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Abstract
Portland cement concrete (PCC) is the construction material most used worldwide. Hence, its proper characterization is
fundamental for the daily-basis engineering practice. Nonetheless, the experimental measurements of the PCC’s engineering
properties (i.e., Poisson’s Ratio -v-, Elastic Modulus -E-, Compressive Strength -ComS-, and Tensile Strength -TenS-) con-
sume considerable amounts of time and financial resources. Therefore, the development of high-precision indirect methods is
fundamental. Accordingly, this research proposes a computational model based on deep neural networks (DNNs) to simulta-
neously predict the v, E, ComS, and TenS. For this purpose, the Long-Term Pavement Performance database was employed
as the data source. In this regard, the mix design parameters of the PCC are adopted as input variables. The performance of
the DNN model was evaluated with 1:1 lines, goodness-of-fit parameters, Shapley additive explanations assessments, and
running time analysis. The results demonstrated that the proposed DNN model exhibited an exactitude higher than 99.8%,
with forecasting errors close to zero (0). Consequently, the machine learning-based computational model designed in this
investigation is a helpful tool for estimating the PCC’s engineering properties when laboratory tests are not attainable. Thus,
the main novelty of this study is creating a robust model to determine the v, E, ComS, and TenS by solely considering the
mix design parameters. Likewise, the central contribution to the state-of-the-art achieved by the present research effort is
the public launch of the developed computational tool through an open-access GitHub repository, which can be utilized by
engineers, designers, agencies, and other stakeholders.

Keywords Computational modelling · Concrete structures · Construction materials · Deep neural networks · Machine
learning · Portland cement concrete

1 Introduction

Portland Cement Concrete (PCC) is the composite mate-
rial produced by mixing coarse aggregates (i.e., gravel),
fine aggregates (i.e., sand), Portland Cement (PC), water,
and optionally admixtures (e.g., chemical additives, fly ash,
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and steel slag) [1–3]. PCC is the world’s most widely
used construction material, mainly employed for construct-
ing buildings and pavements [4–6]. Notoriously, the high
consumption of time and financial resources for its proper
experimental characterization implies that designers must
resort to indirect methods [7–9]. However, the traditional
mathematical models used for these purposes have been
confirmed to be inaccurate and unreliable [10–12]. The
preceding has led the estimation of PCC’s engineering prop-
erties to focus ondeveloping advanced computationalmodels
[13–15]. Within this field of research, Artificial Intelligence
(AI)-basedmodels stand out for their high precision and abil-
ity to adapt to new types of mixture designs not considered
during the model creation stage [8, 14, 16].

Table 1 summarizes a literature review on estimating
PCC’s engineering properties usingAI techniques. This table
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Table 1 Literature review on estimating PCC’s engineering properties using AI techniques

References Type of PCC Number of datasets Estimated properties Computational models based on

[7] Fly-ash/slag-based geopolymer
concrete

156 ComS DT, RF, SVM

[8] Fly ash-based geopolymer concrete 151 ComS MLP, SVM, XGB

[9] Fly ash-based geopolymer concrete 263 ComS ANN, ResNet

[13] Geopolymer concrete 147 ComS CBR, ETR, GBR

[14] PCC modified with high calcium fly
ash

56 Chloride resistance RGM

[15] Waste ceramic concrete with metallic
and non-metallic fiber

33 ComS, TenS ANN

[16] Alkaline-activated slag concretes 181 ComS ANN

[20] Geopolymer concrete 371 ComS BR, DT, GEP, RF

[21] PCC modified with metakaolin 982 for ComS, 204 for TenS, 63 for FS GEP, ANN, DT, RF

