Skip to main content
Log in

Synergic Antibiofilm Effect of Thymol and Zinc Oxide Nanoparticles Conjugated with Thiosemicarbazone on Pathogenic Pseudomonas aeruginosa Strains

  • Research Article-Biological
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the emergence of drug resistance, treating Pseudomonas aeruginosa infections is a major health challenge. In a biofilm, bacteria are usually more resistant to antimicrobials than planktonic growth. Thus, antibiofilm compounds can be employed against bacterial infections. In this study, Zinc oxide (ZnO) nanoparticles (NPs) were prepared and functionalized by glutamic acid (ZnO@Glu). Next, the nanoparticles were conjugated with Thiosemicarbazone (ZnO@Glu- TSC), and their antibiofilm activity in combination with Thymol on P. aeruginosa strains was investigated. Physicochemical characterization by FT-IR and XRD analyses showed that the nanoparticles were synthesized properly and their purity was displayed by EDS mapping. The zeta potential of the NPs was − 7.7 mV which indicates the stability of the NPs. Also, the synthesized particles were in the nano-scale size range. Biofilm formation in P. aeruginosa strains was evaluated using Congo-Red agar assay and the antibacterial effect of Thymol and ZnO@Glu-TSC was also studied. Finally, the antibiofilm potential of Thymol, ZnO@Glu-TSC, and Thymol+ZnO@Glu-TSC NPs was studied by crystal violet staining assay. Thymol and ZnO@Glu-TSC NPs had stronger antibacterial potential in combination, and the minimum inhibitory concentration was 3.12–25.5 µg/mL. Also, the combination of the NPs with Thymol led to biofilm inhibition up to 95%, which was significantly higher than either agent alone. This work revealed that Thymol could enhance the antibacterial and antibiofilm potentials of ZnO@Glu-TSC NPs that provides a new option to combat P. aeruginosa infections after further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zarrini, G.; Delgosha, Z.B.; Moghaddam, K.M., et al.: Post-antibacterial effect of thymol. Pharm. Biol. 48(6), 633–636 (2010). https://doi.org/10.3109/13880200903229098

    Article  Google Scholar 

  2. Najafloo, R.; Behyari, M.; Imani, R., et al.: A mini-review of Thymol incorporated materials: applications in antibacterial wound dressing. J Drug Deliv Sci Technol 60, 101904 (2020). https://doi.org/10.1016/j.jddst.2020.101904

    Article  Google Scholar 

  3. Kazemi-Pasarvi, S.; Ebrahimi, N.G.; Shahrampour, D., et al.: Reducing cytotoxicity of poly (lactic acid)-based/zinc oxide nanocomposites while boosting their antibacterial activities by thymol for biomedical applications. Int. J. Biol. Macromol. 164, 4556–4565 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.069

    Article  Google Scholar 

  4. Sirelkhatim, A.; Mahmud, S.; Seeni, A., et al.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro lett 7(3), 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  5. Shah, A.H.; Manikandan, E.; Ahamed, M.B.; Mir, D.A.; Mir, S.A.: Antibacterial and blue shift investigations in sol–gel synthesized CrxZn1− xO nanostructures. J. Lumin. 145, 944–950 (2014). https://doi.org/10.1016/j.jlumin.2013.09.023

    Article  Google Scholar 

  6. Nejabatdoust, A.; Zamani, H.; Salehzadeh, A.: Functionalization of ZnO nanoparticles by glutamic acid and conjugation with thiosemicarbazide alters expression of efflux pump genes in multiple drug-resistant Staphylococcus aureus strains. Microb. Drug Resist. 25(7), 966–794 (2019). https://doi.org/10.1089/mdr.2018.0304

    Article  Google Scholar 

  7. Clifton, L.A.; Skoda, M.W.; Le Brun, A.P.; Ciesielski, F.; Kuzmenko, I.; Holt, S.A.; Lakey, J.H.: Effect of divalent cation removal on the structure of gram-negative bacterial outer membrane models. Langmuir 31(1), 404–412 (2015). https://doi.org/10.1021/la504407v

    Article  Google Scholar 

  8. Salehi, S.; Mirzaie, A.; Sadat Shandiz, S.A.; Noorbazargan, H.; Rahimi, A.; Yarmohammadi, S.; Ashrafi, F.: Chemical composition, antioxidant, antibacterial and cytotoxic effects of Artemisia marschalliana Sprengel extract. Nat. Prod. Res. 31(4), 469–472 (2017). https://doi.org/10.1080/14786419.2016.1174234

    Article  Google Scholar 

  9. Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P.: Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev. 41(7), 2943–2970 (2012). https://doi.org/10.1039/C2CS15355F

    Article  Google Scholar 

  10. Khalili, H.; Sadat Shandiz, S.A.; Baghbani-Arani, F.: Anticancer properties of phyto-synthesized silver nanoparticles from medicinal plant Artemisia tschernieviana Besser aerial parts extract toward HT29 human colon adenocarcinoma cells. J. Cluster Sci. 28, 1617–1636 (2017). https://doi.org/10.1007/s10876-017-1172-6

