ � C ′ − C ′
0

C ′
0

, ψ � ψ ′

a′c
, μ0′ � μ0

μ
,

Sr � ρDKT
(
T ′ − T ′

0

)
TmC ′

0
, Sc � μ

ρD
,

F � μc

ρga′ , M �
√

σ

μ
B0,

δ � a′

λ
, ε � b′

a′ , t � ct ′

λ
, E1 � −σa′3

λ3μc
,

E2 � ma′3c
λ3μ

, E3 � a′3c
λ3μ

, E4 � m3a
′3

λ5μ0c
, E5 � Ha′3

λμ0c
,

h � H ′

a′ � 1 + ε sin(2π(x − t)) (10)

On utilizing the non-dimensional transformations from
Eq. (10), the governing equations can be expressed as,

Continuity Equation:

δ
∂u

∂x
+

∂w

∂y
� 0 (11)

Momentum Equation:

(12)

Re

[
δu

∂u

∂x
+ w

∂u

∂y

]
� −∂p

∂x
+ δ

∂τxx

∂x
+

∂τxy

∂y

+
sin φ

F
− M2 (u + 1)

Reδ

[
δu

∂w

∂x
+ w

∂w

∂y

]
� −∂p

∂y
+ δ2

∂τxy

∂x
+ δ

∂τyy

∂y
(13)

Energy Equation:

Reδ

[
δu

∂θ

∂x
+ w

∂θ

∂y

]

� Ec

[(
δτxx

∂u

∂x
+ τyy

∂w

∂y

)
+ τxy

(
δ
∂w

∂x
+

∂u

∂y

)]

+
1

Pr

[
δ2

∂

∂x

(
k(θ)

∂θ

∂x

)
+

∂

∂y

(
k(θ)

∂θ

∂y

)]
(14)

Concentration Equation:

(15)

Re

[
δu

∂σ

∂x
+ w

∂σ

∂y

]
� 1

Sc

[
δ2

∂2σ

∂x2
+

∂2σ

∂y2

]

+ Sr

[
δ2

∂2θ

∂x2
+

∂2θ

∂y2

]

By implementing long wavelength and small Reynolds
number assumptions, Eqs. (11)–(15) takes the form,

Velocity Equation:

∂τxy

∂y
�

(
∂p

∂x

)
− sin φ

F
+ M2

(
∂ψ

∂y
+ 1

)
(16)

∂p

∂y
� 0 (17)

Temperature Equation:

(18)
∂

∂y

{
k (θ )

∂θ

∂y

}
+ Brτxy

∂2ψ

∂y2
� 0

Concentration Equation:

(19)
∂2σ

∂y2
+ Sc Sr

∂2θ

∂y2
� 0
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The constitutive equation for the Eyring Powell fluid, rep-
resented as τxy , is given by the following expression:

τxy � {μ(y) + B}∂
2ψ

∂y2
− A

3

(
∂2ψ

∂y2

)3

(20)

The dimensionless slip boundary conditions are given by

∂2ψ

∂y2
� 0,

∂θ

∂y
� 0,

∂σ

∂y
� 0 at y � 0 (21)

∂ψ

∂y
+ η1τxy � −1, θ + η2

∂θ

∂y
� 1, σ + η3

∂σ

∂y
� 1 at y � h

(22)

The following expressions describe the variations in
viscosity, represented byμ(y), and thermal conductivity, rep-
resented by k(θ), across the breadth of the channel:

μ(y) � 1 − α1y α1 << 1 (23a)

k(θ) � 1 + α2θ α2 << 1 (23b)

where α1 and α2 represent the coefficients that governs
the variable viscosity and thermal conductivity.

3 SolutionMethodology

Consider Eq. (16). By taking P � ∂p
∂x and f � sin φ

F , and
integrate. Compare the obtained solution with Eq. (20).

Then,

(24)

(
P − f + M2

)
y + M2ψ � (1 − α1y + B)

∂2ψ

∂y2

− A

3

(
∂2ψ

∂y2

)3

∂

∂y

{
k (θ )

∂θ

∂y

}

+ Br

{
(1 − α1y + B)

∂2ψ

∂y2
− A

3

(
∂2ψ

∂y2

)3
} (

∂2ψ

∂y2

)
� 0

(25)

Due to the inherent nonlinearity of Eqs. (24) and (25),
it is impossible to derive an exact analytical solution. As a
result, a different methodology is adopted that employs the
perturbation method’s capabilities to elucidate the solutions.
This approach is frequently observed when complex non-
linear equations are prevalent. It enables us to estimate the
solutions methodically and gain a deep understanding of the
fundamental dynamics. The perturbation method initiates a
systematic expansion procedure in which the solutions are

represented as a series of terms. This method simplifies com-
plex nonlinear equations into a more manageable format that
accurately depicts the behaviour under study.

