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Abstract
With the increasing integration of renewable energy sources into distribution and transmission networks, the efficiency of
cascadeH-bridgemultilevel inverters (MLIs) in power control applications has become increasingly significant for sustainable
electricity generation. Traditionally, obtaining optimal switching angles ofMLIs to minimize total harmonic distortion (THD)
requires solving the selective harmonic elimination equations. To this end, this research aims to use two recently developed
intelligent optimization algorithms, dandelion optimizer and gold rush optimizer, to solve this problem. To evaluate the
effectiveness of the proposed algorithms, an eleven-level cascaded H-bridge MLI (CHB-MLI) was considered in the study.
Simulation results for different modulation indices were obtained, and the accuracy and solution quality were compared
with genetic algorithm and particle swarm optimization algorithms. MATLAB/Simulink-based models were used to verify
numerical computations, ensuring the reliability of the findings. This research contributes to the field by providing insights
into obtaining optimal switching angles and minimizing THD in MLIs by applying intelligent optimization algorithms.

Keywords Cascaded multilevel inverter · Dandelion optimizer · Gold rush optimizer · Genetic algorithm · Particle swarm
optimization · Total harmonic distortion

1 Introduction

Energy consumption, production, and supply have attracted
the attention of governments, researchers, and companies
because of their critical roles in livelihoods, urbanization,
technological progress, and global economic development
[1–3]. Due to environmental and economic considerations,
there has been an increasing tendency to integrate sustain-
able energy sources into electricity grids [4]. However, using
wind turbines (WTs) and photovoltaics (PVs) leads to unpre-
dictable fluctuations in power output and voltage levels in
distribution systems. As a result, more regulatory measures
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must be implemented to address these issues [5, 6]. By inte-
grating inverters into the control devices of power system
operators, an expedient and efficient control method can
be achieved, which complements the conventional control
devices [7]. This is possible because inverters could mitigate
switching losses and uphold a balanced voltage profilewithin
the distribution system [8, 9].

Multilevel inverters (MLIs) have gained significant popu-
larity as power electronics devices in high-power applications
and mid-voltage, surpassing traditional two-level invert-
ers. Their widespread adoption can be attributed to several
advantages they offer over their counterparts. MLIs provide
improved voltage waveforms with reduced harmonic distor-
tion, enhancing power quality and efficiency [10].

Based on their respective topologies, MLIs can be seg-
regated into three unique categories: cascaded H-bridge
inverters, flying capacitors, and diode clamped [11]. MLIs
comprise several circuit elements, including DC power
sources, semiconductors, and switches, primarily designed to
produce an AC voltage. The utility of MLIs extends beyond
PV and WT systems, encompassing various other applica-
tions. A detailed overview of the different MLI techniques
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that are well-suited for electric vehicles is presented by Poor-
fakhraei et al. [12]. Another application domain where MLIs
find relevance is in uninterruptible power supply (UPS) sys-
tems [13]. MLIs have been extensively employed in various
power system applications, particularly high-voltage direct-
current (HVDC) techniques [14, 15]. Additionally, MLIs are
widely utilized in power quality devices, including flexible
AC transmission systems (FACTS) that play a crucial role
in improving the stability, controllability, and reliability of
power transmission systems [16, 17], static compensators
(STATCOMs) [18, 19], dynamic voltage restorers (DVRs)
[20, 21], and active filters (Afs) [22, 23].

However, this technology faces a challenge in the form of
harmonic problems, which can have detrimental effects on
the power system. The presence of harmonics is primarily
responsible for the malfunction, amplification of loss, and
voltage ripple. Additionally, the manifestation of harmonics
has a discernible effect on the overall power quality [24].

Various switching methodologies are employed to effec-
tively manage the output voltage and frequency of MLIs.
These techniques are crucial in ensuring precise control and
efficient operation of the inverters. Some commonly used
switching methodologies include pulse width modulation
(PWM), selective harmonic elimination (SHE), and space
vector modulation (SVM) [25]. Twenty-two metaheuristic
algorithms, each drawing inspiration from different sources,
were employed to address the SHE problem across various
MLIs. Initially, these algorithms were tested on an 11-level
MLI circuit, and after extensive performance analysis, six
approaches were identified as the most promising solutions
[26].