[22] Ordinary PCC 324 ComS ANN

BR bagging regressor,CBR catboost regressors,DT decision tree,ETR extra trees regressors,FS flexural strength,GBR gradient boosting regressors,
GEP gene expression programming,MLP multilayer perceptron, ResNet deep residual network, RGM rule generation methods, RF random forest,
SVM support vector machine

shows that most previous investigations focused on pre-
dicting Compressive Strength (ComS) and Tensile Strength
(TenS). The preceding is expected since the ComS and TenS
are the most relevant properties (regarding the characteriza-
tion of the PCC’s mechanical behaviour) to design structural
elements and rigid pavements, respectively [17–19]. On the
other hand, Table 1 also reveals a critical gap in the state-
of-the-art, i.e., in none of the consulted research, Poisson’s
Ratio (v) and Elastic Modulus (E) are considered output
variables. In this regard, the aforementioned computational
models did not take into account the strong relationship that
exists between the resistance-related properties with the v
and E. In other words, previous case studies do not guaran-
tee that for each evaluated dataset (i.e., a set of experimental
data), the physical associations between v, E, ComS, and
TenS would be simultaneously maintained.

The present research aims to overcome the previously
explained literature gap. Consequently, a computational
model is proposed using the Long-Term Pavement Perfor-
mance (LTPP) database as the data source [23]. Specifically,
a Machine Learning (ML) technique called Artificial Neu-
ral Network (ANN) is employed for this purpose. From
the LTPP database, experimental information from multiple
PCC samples was extracted. The experimental information
includes design variables and laboratory testing results (i.e.,
v, E, ComS, and TenS). In turn, the PCC’s design variables
comprise the following parameters: volumetric air content
(VairC), volumetric aggregate content (VaggC), volumetric
PC content (VpcC), volumetric water content (VwC), gravi-
metric water-to-cement ratio (GwcR), and specific gravity
(Gs). Notoriously, it is expected that the proposed ANN
model can be used (by agencies, designers and the scientific

community) to forecast the PCC’s engineering properties (v,
E, ComS, and TenS) when experimental measurements are
not feasible.

Below is described the structure of the presentmanuscript.
Initially, Sect. 2 describes the origin of the data used to
develop the ML-based model. Next, Sect. 3 introduces the
computational methods employed, and the basic concepts
of ANNs are also explained. Then, Sect. 4 exhibits a deep
discussion about the exactness and accuracy of the pro-
posed computational model. It is important to highlight that
the discussion section includes several SHapley Additive
exPlanations (SHAP) assessments and running time anal-
yses. Finally, Sect. 5 summarises the research and offers the
mainfindings and conclusions achieved throughout the inves-
tigation.

2 Data Source

All the data employed in this investigation was extracted
from the LTPP database. The LTPP’s information manage-
ment system has operated since 1988 and is managed by
the Federal Highway Administration (i.e., part of the US
Department of Transportation) [24–27]. The LTPP database
comprises exhaustive information about design parameters,
laboratory characterization of materials, climate variables,
in-situ performance, and life-cycle behaviour on over 2500
pavement test sections in the USA and Canada [28–31].

With the aim of filtering the relevant information (for this
study) from the LTPP database, it was decided to solely con-
sider the experimental dataset that simultaneously contains
information about VairC, VaggC, VpcC, VwC, GwcR, Gs, v,

123



Arabian Journal for Science and Engineering

Table 2 Basic statistical
description of the adopted
variables

Variable
(Unit)

Minimum Maximum Mean Median Standard
deviation

Kurtosis Skewness

VairC
(%)

3.100 12.200 7.417 7.440 2.115 − 0.600 − 0.268

VaggC
(%)

18.767 80.500 69.608 70.960 8.635 16.970 − 3.456

VpcC
(%)

4.175 33.781 9.680 9.277 4.652 10.288 2.629

VwC (%) 5.337 36.652 13.295 12.289 4.385 11.070 2.594

GwcR (-) 0.270 0.823 0.478 0.450 0.124 − 0.324 0.587

Gs (-) 2.340 2.743 2.545 2.543 0.073 0.857 0.362

v (-) 0.090 0.318 0.189 0.190 0.042 0.536 0.326

E (GPa) 9.825 52.314 29.028 28.060 8.980 − 0.124 0.211

ComS
(MPa)

7.591 67.564 32.418 32.486 12.106 − 0.331 0.230

TenS
(MPa)