3.1 Perturbation Technique

The series perturbation method is used to solve the stream
function and temperature expression using the following
equations.

ψ � �Anψn (26a)

(26b)θ � �Anθn

3.1.1 Stream Function

On ignoringO
(
A2

)
terms inEq. (26a), expression for stream-

line is obtained as

ψ � ψ0 + Aψ1 (27)

3.1.1.1 Zeroth-Order Streamline System

(
P − f + M2

)
y + M2ψ0 � (1 − α1y + B)

∂2ψ0

∂y2

∂2ψ0

∂y2
� 0 at y � 0 and

∂ψ0

∂y
+ η1(1 − α1y + B)

∂2ψ0

∂y2

� −1 at y � h (28)

Due to the inherent nonlinearity of the equations above,
the solutions are derived using the double perturbation tech-
nique.

ψi � �α
j
1ψi j , where i � {0, 1}, 0 ≤ j ≤ n (29)

To obtain the solution for zeroth-order stream function,
higher-order terms, say O

(
α2
1

)
are ignored for i � 0, then

the equation obtained are as follows:

ψ0 � ψ00 + α1ψ01 (30)

Zeroth-Order System

∂2ψ00

∂y2
− M2

(1 + B)
ψ00 �

(
P − f + M2

)
(1 + B)

y

∂2ψ00

∂y2
� 0 at y � 0 and

∂ψ00

∂y
+ η1(1 + B)

∂2ψ00

∂y2
� −1 at y � h (31)
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First-Order System

∂2ψ01

∂y2
− M2

(1 + B)
ψ01 � y

∂2ψ00

∂y2

∂2ψ01

∂y2
� 0 at y � 0 and

∂ψ01

∂y
+ η1(1 + B)

∂2ψ01

∂y2
+ η1y

∂2ψ00

∂y2
� 0 at y � h

(32)

3.1.1.2 First-Order Streamline System

{1 − α1y + B}∂2ψ1

∂y2
− M2ψ1 − 1

3

(
∂2ψ0

∂y2

)3

� 0

∂2ψ1

∂y2
� 0 at y � 0 and

∂ψ1

∂y
+ η1

{
(1 − α1y + B)

∂2ψ1

∂y2
− 1

3

(
∂2ψ0

∂y2

)3
}

� 0 at y � h

(33)

To obtain the solution for first-order stream function,
higher-order terms are ignored, i.e., O

(
α2
1

)
, for i � 1, then

the equation obtained are as follows:

ψ1 � ψ10 + α1ψ11 (34)

Zeroth-Order System

∂2ψ10

∂y2
− M2

(1 + B)
ψ10 � 1

3(1 + B)

(
∂2ψ00

∂y2

)3

∂2ψ10

∂y2
� 0 at y � 0 and

∂ψ10

∂y
+ η1

{
(1 + B)

∂2ψ10

∂y2
− 1

3

(
∂2ψ00

∂y2

)3
}

� 0 at y � h

(35)

First-Order System

∂2ψ11

∂y2
− M2

(1 + B)
ψ11

� 1

(1 + B)

[
y
∂2ψ10

∂y2
+

(
∂2ψ00

∂y2

)2(
∂2ψ10

∂y2

)]

∂2ψ11

∂y2
� 0 at y � 0 and

∂ψ11

∂y

+ η1

{
(1 + B)

∂2ψ1

∂y2
− y

∂2ψ10

∂y2
−

(
∂2ψ00

∂y2

)2(
∂2ψ10

∂y2

)}

� 0 at y � h (36)

Solving and combining Eqs. (31), (32), (35), and (36), the
expression for stream function is obtained as,

ψ � ψ00 + α1ψ01 + Aψ10 + Aα1ψ11 (37)

Utilising the equation u � ∂ψ
∂y , the analytical solution for

velocity could be determined.

3.1.2 Temperature Expression

On ignoring O
(
A2

)
terms in Eq. (26b), the expression for

temperature is considered as

θ � θ0 + Aθ1 (38)

Using Eq. (38) in Eq. (25) and grouping the terms, the
following equations are obtained as.