Achieving the optimal calculation of the switching angle
in MLIs aids in minimizing the overall THD. The meth-
ods for addressing this problem can be classified into two
categories: analytical methods and numerical approaches.
The numerical approach, specifically the Newton–Raphson
(NR) method, has been employed in various applications
related to MLIs. This includes minimizing harmonics in cas-
cade MLIs [27] and solving SHE for a recently designed
flying capacitor MLI [28]. Despite the presence of alterna-
tive controls and modulation techniques, it is noteworthy
that the SHE technique serves as the principal modulation
approach that resolves the previously mentioned issues [29].
An asymmetric MLI topology designed for PV applications,
requiring fewer DC sources and switches, was introduced by
Kumar et al. [30]. The inverter’s control is based on selec-
tive harmonic elimination-based pulse width modulation
(SHEPWM), aimed at eliminating the predominant lower-
order harmonics. The nonlinear equations generated by
SHEPWM are resolved to determine the proposed inverter’s
switching angles using the NR and PSO methods across var-
ious MI. The THD achieved with the NR method stands at

7.3%, while the PSO method results in a THD of 4.23% at
an MI of 0.9.

Metaheuristicmethods are frequently used in the literature
to solvemanyproblems [31, 32]. Inmetaheuristic techniques,
solvingSHEequations is a common task performedby apply-
ing optimization algorithms inspired by natural phenomena.
These algorithms, include the GA [33, 34], PSO [35–37],
whale optimization technique (WOA) [38, 39], enhanced
krill herd (EKH) [40], themoth flame optimization [41] algo-
rithmwas implemented in [42], and salp swarm optimization
algorithm [43], were also employed to solve the problem of
harmonic elimination of MLIs [44].

[45] employed ant colony optimization (ACO) to deter-
mine the results of an optimization strategy to achieve a
precise harmonic reduction within cascaded MLIs. To com-
pare the performance of this approach, assessed it against
various other optimization algorithms, including the recently
introduced universe-influenced algorithm (CBO), as well as
GA, harmonic search algorithm (HS), artificially developed
bee colony algorithm (ABC), PSO, imperialized competi-
tive algorithm (ICA), and ACO. To effectively differentiate
between thesemethods, the impact of the optimalDCmethod
was considered while considering 3-level, 7-level, and 15-
level inverters.

Sajid et al. [46] employed the Runge–Kutta (RUN) meta-
heuristic optimization algorithm to illustrate the SHE-PWM
technique in MLIs, specifically focusing on 5-level and 7-
level modified H-bridge (MHB) topologies and a 9-level
asymmetric cascaded H-bridge (CHB) inverter topology. To
establish the superiority of theRUNalgorithm, a comparative
analysis was conducted against well-established metaheuris-
tic algorithms like differential evolution (DE), GA, and
Grey Wolf Optimizer (GWO). The results from simulations
and experiments indicated that the proposed RUN method
outperforms the other algorithms in terms of objective func-
tion values, algorithm robustness, fundamental harmonic
magnitude, and THD values. Furthermore, the outcomes
demonstrated the effective elimination of the fifth harmonic
in 5-level MLIs, the fifth and seventh harmonics in 7-level
MLIs, and the fifth, seventh, and ninth harmonics in 9-level
MLIs.

Researchers are turning to newly developed optimiza-
tion algorithms to find faster and more suitable solutions
to solve the SHE-PWM problem. The recently developed
algorithmsGRO[47] andDO [48]were examined in this con-
text.DOalgorithmhas demonstrated significant performance
when compared to other algorithms. Moreover, it has been
observed that the algorithm operates within acceptable lim-
its [48]. Twenty-nine benchmarking problems were utilized
to evaluate the GRO algorithm. The proposed algorithm was
compared against twelve popular metaheuristic algorithms:
SMA, KMA, WOA, WCA, SSA, SCA, PSO, IGWO, GSA,
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DE, FA, andGA. The results revealed that the proposed algo-
rithm could generate high-quality solutions comparable to
those obtained by other algorithms. It demonstrated the capa-
bility to overcome local optima and achieve global optima
with a higher convergence rate than most algorithms exam-
ined [47].

In this study, the performance of traditional methods fre-
quently used in the literature, such as PSO and GA, and
current optimization methods, such as GRO and DO, were
compared to solve the SHE-PWM problem. The fact that
these optimization algorithms have not been used for SHE-
PWM equations before and that the optimization algorithms
presented by the authors proved more efficient than other
algorithms in standard test functions were effective in choos-
ing these two new algorithms. This paper improves on recent
attempts to solve SHE problems more precisely and

• Recommends current and effective optimization algorithm
models that aim to eliminate harmonics and THD. DO
and GRO are two new optimization algorithms developed
recently andwere applied for the first time in solving SHE-
PWM equations.