2.015 5.826 4.164 4.082 0.829 − 0.160 − 0.106

E, ComS, andTenS. Furthermore, the datasetsweremanually
scanned to discard those with missing information. Conse-
quently, a total number of 75 datasets were finally obtained
from experimental/laboratory works that were developed
in the US states of Alabama, Arizona, Arkansas, Califor-
nia, Colorado, Delaware, Illinois, Indiana, Iowa, Kansas,
Michigan, Missouri, North Carolina, North Dakota, Ohio,
Oklahoma,Texas,Washington, andWisconsin. In this regard,
it is essential to highlight that all datasets used in this research
are available for free download on the LTPP’s website. Table
2 presents the adopted datasets’ statistical description (i.e.,
each variable’s minimum, maximum, mean, median, stan-
dard deviation, kurtosis, and skewness values). Also, Fig. 1
shows a scatterplot matrix to depict the considered param-
eters’ variability and correlation. From Fig. 1, it is clear
that there is no marked trend between the input data (i.e.,
the design variables comprised by the VairC, VaggC, VpcC,
VwC, GwcR, and Gs) and the output data (i.e., the laboratory
testing results comprised by v, E, ComS, and TenS).

2.1 Definition of New Input Variables

According to Fig. 1, there is no strong correlation between
the input and output variables (at least in their current form).
Therefore, in order to generate more relationships between
the considered properties, it was decided to create four new
input variables, namely volumetric water-to-cement ratio
(VwcR), volumetric paste content (VpasteC), aggregate-to-
paste ratio (AggPasR), and paste to air ratio (PasAirR).
Equations (1), (2), (3), and (4) show the mathematical for-
mulations for calculating VwcR, VpasteC, AggPasR, and
PasAirR, respectively. In Eq. (1), Gs_pc refers to the specific
gravity of the PC, which was assumed as a typical value of

3.1 [32–34].

VwcR � GwcR ∗ Gs_pc (1)

V pasteC � V pcC + VwC (2)

AggPasR � VaggC

V pasteC
(3)

PasAir R � V pasteC

VairC
(4)

2.2 Feature Scaling

According to Table 2, the input and output variables present
different units and magnitudes, making the learning pro-
cess of ANNs demanding. In order to simplify the artificial
learning procedure, it was decided to apply a feature scaling
technique called standardization;Eq. (5) shows itsmathemat-
ical definition [35]. The standardization process transforms
data arrays, obtaining a new one with three principal charac-
teristics [36, 37]: (i) mean equal to 0, (ii) standard deviation
equal to 1, (iii) and most data points are between the range
[− 1, 1]. Table 3 exhibits the basic statistical description of
the transformed variables; in this table, it is clear that the
standardized variables present the expected (and previously
explained) features.

Standardi zed value � Original value − Mean

Standard deviation
(5)

123



Arabian Journal for Science and Engineering

Fig. 1 Correlation and variability of the considered variables. Units: VairC (%); VaggC (%); VpcC (%); VwC (%); GwcR (-); Gs (-); v (-); E (GPa);
ComS (MPa); TenS (MPa)

2.3 Data Augmentation

The main limitation of this study is that the employed
database is only composed of 75 datasets. That amount of
data is minimal; hence, an ML-based computational model
created solely by that data could suffer from overfitting phe-
nomena [38–40]. In order to avoid overfitting, it was decided
to apply two techniques: (i) data augmentation during the data
preprocessing stage and (ii) early stopping during the learn-
ing process stage. The early stopping technique is explained
later in the manuscript. On the other hand, the data augmen-
tation technique is just described below.

Data augmentation is one of the most powerful techniques
to avoid overfitting [41–43]. Moreover, this technique stands
out due to its simplicity [44, 45]. The data augmentation
consists of conducting the model’s learning process by con-
sidering several slightly altered copies of the original datasets
together with the authentic ones [46–48]. Thus, for this
research, it was decided to create 9 modified copies of each
of the original datasets. Each modified copy was formed by
affecting the authentic values with a pseudo-random distor-
tion of between ± 3%. This low alteration ratio was selected
to ensure that the physical consistency of the concrete mix
designs was maintained. In this regard, 675 artificial datasets
were obtained,which, added to the75original datasets, yields
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Table 3 Statistical description of the variables after the standardization process

Variable (Unit) %between [− 1,
1]