3.1.2.1 Zeroth-Order Temperature System

∂θ0

∂y
+ α2θ0

∂θ0

∂y
+ ∫Br

{
(1 − α1y + B)

(
∂2ψ0

∂y2

)2
}

∂y � 0

∂θ0

∂y
� 0 at y � 0 and θ0 + η2

∂θ0

∂y
� 1 at y � h

(39)

The above-mentioned equations are inherently nonlin-
ear, hence to obtain the solutions, the double perturbation
approach is used.

θi � �α
j
2θi j , where i � {0, 1}, 0 ≤ j ≤ n (40)

To acquire more concise and direct temperature solutions,
we disregard higher-order terms O

(
α2
2

)
in the above equa-

tion. Consequently, the subsequent equations for temperature
are formulated for i � 0 as,

θ0 � θ00 + α2θ01 (41)

Zeroth-Order System

∂θ00

∂y
+ ∫Br

{
(1 − α1y + B)

(
∂2ψ0

∂y2

)2
}

∂y � 0

∂θ00

∂y
� 0 at y � 0 and θ00 + η2

∂θ00

∂y
� 1 at y � h

(42)

First-Order System

∂θ01

∂y
+ θ00

∂θ00

∂y
� 0
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Fig. 2 Variation of velocity
profiles when E1 � 0.4, E2 �
0.1, E3 � 0.01, E4 � 0.001, E5
� 0.1, A � 0.01, B � 2, x � 0.2,
F � 2, φ � π

4 , α1 � 0.02, t �
0.1, ε � 0.3, η1 � 0.2, M � 2
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∂θ01

∂y
� 0 at y � 0 and θ01 + η2

∂θ01

∂y
� 0 at y � h

(43)

3.1.2.2 First-Order Temperature System

∂θ1

∂y
+ α2θ0

∂θ1

∂y
+ α2θ1

∂θ0

∂y

+ ∫Br

{
2(1 − α1y + B)

(
∂2ψ0

∂y2

)(
∂2ψ1

∂y2

)
− 1

3

(
∂2ψ0

∂y2

)4
}

∂y � 0

∂θ1

∂y
� 0 at y � 0 and θ1 + η2

∂θ1

∂y
� 0 at y � h (44)

Higher-order elements beyond O
(
α2
2

)
in Eq. (40) are

ignored to simplify temperature solutions for i � 1. The pre-
ceding approach yields the following equations that describe
temperature.

θ1 � θ10 + α2θ11 (45)

Zeroth-Order System

∂θ10

∂y
+ ∫Br

{
2(1 − α1y + B)

(
∂2ψ0

∂y2

)(
∂2ψ1

∂y2

)
− 1

3

(
∂2ψ0

∂y2

)4
}

∂y � 0

∂θ10

∂y
� 0 at y � 0 and θ10 + η2

∂θ10

∂y
� 0 at y � h (46)

First-Order System

∂θ11

∂y
+ θ00

∂θ10

∂y
+ θ10

∂θ00

∂y
� 0

∂θ11

∂y
� 0 at y � 0 and θ11 + η2

∂θ11

∂y
� 0 at y � h

(47)

By solving Eqs. (42), (43), (46) and (47) analytically, and
substituting in Eq. (38), the expression for temperature func-
tion is obtained as

i.e., θ � θ00 + α2θ01 + Aθ10 + Aα2θ11 (48)

By solving Eq. (19) the analytical solution for the concen-
tration is obtained. Using MATLAB R2023a programming
language, the velocity expression, temperature equation, con-
centration, and stream function solutions are graphically
represented.

3.2 Expression for DifferentWaveforms

The following are the nondimensional expressions for sinu-
soidal, square, triangular, and trapezoidal wave forms:

Fig. 3 Variation of temperature profiles when E1 � 0.4, E2 � 0.1, E3
� 0.01, E4 � 0.001, E5 � 0.1, A� 0.01, B � 2, x � 0.2, F � 2, φ � π

4 ,
α1 � 0.02, t � 0.1, ε � 0.3, η1 � 0.2,M � 2, α2 � 0.02, η2 � 0.2, Br
� 2
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Fig. 4 Variation of concentration profiles when E1 � 0.4, E2 � 0.1, E3
� 0.01, E4 � 0.001, E5 � 0.1, A� 0.01, B � 2, x � 0.2, F � 2, φ � π

4 ,
α1 � 0.02, t � 0.1, ε � 0.3, η1 � 0.2,M � 2, α2 � 0.02, η2 � 0.2, Br
� 2, Sc � 1, Sr � 1, η3 � 0.2

a. Sinusoidal wave:

h(x , t) � 1 + ε sin

[
2π

λ
(x − ct)