• The present study employs a contemporary GRO and DO,
encompassing a disordered mapping function for the con-
trol parameter (θ ) and an adaptable resetmechanismwith a
localized exploration technique. The performance of GRO
andDOare comparedwith standardPSO,GA to solveSHE
problems. GRO and DO are more effective in solving the
problem.

• Compares the simulation results of 11-level MLIs with
different modulation indexes (MI) in terms of numerical
accuracy.

• In multilevel inverters, it determines the optimal switch-
ing angles for SHE-PWM and utilizes GA, PSO, DO, and
GRO algorithms to achieve the optimumTHDvalue. Fore-
casting performances of GA, PSO, DO, and GRO were
demonstrated with various numerical data.

The paper’s structure is outlined as follows: The follow-
ing section explains cascaded H-bridge multilevel inverters.
Section 3 gives details about the heuristic optimization
technique. Section 4 shows the test and results of optimiza-
tion techniques and MATLAB/Simulink results. Section 5
presents some information about the conclusion and future
work.

2 Cascaded H-bridgeMultilevel Inverters

Figure 1a shows thegeneral structure of anL-level cascadeH-
bridge multilevel inverter (CHB-MLI). An equal-value DC
power supply is connected to each bridge. It transmits three

different voltage levels (+ Vdc, 0, and − Vdc) to the out-
put with different combinations of S11, S12, S13, and S14
switches on each h-bridge. TheL-levelCHB-MLI step output
waveform is given in Fig. 1b.

To represent the number of sources s, L � 2xs − 1 step
waveforms can be obtained. The Fourier transformof the step
waveform is given in Eq. (1).

V (ωt)

� 4Vdc
π

∑

n
[cos (nθ1) + cos (nθ2) + · · · + cos (nθs )] sin

(
nωt

n

)
,

n � 1, 3, 5, 7, · · ·
(1)

Here, ω and VDC respectively represent angular velocity
and the amplitude of the DC input voltage source. θ1, θ2,
…, θ s represent the switching angles. Due to quarter-wave
symmetry, switching angles 0 ≤ θ1 < θ2 < ,… < θ s-1 < θ s ≤
π/2 must satisfy the restriction condition. Equation (1) can
be expressed more simply as follows.

V (n)

� 4

nπ

∑

n

[
cos (nθ1) + cos (nθ2) + · · · + cos

(
nθs−1

)
+ cos (nθs)

]
,

n � 1, 3, 5, 7, · · ·
(2)

THD can be calculated as the ratio of the sum of the
squares of the harmonics to the fundamental harmonic as
given in Eq. (3).

%THD �
√∑n�49

n�3, 5, 7, ... V
2
n

|V1| (3)

The %THD value includes low-order harmonics but does
not explain how much they affect. Therefore, the THD value
is defined as the ratio of the square root of the sum of the
amplitudes of the selected harmonics to the amplitude of the
fundamental harmonic. The limit value is the selected maxi-
mumharmonic value. Third andmultiples of three harmonics
are not present in the system. Therefore, the THDe value for
11-level three-phase CHB-MLI can be calculated as given in
Eq. (4), without considering the third and multiples of three
harmonics.

%THDe �
√
V 2
5 + V 2

7 + V 2
11 + V 2

13

|V1| (4)

The optimization aims to find the switching angles that
will eliminate the selected low-order harmonics and keep
the fundamental harmonic at the desired value. For an 11-
level inverter, five switching angles need to be determined.
The harmonic equations for the 11-level step waveform are
given in Eq. (5).
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Fig. 1 Single-phase L-level CHB-MLI a circuit structure b output voltage waveform

V (1) � cos(θ1) + cos(θ2) + cos(θ3) + cos(θ4) + cos(θ5) � 5Mkπ
/
4

V (5) � cos(5θ1) + cos(5θ2) + cos(5θ3) + cos(5θ4) + cos(5θ5)

V (7) � cos(7θ1) + cos(7θ2) + cos(7θ3) + cos(7θ4) + cos(7θ5)

V (11) � cos(11θ1) + cos(11θ2) + cos(11θ3) + cos(11θ4) + cos(11θ5)

V (13) � cos(13θ1) + cos(13θ2) + cos(13θ3) + cos(13θ4) + cos(13θ5)
(5)

The first of the harmonic equations given in Eq. (5) is
used to control the fundamental harmonic. Other remaining
harmonics are used to eliminate the selected harmonics or to
keep them minimal. The M given in the equation represents
the MI. M, V1p is calculated as the ratio of the peak value
of the desired base voltage to the total DC source value as
given in Eq. (6).

M � V1(peak)
sVDC

(6)

Optimization problems are evaluated according to the fit-
ness function (FF). The FF for SHE-PWM is given in Eq. (7).