Minimum Maximum Mean Median Standard
deviation

Kurtosis Skewness

Input vari-
ables

VairC (-) 82.667 − 2.042 2.262 0.000 0.011 1.000 − 0.600 − 0.268

VaggC (-) 92.000 − 5.887 1.261 0.000 0.157 1.000 16.970 − 3.456

VpcC (-) 92.000 − 1.183 5.181 0.000 − 0.087 1.000 10.288 2.629

VwC (-) 92.000 − 1.815 5.327 0.000 − 0.229 1.000 11.070 2.594

GwcR (-) 88.000 − 1.678 2.781 0.000 − 0.226 1.000 − 0.324 0.587

Gs (-) 88.000 − 1.678 2.781 0.000 − 0.226 1.000 − 0.324 0.587

VwcR (-) 88.000 − 1.678 2.781 0.000 − 0.226 1.000 − 0.324 0.587

VpasteC
(-)

94.667 − 1.445 5.452 0.000 − 0.158 1.000 12.473 2.874

AggPasR
(-)

89.333 − 2.538 3.387 0.000 − 0.167 1.000 1.503 0.577

PasAirR
(-)

86.667 − 1.326 2.739 0.000 − 0.308 1.000 0.102 1.028

Output
vari-
ables

v (-) 86.667 − 2.374 3.113 0.000 0.033 1.000 0.536 0.326

E (-) 86.667 − 2.138 2.593 0.000 − 0.108 1.000 − 0.124 0.211

ComS (-) 80.000 − 2.051 2.903 0.000 0.006 1.000 − 0.331 0.230

TenS (-) 85.333 − 2.592 2.004 0.000 − 0.100 1.000 − 0.160 − 0.106

a total of 750. For the subsequent learning process (that is, the
design of the ANN architecture and its performance assess-
ments), the embraceddatabasewas separated as follows: 70%
(i.e., 525 datasets) for the training process, 20% (i.e., 150
datasets) for the testing process, and 10% (i.e., the remain-
ing 75 datasets) for the validation. It is crucial to highlight
that this classification is accomplished using a random shuf-
fle.

3 Methods

A broad set of ML-based computational techniques can
be used for regression/forecasting problems, e.g., ANNs,
bagging regressors, decision trees, lasso regression, ran-
dom forests, and support vector machines [49–52]. In this
research, it was decided to applyANNs to estimate the PCC’s
engineering properties (v, E, ComS, and TenS). The ANNs
are one of themost popular deep-learning techniques because
they allow for establishing correlations between variables
that did not present a strong relationship [22, 45, 53]. The
internal working of the ANNs is based on replicating the
logic of the human brain’s neural connections [11, 54, 55].
Specifically, in this study, it was decided to apply a type of
ANN called Deep Neural Networks (DNNs). The DNNs are
defined as ANNs with at least two hidden layers and densely
linked neurons (i.e., it is necessary to establish all the possi-
ble connections between neurons) [9, 39, 54]. Figure 2 shows
the base architecture of DNNs.

Fig. 2 Base architecture of DNNs. Adapted from: [54, 56]. Legend: ki,
kh, ko, k1, and k2 are integer numbers equal to or greater than two

Based on the DNN canonical architecture shown in Fig. 2,
the following aspects could be highlighted for this case study:
(i) the input layer comprises 10 neurons (i.e., each neuron for
each input variable presented in Table 3); (ii) the output layer
comprises 4 neurons (i.e., each neuron for each output vari-
able presented in Table 3); and (iii) the number of hidden
layers and their number of neurons should be determined.
In order to obtain a suitable configuration of the number
of hidden layers and neurons, an extensive inspection of
the possible combinations was carried out. In this way, the
most appropriate DNN architecture was found, as indicated
in Fig. 3. According to Fig. 3, there are four hidden layers.
Respectively, the first, second, third and fourth hidden layers
are composed of 800, 640, 160, and 40 neurons. Therefore,
the proposed DNN is formed by 6 layers, 1654 neurons, and
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Fig. 3 Proposed DNN

Table 4 Calculation of the total
number of trainable parameters
for the proposed DNN

Layer Number of
neurons
received (Nr)

Number of biases
(Nb)

Number of
neurons contained
(Nc)

Number of
parameters [(Nr
+ Nb) * Nc]

First hidden layer 10 1 800 8 800

Second hidden
layer

800 1 640 512 640

Third hidden
layer

640 1 160 102 560

Fourth hidden
layer

160 1 40 6 440

Output layer 40 1 4 164

Total number of trainable parameters 630 604

630,604 trainable parameters. The procedure to calculate the
total number of trainable parameters is exhibited in Table 4.