]

b. Square wave:

h(x , t) � 1 + ε

⎡
⎣ 4

π

∞∑
ξ�1

(−1)ξ+1

(2ξ − 1)
cos[(2ξ − 1)2π(x − ct)]

⎤
⎦

c. Triangular wave:

h(x , t) � 1 + ε

⎡
⎣ 8

π3

∞∑
ξ�1

(−1)ξ+1

(2ξ − 1)2
sin[(2ξ − 1)2π(x − ct)]

⎤
⎦

d. Trapezoidal wave

h(x , t) � 1 + ε

⎡
⎣ 32

π2

∞∑
ξ�1

sin
(
π
8
)
(2ξ − 1)

(2ξ − 1)2
sin[(2ξ − 1)2π(x − ct)]

⎤
⎦

4 Results and Discussion

The previous section analysed the fluid flow, heat, and mass
transfer of a Eyring Powell fluid flowing down a uniform
channel under different conditions using the Perturbation
Technique. The effects of changing fluid properties are eval-
uated in this section. MATLAB R2023a illustrates flow
quantities and physiological activity metrics. Additionally,
Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 indicates the influ-
ence of physiological parameters on velocity, temperature,
concentration, different waveforms, and contour graphs for
streamlines.

4.1 Velocity Profiles

Examining velocity profiles shows fascinating differences
brought on by carefully adjusting fitting parameters, as
seen in Fig. 2a–g. A comprehensive examination of these
graphs reveals distinct patterns dictating the effect of vari-
ous parameters on axial velocity. Figure 2a demonstrates a
substantial association between Eyring–Powell Fluid param-
eter A and axial velocity. Axial velocity rises with fluid
parameter A. In contrast, Fig. 2b shows that increasing
parameter B decreases velocity. Figure 2c, d offers infor-
mative visuals on the effects of varying viscosity and slip
parameters, respectively. The graphical representations con-
vey the importance of these characteristics in determining
velocity profiles. Thus, they demonstrate the enhanced veloc-
ity profiles caused by these factors. Further examining the
magnetic effect yields an intriguing relationship between
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Fig. 5 Variation of velocity
profiles for different values of A
for different wave forms
a sinusoidal, b square,
c triangular, d trapezoidal when
E1 � 0.4, E2 � 0.1, E3 � 0.01,
E4 � 0.001, E5 � 0.1, A � 0.01,
B � 2, x � 0.2, F � 2, φ � π

4 ,
α1 � 0.02, t � 0.1, ε � 0.3,
η1 � 0.2, M � 2

magnetic and fluid velocity, as illustrated in Fig. 2e. The
graphical representation shown below supports the observa-
tion that an increase in magnetic effect results in a noticeable
drop in fluid velocity. Figure 2f illustrates the correlation
between inclination angles and their impact on fluid veloc-
ity. Increasing the inclination angle increases fluid velocity.
Figure 2g emphasizes the impact of wall attributes, is the
focal point of the analysis. Attributes like mass characteriza-
tion, wall tension, and damping characteristics are essential
for coordinating components, like a symphony. Recalibra-
tion of factors like wall stiffness and elasticity considerably
impacts velocity for its subtle nature. Velocity increases
with increases in mass characterization and wall tension
parameters and decreases with increases in wall damping
parameters. Notably, a slight change in the wall stiffness
parameter results in a substantial decrease in velocity. A sim-
ilar trend is seenwhen adjusting thewall elasticity parameter,
withmore elasticity resulting in a flatter velocity distribution.

4.2 Temperature Profiles

Figure 3a–j shows the temperature variations for various
parameters. The temperature profiles are seen to grow as the
Eyring Powell fluid parameter A is increased in Fig. 3a, but
the material parameter B exhibits the reverse tendency in
Fig. 3b. The effect of varying viscosity over temperature is
depicted in Fig. 3c. It demonstrates that increasing variable
viscosity lowers temperature profiles while increasing the
value of α2 exhibits a dual behaviour for temperature pro-
files, as seen in Fig. 3d. The temperature profiles change for
velocity slip and thermal slip parameters is shown in Fig. 3e,
f respectively. As the velocity slip increases, there is a corre-
sponding reduction in the temperature profiles. Similarly, an
increase in η2 leads to a decrease in the temperature profile.
Figure 3g illustrates the temperature variation corresponding
to various magnetic parameters. It can be observed that a rise
in the magnetic parameter leads to a decrease in the tempera-
ture profiles. Furthermore, Fig. 3h demonstrates a significant
rise in temperature with the rise of the Brinkmann number.
Figure 3i shows a direct relationship between the inclination
angle and the fluid temperature increases. In the analysis