FF

� min
θi

{∣∣Vref − V1p
∣∣ + (V5)

2 + (V7)
2 + (V11)

2 + (V13)
2
}

� 0

(7)

3 Metaheuristic Techniques

This section explains the heuristics used for the SHE opti-
mization problem. The DO and GRO algorithms are briefly
described in the first subsection, and their step-by-step
application to the SHE optimization problem is detailed. Fol-
lowing this, the GA and PSO techniques are elaborated upon
in the subsequent sections. The SHE minimization prob-
lem is examined by implementing these techniques, where
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algorithms and flowcharts are provided to facilitate a com-
prehensive comprehension.

3.1 Dandelion Optimizer Algorithm

Heuristics methods are behaviours from natural processes.
DO is a next-generation nature-inspired optimization algo-
rithm that uses swarm intelligence to tackle continuous
optimization problems. DO was developed with inspiration
from thewind-blown behaviour of the dandelion plant. Seeds
travel in three stages: ascending, descending, and settling in
a random location during the landing stage. As shown in
Fig. 2a, the pieces that break off from the plant start to fly,
and they spin and fly away, as shown in Fig. 2b. TheDO algo-
rithm represents these three stageswithmathematicalmodels
and seeks optimal solutions by mimicking these behaviours.
This algorithm has been validated and tested according to
CEC2017 international standard benchmark functions [48].

The mathematical steps of the DO algorithm are briefly
as follows:

1. Initial PopulationApopulation of random starting points
is created.

Population �
⎡

⎢⎣
D1
1 . . . DDim

1
...

. . .
...

D1
pop . . . DDim

pop

⎤

⎥⎦ (8)

Here, pop denotes the population size andDim the size of
the variable. Each candidate solution is randomly gener-
atedbetween the upper limit (UB) and the lower limit (LB)
of the given problem. The i individual Di is expressed
as follows. The expression "rand" represents a function
whose values are randomly distributed among [0, 1].

Di � rand × (UB − LB) + LB (9)

2. Calculation of Fitness Values The fitness function values
of the problem to be optimized for each individual are
calculated. The individual with the best fitness value is
considered elite. The initial elite candidate solution can
be mathematically expressed as:

Delite � D(find( fbest � f (Di ))) (10)

3. Ascension Stage The new positions of individuals are
determined using the fitness function values and moved
upwards. With the effect of parameters such as wind
speed and air humidity, chamomile seeds rise to different
heights. Here, the weather is divided into the following
two states.

Case 1 On a clear day, wind speeds can be assumed to be
lognormal distribution lnY ∼ N(μ, σ 2). The new position of
the seeds is calculated as given in Eq. (11).

D(t+1) � Dt + δ × vx × vy × ln Y × (Ds − Dt ) (11)

HereDt represents the position of the dandelion seed in the
t th iteration. Ds represents the randomly chosen location in
the search area in the t th iteration, vx and vy represent the lift
component coefficients due to the separate hosemotion of the
dandelion. δ is a coefficient between 0 and 1 that decreases
nonlinearly and approaches zero.

The lognormal distribution given in Eq. (11) is defined as
μ � 0 and σ 2 � 1 and can be expressed by the following
equation [48]:

ln Y �
{

1
y
√
2π

exp
[
− 1

2σ 2 (ln y)
2
]
y ≥ 0

0 y < 0
(12)

In the DO algorithm, the y value is chosen in the range
(0, 1) according to the standard normal distribution. At each
iteration of the algorithm, an adaptive factor ’γ ’ is used to
control the length of the search process over the total number
of iterations T . γ is defined as:

γ � rand ∗
(

1

T 2 t
2 − 2

T
t + 1

)
(13)

Case 2During a day marked by rainfall, the rise of dande-
lion seeds is hindered by air resistance, humidity, and a range
of other factors. As a result, these seeds tend to stay close to
their original location, and their behaviour can be precisely
described using a mathematical equation:

D(t+1) � Dt × (1 − rand × p) (14)

p is a parameter used to regulate the local search area of
dandelion and is calculated as given in Eq. (15). Its value is
updated at each iteration, depending on the maximum itera-
tion and the number of iterations available.

p �
(

t2 − 2t + 1

T 2 − 2T + 1
+ 1

)
(15)

Here, t represents the value of the number of iterations
available, and T represents the maximum number of itera-
tions.