In Fig. 3, two characteristics stand out: (i) all the hidden
layers are affected by the hyperbolic tangent (tanh) activation
function, and (ii) the proposed DNN is executed under a first-
order gradient-based optimization method called Adamax.
On the one hand, tanh is one of the most helpful activation
functions because it causes all data coming out of a layer
to be between the closed interval from -1 to 1 [57–59]. The
preceding is particularly desirable in this case study because,
according to Table 3, most of the data points (for both input
and output variables) are comprehended within that range. In
this regard, it was deliberately designed that the output layer
would not have an activation function so that the few data
outside the interval [− 1, 1] could be adequately predicted.
On the other hand, Adamax is a variant of the traditional
Adam optimization method [41, 60]. The internal function-
ing of Adamax is based on the infinity norm concept, which
allows a high capacity to modify the learning rate according
to the features of the input data [60, 61]. Algorithm 1 explains
in detail the optimization procedure applied by Adamax [62,
63]. Also, Table 5 shows the hyperparameter values adopted

Table 5 Selected hyperparameter values for the Adamax optimizer

Hyperparameter Value

β1 0.9

β2 0.999

lr 0.001

ε 1E−7

for this case study.

Algorithm 1 Pseudocode of the inter-

nal working of the Adamax optimizer.

Adapted from: [62, 63].

t, m, u, w = 0, 0, 0, 0
for t = 1 to T do

gt = w * w

m = β1 * m + (1 – β1) * gt

u = max(β2 * u, abs(gt))

lr = lr / (1 - β1 ** t)

w = w - lr * m / (u + ε)

end for
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t - iteration index; m - first moment vector; u - exponen-
tially weighted infinity norm; w - convergence parameter
(weight variable); T - number of iterations to reach the con-
vergence; gt - gradient; β1 - exponential decay rate for the
first moment estimates; β2 - exponential decay rate for the
exponentially weighted infinity norm; lr - learning rate; ε -
small constant for numerical stability

In order to make this research reproducible, duplicatable,
and replicable, Algorithm 2 shows the simplified pseudocode
of the proposed DNN. Further, the authors publicly share
the computational model to the following GitHub repository
(programmed in Python language): https://github.com/rpol
oe/PCC. It is essential to highlight that the authors bring an
open license to guarantee the unrestricted use, modification,
and distribution of the codes hosted in this repository. From
Algorithm2, four aspects should be discussed: (i) the selected
loss function, (ii) the error metrics employed, and (iii) the
required number of epochs.

The Mean Square Error (MSE) was chosen as the loss
function. Equation (6) explains it [54, 56]. The MSE is one
of the most common loss functions because it maximizes the

differences between predicted and expected values [55, 64,
65]. Furthermore, four additional error metrics were consid-
ered, namely Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE),Mean Squared Logarithmic Error
(MSLE), and the Logarithm of the Hyperbolic Cosine of
the Error (LHCE). Respectively, Eqs. (7), (8), (9), and (10)
define the MAE, MAPE, MSLE, and LHCE [54, 56]. On
the other hand, the early stopping technique demarcated the
required number of epochs (i.e., cycles of training and test-
ing). This technique consists of determining the maximum
number of epochs that the optimization process can reach
before stopping learning, which is evidenced when, in the
error functions (in this case, MSE, MAE, MAPE, MSLE,
and LHCE), the assumed error changes from a decreasing
trend to an ascending one [40, 54, 66]. In other words, the
early stopping technique consists of locating the moment of
maximum precision [54, 67, 68]. For the proposed DNN, the
instantwhen learning stagnated varied between 600 and 1400

epochs (depending on the error metrics). Thus, with the aim
of adopting a conservative number of epochs, this was set at
500.