    Article  Google Scholar 

  11. Sadat Shandiz, S.A.; Montazeri, A.; Abdolhosseini, M.; Hadad Shahrestani, S.; Hedayati, M.; Moradi-Shoeili, Z.; Salehzadeh, A.: Functionalization of Ag nanoparticles by glutamic acid and conjugation of Ag@ Glu by thiosemicarbazide enhances the apoptosis of human breast cancer MCF-7 cells. J. Cluster Sci. 29, 1107–1114 (2018). https://doi.org/10.1007/s10876-018-1424-0

    Article  Google Scholar 

  12. Abdulhaq, N.; Nawaz, Z.; Zahoor, M.A., et al.: Association of biofilm formation with multi drug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI J. 19, 201 (2020)

    Google Scholar 

  13. Preda, V.G.; Sãndulescu, O.: Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova) 7(3), e100 (2019)

    Article  Google Scholar 

  14. Kaiser, T.D.L.; Pereira, E.M.; Santos, K.R.N., et al.: Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diag. Microbiol. Infectious Dis. 75, 235–239 (2013)

    Article  Google Scholar 

  15. Freeman, D.J.; Falkiner, F.R.; Keane, C.T.: New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 42(8), 872–874 (1989)

    Article  Google Scholar 

  16. Moshfegh, A.; Salehzadeh, A.; Sadat Shandiz, S.A.; Shafaghi, M.; Naeemi, A.S.; Salehi, S.: Phytochemical analysis, antioxidant, anticancer and antibacterial properties of the Caspian Sea red macroalgae, Laurencia caspica. Iran. J. Sci. Technol. Trans. A: Sci. 43, 49–56 (2019). https://doi.org/10.1007/s40995-017-0388-5

    Article  Google Scholar 

  17. Coffey, B.M.; Anderson, G.G.: Biofilm formation in the 96-well microtiter plate. In pseudomonas methods and protocols, p. 631–641. Humana Press, New York (2014)

    Book  Google Scholar 

  18. Foo, K.L.; Hashim, U.; Muhammad, K., et al.: Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 9(1), 1 (2014). https://doi.org/10.1186/1556-276X-9-429

    Article  Google Scholar 

  19. Khan, M.F.; Ansari, A.H.; Hameedullah, M., et al.: Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci. Rep. 6(1), 1–2 (2016). https://doi.org/10.1038/srep27689

    Article  Google Scholar 

  20. Horcajada, J.P.; Montero, M.; Oliver, A., et al.: Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 32(4), e00031-e119 (2019). https://doi.org/10.1128/cmr.00031-19

    Article  Google Scholar 

  21. Mah, T.F.; Pitts, B.; Pellock, B., et al.: A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964), 306–310 (2003). https://doi.org/10.1038/nature02122

    Article  Google Scholar 

  22. Olsen, I.: Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34(5), 877–886 (2015). https://doi.org/10.1007/s10096-015-2323-z

    Article  Google Scholar 

  23. Raei, P.; Pourlak, T.; Memar, M.Y., et al.: Thymol and carvacrol strongly inhibit biofilm formation and growth of carbapenemase-producing Gram negative bacilli. Cell. Mol. Biol. 63(5), 108–112 (2017)

    Article  Google Scholar 

  24. Liu, T.; Kang, J.; Liu, L.: Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. LWT 136, 110354 (2021). https://doi.org/10.1016/j.lwt.2020.110354

    Article  Google Scholar 

  25. Čabarkapa, I.; Čolović, R.; Đuragić, O., et al.: Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 35(3), 361–375 (2019)

    Article  Google Scholar 

  26. Miladi, H.; Zmantar, T.; Kouidhi, B., et al.: Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb. Pathog. 112, 156–163 (2017). https://doi.org/10.1016/j.micpath.2017.09.057

    Article  Google Scholar 

  27. Mahamuni-Badiger, P.P.; Patil, P.M.; Badiger, M.V., et al.: Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. Mater. Sci. Eng. C 108, 110319 (2020). https://doi.org/10.1016/j.msec.2019.110319

    Article  Google Scholar 

  28. Abdolhosseini, M.; Zamani, H.; Salehzadeh, A.: Synergistic antimicrobial potential of ciprofloxacin with silver nanoparticles conjugated to thiosemicarbazide against ciprofloxacin resistant Pseudomonas aeruginosa by attenuation of MexA-B efflux pump genes. Biologia 74, 1191–1196 (2019). https://doi.org/10.2478/s11756-019-00269-0

    Article  Google Scholar 

  29. Qayyum, S.; Oves, M.; Khan, A.U.: Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE 12(8), e0181363 (2017). https://doi.org/10.1371/journal.pone.0181363

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, H., Abdulrazaq Alkinani, T., Ataei-e jaliseh, S. et al. Synergic Antibiofilm Effect of Thymol and Zinc Oxide Nanoparticles Conjugated with Thiosemicarbazone on Pathogenic Pseudomonas aeruginosa Strains. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08701-z

Keywords

Navigation