4. Descent Phase: Individuals fall at the height determined
during theAscension phase, and their position is updated.

Dt+1 � Dt − α × βt × (Dmean_ t − α × βt × Dt
)

(16)

123



7034 Arabian Journal for Science and Engineering (2024) 49:7029–7052

Fig. 2 Spreading behaviour of the dandelion plant

Here, βt represents the Brownian motion and a random
number drawn from the standard normal distribution
[49]. Dmean_t represents the mean position of the pop-
ulation in the i th iteration.

5. Landing Location Determination Seeds settle in a ran-
dom location because of wind and weather conditions in
their new location. With the evolution of the population,
the global best solution is expressed by Eq. (17).

Dt+1 � Delite + levy(λ) × α × (Delite − Dt × σ) (17)

Here, Delite is the best (optimal) position of the dande-
lion seed during the ith iteration. levy(λ) represents the
function of Levy flight and is calculated by the following
equation [50]:

levy(λ) � s × w × σ

|t | 1
B

(18)

where B is randomly defined in [0, 2]. S is a constant
equal to 0.01. It is randomly chosen between ω and t [0,
1]. σ is calculated as [50]:

σ �
⎛

⎜⎝
�(1 + B) × sin

(
πB
2

)

�
( 1+B

2

)× B × 2

(
B+1
2

)

⎞

⎟⎠ (19)

6. RepopulationAnewpopulation is createdwith the recent
locations obtained.

7. Stopping Criteria Steps 2–7 are repeated until the stop-
ping criterion is reached.

8. Best value The point with the best fitness value is con-
sidered the optimal solution.

3.2 Implementation of DO toMLI SHE-PWM
Optimization Problem

To apply the DO approach to the 11-level CHB-MLI SHE-
PWMoptimization problem, the following procedure should
be applied:

1. First, an initial population of sizeNs is created. A random
position, represented by five switching angles, is then
assigned to each dandelion seed. Switching angles 0 ≤
θ1 < θ2 < ,…, < θ s ≤ π/2 must satisfy the constraint.

2. Each dandelion seed is evaluated according to the fitness
function given in Eq. (7). The population is then ranked
according to the numerical results of their evaluation.

3. The best individual is assigned as Delite.
4. The ascension procedure is applied according to the

determined weather conditions. (Eq. 11 or Eq. 14).
5. The landing procedure is performed, and the location of

the Delite best dandelion seed is updated.
6. The global best position is the landing position (Eq. 17).
7. Repeat steps 2–7 until the stopping condition is satisfied

(maximum iteration).
8. The best D(i+1) found represents the dandelion seed with

the best fitness value and solves the problem.

The flowchart of the application of the DO algorithm to
the optimization problem in 11-level 3-phase CHB-MLI is
given in Fig. 3.
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Fig. 3 DO flowchart for
SHE-PWM

3.3 Gold Rush Optimizer Algorithm

GRO is a metaheuristic optimization algorithm inspired
by the movements of natural gold prospectors. This algo-
rithm solves various optimization problems based on their
exploration and prospecting capabilities by mimicking the
movements of gold prospectors. TheGRO algorithm is based
on five primary stages: The movements of gold prospec-
tors: Exploration, Core Formation, Main Core, Dispersion,

and Final Decision Stage. Each step generates new solution
candidates by combining existing solutions with research
and discovery capabilities and tries to find the best solution
among these candidates. The GRO algorithm can success-
fully solve various engineering problems [47].

The mathematical steps of the GRO algorithm are briefly
as follows:
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Fig. 4 Schematic view of Eq. (22) in two dimensions

3.3.1 Gold Prospectors Modelling

TheGROalgorithmmimics gold rush fundamental events. In
the GRO metaheuristic approach, the function of the seekers
is analogous to that of the population in the GA and the
particles in the PSO. The location of the gold prospectors is
stored in a matrix called GGP, expressed in Eq. (20). In this
equation, Gij represents the position of the ith seeker in the
jth dimension. d represents dimension, and n represents gold
prospector [47].

GGP �

⎡

⎢⎢⎢⎢⎣

G11 G12 . . . G1d

G21 G22 . . . G2d
...

...
. . .

...
Gn1 Gn2 . . . Gnd

⎤

⎥⎥⎥⎥⎦
(20)

An objective function is required to evaluate the gold
prospectors and the results of the evaluation of the fitness
function of the gold prospectors are recorded in the FGP

matrix given in Eq. (21).Gij represents the position of the i-th
seeker in the j-th dimension. While d represents the dimen-
sion, n represents the gold prospector, and f represents the
fitness function [47].

FGP �

⎡

⎢⎢⎢⎢⎣

f (G11 G12 . . . G1d)

f (G21 G22 . . . G2d)
...

...
. . .