MSE � 1

n

n∑

i�1

(
ODi − EDi

)2
(6)

MAE � 1

n

n∑

i�1

∣∣∣ODi − EDi
∣∣∣ (7)

MAPE � 1

n

n∑

i�1

∣∣∣∣
ODi − EDi

ODi

∣∣∣∣ (8)

MSLE � 1

n

n∑

i�1

(
ln

(
1 + ODi

)
− ln

(
1 + EDi

))2
(9)

LHCE � 1

n

n∑

i�1

(
eOD

i−EDi
+ eED

i−ODi

2

)
(10)

where n—number of data points. i—data index. OD—ob-
served/experimental data. ED—estimated data.

Algorithm 2 Simplified pseudocode to create the proposed DNN

Input: VairC, VaggC, VpcC, VwC, VwcR, GwcR, Gs, VpasteC, AggPasR, PasAirR, v, E, ComS, TenS
input_data = dataset [:, 0:10]

output_data = dataset [:, 10:14]

def build_model():
model = ([ input_shape = [10],

layers.Dense(800, activation = “tanh”),

layers.Dense(640, activation = “tanh”),
layers.Dense(160, activation = “tanh”),

layers.Dense(40, activation = “tanh”),

layers.Dense(4) ])
model.compile (loss = “MSE”, optimizer = Adamax, metrics=["MAE", "MAPE", "MSLE", "LHCE"])

return = model

model = build_model()
model.fit (input_data, output_data, epochs = 500)

4 Discussion

4.1 Model’s Exactness

Figure 4 compares the measured and predicted values of
the PCC’s engineering properties through 1:1 line plots.
This figure clearly shows that the proposed DNN model can
assemble forecasting with almost perfect accuracy. Regard-
less of the origin of the datasets (i.e., training, testing, or
validation), the computational model is able to reproduce
the laboratory-tested behaviour. It is paramount to empha-
sise that the training and testing datasets are employed along
the supervised learning process, but the model has no prior
knowledge of the validation datasets [69, 70]. Therefore,
the validation datasets corroborate whether the DNN archi-
tecture can forecast never-before-observed scenarios [71,
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Fig. 4 Comparison of measured and predicted values (1:1 lines)
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Fig. 5 Statistical evaluation of the proposed DNN

72]. Thus, based on Fig. 4, it is possible to recognise the
almost perfect estimation capacity of the proposed compu-
tational model. Besides, several goodness-of-fit parameters
are examined in Fig. 5 and Table 6. These parameters are
the previously introduced error metrics and the coefficient
of determination (R2). Table 6 shows the goodness-of-fit
parameters at the first and last epochs, as well as the “ini-
tial/final” error ratio. From this table, the following findings
can be drawn. First, at the final epoch, the prediction errors

of the DNN model are close to zero (0). Second, the error
metrics that best capture the improving behaviour of the
DNN architecture through the epochs are MSE and MSLE.
Third, at the initial epoch, the accuracy of the estimations
according to the R2 parameters was between 2.7–11.7%,
0.5–2.3%, 19.4–24.6%, and 0.4–6.0% for v, E, ComS, and
TenS, respectively. Fourth, at the final epoch, the accuracy of
the estimations according to the R2 parameters was higher
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Table 6 Summary of goodness-of-fit parameters determined for the proposed DNN

Estimated
property

Error
criteria

Training Testing Validation

Initial
epoch

Final
epoch

Initial/Final Initial
epoch

Final
epoch

Initial/Final Initial
epoch

Final
epoch

Initial/Final

v Loss
[MSE]

0.95307 0.00065 1473.1 0.93973 0.00071 1319.8 0.90340 0.00097 931.3

MAE 0.76007 0.01885 40.3 0.74281 0.02015 36.9 0.77438 0.02277 34.0

MAPE 2.67958 0.06002 44.6 2.27937 0.05926 38.5 2.93434 0.07106 41.3

MSLE 0.98706 0.00747 132.1 0.73095 0.01249 58.5 0.74517 0.00966 77.1

LHCE 1.60035 1.00032 1.6 1.59679 1.00036 1.6 1.54271 1.00049 1.5

R2 0.03903 0.99937 – 0.11653 0.99920 – 0.02655 0.99901 –

E Loss
[MSE]