123



Arabian Journal for Science and Engineering

Fig. 6 Variation of velocity
profiles for different values of B
for different wave forms
a sinusoidal, b square,
c triangular, d trapezoidal when
E1 � 0.4, E2 � 0.1, E3 � 0.01,
E4 � 0.001, E5 � 0.1, A � 0.01,
B � 2, x � 0.2, F � 2, φ � π

4 ,
α1 � 0.02, t � 0.1, ε � 0.3,
η1 � 0.2, M � 2

of the temperature variation depicted in Fig. 3j, it can be
observed that a rise in thewall tension andmass characteriza-
tion parameters leads to a corresponding rise in temperature.
Conversely, the damping parameter exhibits an inversing
relationship with temperature. Moreover, an augmentation
in the wall damping and stiffness parameters results in a
decrease in temperature profiles. The increase in the wall
elasticity parameter has a minimal impact on the tempera-
ture profile, causing only a slight decline.

4.3 Concentration Profile

Figure 4a–l illustrates the impact of essential parameters on
the concentration profiles. In Fig. 4a, it has been observed
that an increase in theEyring Powell fluid parameter A results
a decrease in the concentration profile. Conversely, Fig. 4b
illustrates a contrasting trend for the material parameter B,
where an increase in B leads to an increase in the concentra-
tion profiles. Figure 4c demonstrate that the enhancement
of concentration profiles is observed with an increase in
variable viscosity, whereas an increase in variable thermal
conductivity yields the opposite behaviour (see Fig. 4d). The
higher concentration caused by increasing velocity slip and

thermal slip parameters is seen in Fig. 4e, f. For the con-
centration slip parameter, the opposite behaviour has been
seen. When the concentration slip parameter is raised, the
concentration decreases (see Fig. 4g). The fluctuation of con-
centration for changing magnetic parameters is depicted in
Fig. 4h. The concentration profiles are increased as the mag-
netic parameter is increased Fig. 4i, j depict the variance in
concentration profile for different Scmidth and Soret number
values, respectively. Both factors exhibit similar behaviour;
that is, raising these values lowers the concentration profiles.
A notable concentration fluctuation for the Brinkmann num-
ber canbeobserved inFig. 4k.The concentrationdecreases as
the Brinkmann number increases. Figure 4l shows the fluctu-
ation of concentration onwall characteristics. For an increase
in wall tension and mass characterisation parameter, a drop
in concentration profile is seen. When compared to tempera-
ture and velocity profiles, this tendency is opposite in nature.
The concentration profiles show a significant improvement
as the wall damping value rises. Both E4 and E5 exhibits
comparable behaviour. Both the wall rigidity and elasticity
parameter enhances the concentration profiles.
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Fig. 7 Variation of velocity
profiles for different values of M
for different wave forms
a sinusoidal, b square,
c triangular, d trapezoidal when
E1 � 0.4, E2 � 0.1, E3 � 0.01,
E4 � 0.001, E5 � 0.1, A � 0.01,
B � 2, x � 0.2, F � 2, φ � π

4 ,
α1 � 0.02, t � 0.1, ε � 0.3,
η1 � 0.2, M � 2

Fig. 8 Variation of streamlines
for a A � 0.01, b A � 0.05

4.4 Wave Forms

The significance of waveforms is derived from the fact
that they affect the operation and behaviour of a system.
Waveforms are paramount when determining effectiveness
and performance in various fluid mechanics applications.
The four standard waveforms: sinusoidal, square, triangle,

and trapezoidal, are drawn offering something unique and
valuable. Waveforms are essential components in a wide
variety of applications involving fluid mechanics. These
applications include hydraulic testing, flow visualisation
techniques, flow control experiments, and cardiovascular
research. These aid researchers and engineers in their quest to
better understand and build liquid systems by allowing them
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Fig. 9 Variation of streamlines
for a B � 1.5, b B � 2.5

Fig. 10 Variation of streamlines
for a α1 � 0.01, b α1 � 0.04

Fig. 11 Variation of streamlines
for a η1 � 0.00, b η1 � 0.02

to simulate real-world settings, investigate flow instabilities,
and optimise flow control tactics.