...
f (Gn1 Gn2 . . . Gnd)

⎤

⎥⎥⎥⎥⎦
(21)

3.3.2 Migration of Prospectors

Upon discovering a gold mine, individuals keen on gold
prospecting relocate to the area to extract gold. During the
execution of the metaheuristic algorithm, the optimal point
within the search space is determined to represent the loca-
tion of the most profitable gold mine. As the exact location
of this mine remains unknown, the position of the most suc-
cessful gold prospector is utilized as an approximation for
the optimal mine location, as depicted in Fig. 4. The migra-
tion of a gold prospector towards the gold mine is simulated

using Eqs. (22) and (23) [47].

�D1 � �C1 · �X∗(t) − �Xi (t) (22)

−−−−→
X new i (t + 1) � �Xi (t) + �A1 · �D1 (23)

�X∗(t), �Xi (t) andt, represent the position of the best gold
mine, respectively, the position of the i-th gold prospector,
and t the current iteration.

−−−−→
X new i , where i is the new gold

prospector position and �A1 the vector coefficients are calcu-
lated as given in Eqs. (24) and (25).

�A1 � 1 + l1

(
�r1 − 1

2

)
(24)

�C1 � 2�r2 (25)

�A1 and �C1, are random vectors whose values are in the
range [0,1]. l1, is the convergence component defined by
Eq. (26); if e is equal to 1, it decreases linearly from 2 to

1
maxiter

value and nonlinearly decreases for values greater than
1.

le �
(
maxiter − iter

maxiter −1

)e(
2 − 1

maxiter

)
+

1

maxiter
(26)

3.3.3 Gold Mining (Gold Panning)

For mathematical modelling of the gold prospecting situa-
tion, the location of each gold prospector is considered the
approximate location of a gold mine. Relevant mathematical
relationships of gold mining are given in Eqs. (27) and (28)
[47].

�D2 � �Xi (t) − �Xr (t) (27)

−−−→
Xnewi (t + 1) � �Xr (t) + �A2 · �D2 (28)

�Xr (t), �Xi (t), t and
−−−−→
X new i , represent the randomly chosen

gold finder, the position of the i-th gold digger, t the current
iteration, and the new position of the i-th gold finder, respec-
tively. A2 is the vector coefficient calculated by Eq. (29).

�A2 � 2l2
−→r1 − l2 (29)

In this equation, parameter l2 is used instead of param-
eter l1 to increase the exploitation capability of the mining
method.
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3.3.4 Collaboration Between Prospectors

The collaborative nature of gold prospecting has led to the
implementation of mathematical Eqs. (30) and (31) to shed
light on the cooperation between prospectors. Here,g1 and
g2 are two randomly chosen gold prospectors. In this case,
three-person collaboration is performed between i, gl, and
g2, and �D3 is the cooperation vector [47].

�D3 � �Xg2 (t) − �Xg1 (t) (30)

−−−→
Xnewi (t + 1) � �Xi (t) + �r1 · �D3 (31)

4 Prospectors Relocation

Gold prospectors can change places over time. During the
gold mining process, gold prospectors can change their cur-
rent location to explore new territories or findmore gold. This
process is mathematically modelled as given in Eq. (32).

�Xi (t + 1) � −−−→
Xnewi (t + 1) if f

(−−−→
Xnewi (t + 1)

)
< f
( �Xi (t)

)

(32)

4.1 Domain Control

Building upon the preceding theoretical frameworks, the
GRO algorithm proposes the definition of a novel position,
Xnewi, in dimension d, which will be considered when the
dimension d of the location lies between its lower and upper
bounds; otherwise, Xi, the previous position of dimension
d, remains unchanged. The GRO algorithm commences by
initializing a starting population of gold prospectors, each
positioned randomly within the search space. The most
optimal solution acquired during the research process is
designated as the prime location for the gold mine (global
optimum). In each iteration, every gold prospector shifts to a
fresh position, employing one of three strategies: migration,
gold mining, or collaboration. Should the quantity of gold in
the new position (measured by the objective function’s value)
surpass that of the current position (resulting in a decrease for
optimization or an increase for maximization of the objective
function), the gold prospector relocates to the new site. This
progression persists until the iteration cycle concludes. The
best solution achieved thus far is recognized as the outcome
of the algorithm. The GRO algorithm is a powerful method
for finding optimal or approximately optimal solutions in
gold mining scenarios. Using the behaviour and interactions
of gold prospectors, he effectively explores the search space
and finds the richest gold mine [47].

4.2 Implementation of GRO toMLI SHE-PWM
Optimization Problem

To apply the GRO algorithm to the 11-level CHB-MLI SHE-
PWMoptimization problem, the following procedure should
be followed:

1. Defining theObjective Function For theMLI SHE-PWM
optimization problem, an objective function represents
the solution’s performance or quality.