1.01149 0.00045 2232.9 0.99377 0.00068 1459.3 0.91259 0.00071 1294.4

MAE 0.82109 0.01655 49.6 0.79397 0.01993 39.8 0.74552 0.02037 36.6

MAPE 1.82340 0.07119 25.6 2.34037 0.09195 25.5 1.91979 0.07520 25.5

MSLE 0.75877 0.00180 422.5 0.76906 0.00269 285.9 0.66583 0.00408 163.4

LHCE 1.63697 1.00023 1.6 1.63374 1.00034 1.6 1.59762 1.00035 1.6

R2 0.00914 0.99955 – 0.02266 0.99932 – 0.00467 0.99925 –

ComS Loss
[MSE]

0.79397 0.00083 960.1 0.82935 0.00100 831.8 0.75057 0.00156 480.8

MAE 0.74360 0.02061 36.1 0.76523 0.02238 34.2 0.73935 0.02732 27.1

MAPE 1.64045 0.18042 9.1 1.42121 0.10869 13.1 1.28304 0.16640 7.7

MSLE 0.64641 0.00575 112.4 0.65638 0.00665 98.7 0.80670 0.01175 68.7

LHCE 1.46454 1.00041 1.5 1.49329 1.00050 1.5 1.44754 1.00078 1.4

R2 0.19446 0.99921 – 0.21200 0.99882 – 0.24592 .99833 –

TenS Loss
[MSE]

0.95215 0.00036 2674.6 0.89210 0.00034 2631.5 1.02651 0.00025 4057.4

MAE 0.74771 0.01484 50.4 0.70519 0.01465 48.1 0.77107 0.01210 63.7

MAPE 1.17022 0.03830 30.6 1.36762 0.04362 31.4 1.22548 0.03255 37.7

MSLE 0.76748 0.03229 23.8 0.61149 0.01066 57.3 0.38771 0.04121 9.4

LHCE 1.61469 1.00018 1.6 1.59115 1.00017 1.6 1.66655 1.00013 1.7

R2 0.06040 .99964 – 0.04465 0.99967 – 0.00445 0.99974 –

than 99.8% for all the forecasted properties. Also, Fig. 5 pro-
vides a detailed explanation of the error evolution along the
epochs, which reveals that overfitting and underfitting are not
occurring.

4.2 SHAP Assessments

Figure 6 exhibits four SHAP assessments on the proposed
DNN: a summary plot, a waterfall plot, a decision plot for the
training datasets, and a decision plot for the testing datasets.
The summary plot represents a SHAPglobal interpretation of
the DNNmodel, whilst the other charts correspond to SHAP
local interpretations [54, 73]. According to these plots, it is
possible to draw the following findings. In the summary plot,
each input variable has an associated SHAP value. Higher

SHAP values indicate more influence on the global predic-
tive response of the DNN model [74, 75]. Therefore, the Gs,
VairC, AggPasR, PasAirR, and GwcR are the input variables
withmoreweight in the computationalmodel. Thus, it is clear
that creating new variables was a valuable strategy for this
case study. In the waterfall plot, the input variables marked
with red color (i.e., solely Gs and VairC) display a positive
contribution to the output variables,whilst the blue color (i.e.,
all the input variables except Gs and VairC) denotes a nega-
tive one. This behaviour is helpful for the user to understand
how the DNN model internally works [76, 77]. Meanwhile,
the decision plots do not provide meaningful information
individually since they reveal the learning trend followed by
theDNNmodel [75, 77].However,when comparing the deci-
sion plots for the training and testing datasets, it is notable that
they follow a very similar trajectory. Hence, it is evidenced
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Fig. 6 SHAP assessments for the proposed DNN model

that the two phases of the learning process are congruent,
which is desired [78, 79].