To obtain insight into the impact that different waveforms
(sinusoidal, square, triangle, and trapezoidal) have on fluid
flow features and the distribution of velocity within channels,
an analysis was carried out on the velocity profiles for each
of the distinct waveforms. Figure 5a–d and 6a–d show that

the fluid parameter A and B has been analysed, respectively.
This study aims to understand the fluid flow behaviour when
Eyring Powell Fluid is considered through different wave-
forms. This insight can improve the efficiency of velocity
control and manipulation systems. It is important to note that
when the fluid parameter A goes up, the flow rate also goes
up, as seen in Fig. 5, showing the velocity profiles. Also,
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Fig. 12 Variation of streamlines
for a M � 2, b M � 2.5

Fig. 13 Validation of current
model with Hina [27] for
a velocity profile, b temperature
profile and c concentration
profile when E1 � 0.4,
E2 � 0.1, E3 � 0.01, A � 0.01,
B � 2, x � 0.2, t � 0.1,
ε � 0.3, η1 � 0.01, M � 2,
η2 � 0.02, Br � 2, Sc � 1,
Sr � 1, η3 � 0.02
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all the graphs displaying the velocity profiles show that the
fluid rate decreaseswhen the fluid parameter B increases (see
Fig. 6). This study aims to understand fluid flow behaviour
better when subjected to various magnetic parameters and
waveforms (see Fig. 7a–d. This knowledge can improve the
performance of systems that rely on magnetic effects for
controlling and changing velocity. One possible use of this
knowledge is in the aerospace industry. It is important to note
that an increase in the magnetic parameter leads to a drop in
the fluid rate. This can be seen in every picture that depicts
the velocity profiles, and it is something that should be taken
into consideration.

4.5 Trapping Phenomenon

Trapping is essential to analyse peristaltic motion in biologi-
cal fluids, as it provides insight into the formation of boluses
through enclosed streamlines. Figures 8, 9, 10, 11 and 12
examine the physiological indicators along these stream-
lines. Figure 5 illustrates the variation in streamlines for
different values of the fluid parameter A. The correlation
between the number of bolus formations and the importance
of A is positive. In contrast, Fig. 6 exhibits a contrasting
behaviour for fluid parameter B. As the value of B increases,
fewer boluses are administered. The influence of viscosity
and velocity slip parameters on the confined bolus is depicted
in Figs. 10 and 11. The presented graphs illustrate that the
number of bolus formations increases as the viscosity and
velocity slip parameters are altered. The relationship between
the magnetic parameter and the number of confined boluses
is depicted in Fig. 12.As themagnetic parameter is increased,
there is a corresponding decrease in the number of trapped
boluses.

5 Validation

The current model validates theoretical results with the exist-
ing model from Hina [27] as shown in Fig. 13. The newly
introduced parameters such as, variable viscosity, variable
thermal conductivity as well as angle of inclination has
been set to zero to validate the results graphically. It can
be noted that the model is in good agreement with the
existing model. Figure 13a represents the velocity profiles;
Fig. 13b represents Temperature profile and Fig. 13c repre-
sents concentration profiles. In the present model a variation
is observed due to the boundary conditions considered differ-
ent from that of Hina [27]. Also, the present model reduces
to Hina [27] model when same boundary conditions are con-
sidered.

6 Conclusion

The present mathematical model investigates the peristaltic
transport, specifically concentrating on the behaviour of
Eyring–Powell fluid in the presence of a magnetic field,
yields the significant and applicable findings theoretically.
Slip boundary conditions were included in a uniform chan-
nel model to examine these phenomena. Velocity profiles
for sinusoidal, square, triangular, and trapezoidal waveforms
were analysed to determine their effects on fluid flow. The
investigation centred on determining the applicability of this
research in various fields, including biomedical engineering,
medicine, and technology. The following conclusions can be
drawn from the study:

• Flow rate is positively correlated with fluid parameter
A, whereas flow rate decreases with an increase in fluid
parameter B.

• The velocity is substantially influenced by the character-
istics of the wall, such as its stiffness and elasticity.

• Comprehending fluid flow behaviour in diverse mag-
netic parameters and waveforms can improve systems that
depend on magnetic effects to regulate velocity.

• Improvement in concentration profiles is noticed
when considering viscosity and thermal conductivity,
which thoroughly comprehends fluid behaviour related to
various factors.

• A direct correlation exists between temperature increase
and damping, while rigidity and elasticity demonstrate
the opposite relationship. This condition affects several
biological and physiological systems and is essential for
understanding system thermodynamics.

• Number of Bolus formations increase in response to
changes in velocity slip and viscosity parameters.
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