2. Initialize the Population Create an initial population of
randomly placed gold prospectors in the search space.
Every gold prospector represents a potential solution to
the MLI SHE-PWM problem.

3. Calculating the Objective Function Evaluate the objec-
tive function given in Eq. (7) for each gold prospector
and determine their suitability as a solution.

4. Identifying the Best Solution Identify the best gold
prospector (solution) with the highest objective function
value. This gold prospector represents the current posi-
tion of the best gold mine (overall optimum).

5. Migration, Gold Mining, and Cooperation In each iter-
ation, each gold prospector takes a new position using
one of the migration methods, gold mining or collabo-
ration, as defined in the GRO algorithm. Based on their
new location, it reevaluates the objective function of each
gold prospector.

6. Update Best Solution Follow the best gold prospector
(solution) found throughout the search process, repre-
senting the current best solution to the MLI SHE-PWM
optimization problem.

7. Termination The algorithm iterates until a termination
criterion is met. This criterion may be the maximum
number of iterations or reaching a desired level of con-
vergence.

8. Final Solution The best solution (the best gold prospec-
tor) is the final solution to theMLI SHE-PWMoptimiza-
tion problem.

Adapting the GRO algorithm for the MLI SHE-PWM
optimization problem is necessary for specific goals and con-
straints. In addition, the application may include specific
details and objectives, including adjusting algorithm param-
eters (L1, L2, A1, A2, etc.) and defining the search space
boundaries appropriate to the problem requirements.

The pseudocode of the algorithm is given in Fig. 5.
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Fig. 5 GRO algorithm pseudocode

5 Test and Results

5.1 Comparison of DO and GROwith Other
Algorithms

Tests have been performed for eleven-level and MLIs.
Numerical calculations are done on a laptop with a 2.40 GHz
quad-core processor and 16.00 GB of RAM. As mentioned
above,DO,GRO, PSO, andGAare used for simulation. PSO,
GA, DO, and GRO MATLAB source codes are modified to
solve MLI optimization problems. The number of individ-
uals for all algorithms is 50, and the maximum number of
iterations is 100. Each optimization was run ten times for
each MI value, and the best results were stored in the tables.

Figures 6, 7, and 8 show the convergence rate of the DO,
GRO, PSO, and GA cost function for 11-level MLIs for iter-
ations ranging from 100 to 500. In all cases, GRO showed the
best performance, DO showed the second-best performance,
and the GA algorithm showed the lowest.

The switching angles calculated with GA are given in
Table 1. These switching angles are applied to the inverter,
and the simulation results are presented in the same table.
Similarly, the switching angles calculatedwith the PSO algo-
rithm, and the simulation results are given in Table 2. Tables 3
and4 show the switching angles calculatedwithDOandGRO
and the corresponding harmonic analysis values.

As the tables show, all algorithms have found suitable
solutions within the MI range of 0.1 to 1.0. However, the
algorithms that control the fundamental voltagewith the least
error are, respectively, the GRO and DO algorithms. While
the PSO algorithm performs better than GA, it performs less

Fig. 6 Convergence speed graph in 100 iterations

than GRO and DO. In the MI range of 0.4 to 1.0, the GRO
algorithm successfully controls the fundamental voltagewith
an error of less than 0.08%, eliminating the selected harmon-
ics. The control error of the fundamental voltage for the DO
algorithm is below 0.45%, whereas for GA, the maximum
error is 2.5%, and for PSO, it is 0.45%.

Determining the best andworst values, as well as calculat-
ing the standard deviation values regarding the optimization
results, is a crucial source of information concerning the effi-
ciency and reliability of the solution. To assess the efficacy of
the algorithms, a series of statistical analyseswere conducted,
entailing the examination of the optimal and suboptimal val-
ues as well as the standard deviation values of the fitness
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Fig. 7 Convergence speed graph in 250 iterations

Fig. 8 Convergence speed graph in 500 iterations

outcomes of ten diverse study outcomes for each MI. These
values are given in Table 5 for GA, Table 6 for PSO, Table 7
for DO, and Table 8 for GRO. As seen in the tables, the GRO
optimization with the lowest worst value, lowest best value,
and lowest standard deviation provided the best performance.

5.2 MATLAB/Simulink Results

Toenhance the credibility of the simulation results, an eleven-
levelMLI is createdusingMATLAB/Simulink, as depicted in
Fig. 9. Harmonic analyses were performed for three different
cases using the switching angles found by all algorithms for
0.3 low MI, 0.6 medium MI, and 1.0 high MI.