4.3 Running Time

The running time of ML-based computational models is an
important parameter to assess the feasibility of their imple-
mentation in the daily-basis engineering practice [52, 56].
For this purpose, the proposed DNN model was evaluated
using Python’s native "TIME" module. Thus, the proposed
DNN was executed on 100 independent occasions; Fig. 7
shows these results. According to this graph, the minimum,
maximum, and average rutting times were 54.70, 87.47, and
66.01 s, respectively. Also, the standard deviation of the
measurements was 10.15 s. Therefore, the proposed DNN
requires approximately one minute for its execution, i.e.,
an acceptable magnitude within the context of civil engi-
neering [52, 54]. It is essential to highlight that the running
time depends primarily on the software and hardware used
[80–82]. Hence, in order to be transparent, the ones used
in this research are detailed below. On the one hand, Google

Colab (a hosted Jupyter Notebook service)was utilized as the
development environment. On the other hand, the NVIDIA®
V100TensorCoreGPUwas adopted as the acceleration hard-
ware.

4.4 Model’s Limitations

The central limitation of the proposed DNNmodel is associ-
ated with the adopted database. The DNN architecture was
trained, tested, and validated with 750 datasets. Nonethe-
less, only 75 datasets were obtained experimentally (from
the LTPP database), and the other 675 datasets were arti-
ficially created through the data augmentation technique.
Although this technique has been widely used in the liter-
ature to improve limited databases in ML-related regression
problems [42–45, 83–85], the newmodifieddatabasemaynot
be broad enough to cover all physically/phenomenologically
conceivable scenarios [44, 86, 87]. Therefore, the proposed
DNN model may not yield highly accurate predictions of
engineering properties (v, E, ComS, and TenS) for PCC mix
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Fig. 7 Analysis of running time
for the proposed DNN
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designs that incorporate unconventional proportions of raw
materials.

Another limitation of the computational model is that it
is designed to forecast ordinary PCC’s engineering proper-
ties (v, E, ComS, and TenS). In other words, the proposed
DNN model is not able to predict the performance-related
properties of mix designs that contain additives or supple-
mentary cementitious materials (e.g., blast furnace slag, coal
bottom ash, coal fly ash, metakaolin, palm oil ash, rice husk
ash, silica fume, and steel slag [4, 88–90]). The preceding
is particularly important considering that modified PCCs are
increasingly used to construct buildings and rigid pavement.

5 Conclusions

In this investigation, an ML-based computational model was
developed to estimate the engineering properties of the PCC,
namely v, E, ComS, and TenS. Specifically, the ANN tech-
nique was employed as the primary computational method.
In this regard, the LTPP database was utilized as the data
source for the experimental/laboratory information. Eventu-
ally, aDNNarchitecturewas proposed and evaluatedwith 1:1
lines, goodness-of-fit parameters, SHAP assessments, and
running time analyses. Thus, the main conclusions that can
be drawn from this study are presented below:

• The data preprocessing techniques (i.e., the definition
of new input variables, feature scaling, and data aug-
mentation) were necessary to obtain a proper ML-based
computational model.

• The most suitable DNN architecture comprised one 10-
neuron input layer (each neuron for each input variable),
four hidden layers, and one 4-neuron output layer (each
neuron for each output variable). The hidden layers sub-
sequently had the following number of neurons: 800, 640,
160 and 40. Also, the tanh activation function was added
for all the hidden layers.

• Notoriously, the proposed DNN shows an accuracy higher
than 99.8%, which makes it a valuable tool for estimat-
ing the engineering properties of PCC when there is no
possibility of experimental measurements.

• The SHAP assessments demonstrated that the input vari-
ables more critical for the proposed DNN model were the
Gs, VairC, AggPasR, PasAirR, and GwcR.

• The average running time of the proposed DNN model is
approximately one minute, which implies a relatively low
time quantity. In this regard, the model’s speed is expected
to be an attractive feature for potential users.

• Although the proposed DNN model is limited by the few
original datasets, its most significant advantage is that it
can be easily used for transfer learning. Accordingly, other
researchers and designers can adjust/fine-tune the model
for their contexts. Hence, the authors publicly share the
computational model assembled in this study through an
open-access GitHub repository.
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