In Fig. 10, the switching angles calculated with the four
optimizations for the MI of 0.3, 0.6, and 1.0 show the output
waveforms when the inverter is applied. Figure 7a shows the Ta

bl
e
1
Sw

itc
hi
ng

an
gl
es

an
d
ha
rm

on
ic
an
al
ys
is
ca
lc
ul
at
ed

w
ith

G
A

m
θ
1

θ
2

θ
3

θ
4

θ
5

V
re
f

(m
ax
)

V
re
f

(r
m
s)

V
1p

(r
m
s)

E
rr
or

(%
)

T
H
D
(%

)
T
H
D
e
(%

)
5t
h
(%

)
7t
h
(%

)
11

th
(%

)
13

th
(%

)

G
A
-S
H
E

L
ow

0.
1

1.
16
86

1.
57
05

1.
57
08

1.
57
08

1.
57
08

31
.1

22
21
.9
1

0.
41

59
.4
8

55
.2
9

46
.2
8

11
.7
4

22
.1
4

16
.9
4

0.
2

0.
86
81

1.
43
12

1.
57
08

1.
57
08

1.
57
08

62
.2

44
43
.8
6

0.
32

30
.6
8

27
.3
7

7.
11

2.
63

23
.2
0

12
.3
9

0.
3

0.
76
17

1.
18
58

1.
53
10

1.
53
17

1.
57
08

93
.3

66
65
.8
1

0.
29

26
.4
8

12
.3
5

9.
23

4.
84

3.
48

5.
66

M
ed
iu
m

0.
4

0.
75
22

1.
03
94

1.
24
12

1.
56
06

1.
57
08

12
4.
4

88
87
.6
8

0.
36

14
.7
9

10
.9
7

8.
91

2.
35

2.
14

5.
56

0.
5

0.
58
81

0.
89
23

1.
12
71

1.
49
82

1.
56
86

15
5.
5

11
0

10
9.
6

0.
36

9.
46

4.
47

0.
63

0.
72

1.
44

4.
45

0.
6

0.
60
35

0.
83
37

1.
01
45

1.
26
50

1.
52
89

18
6.
6

13
2

13
2

0.
00

6.
97

1.
52

0.
39

0.
06

0.
36

1.
42

H
ig
h

0.
7

0.
60
74

0.
77
89

0.
95
03

1.
16
55

1.
38
30

21
7.
7

15
4

15
0.
4

2.
34

6.
26

0.
79

0.
12

0.
52

0.
56

0.
11

0.
8

0.
17
77

0.
54
41

0.
79
66

1.
10
96

1.
41
26

24
8.
8

17
6

17
5.
2

0.
45

8.
40

4.
04

3.
21

2.
33

0.
73

0.
07

0.
9

0.
37
45

0.
45
63

0.
77
14

0.
97
17

1.
13
17

27
9.
9

19
8

19
7.
1

0.
45

6.
74

4.
86

4.
24

1.
73

0.
41

1.
58

1
0.
09
59

0.
30
93

0.
64
08

0.
74
64

1.
11
16

31
1

22
0

21
9

0.
45

7.
20

5.
00

0.
85

2.
05

1.
95

4.
03

123



7040 Arabian Journal for Science and Engineering (2024) 49:7029–7052

Ta
bl
e
2
Sw

itc
hi
ng

an
gl
es

an
d
ha
rm

on
ic
an
al
ys
is
ca
lc
ul
at
ed

w
ith

PS
O

m
θ
1

θ
2

θ
3

θ
4

θ
5

V
re
f

(m
ax
)

V
re
f

(r
m
s)

V
1p

(r
m
s)

E
rr
or

(%
)

T
H
D
(%

)
T
H
D
e
(%

)
5t
h
(%

)
7t
h
(%

)
11

th
(%

)
13

th
(%

)

P
SO

-S
H
E

L
ow

0.
1

1.
16
72

1.
57
08

1.
57
08

1.
57
08

1.
57
08

31
.1

22
21
.9
1

0.
41

59
.3
5

55
.1
7

46
.0
9

11
.4
8

22
.3
1

17
.0
1

0.
2

0.
75
75

1.
51
19

1.
57
08

1.
57
08

1.
57
08

62
.2

44
43
.8
4

0.
36

27
.6
4

18
.2
7

12
.9
4

2.
88

12
.8
0

2.
19

0.
3

0.
77
27

1.
13
51

1.
53
07

1.
57
08

1.
57
08

93
.3

66
65
.7
8

0.
33

19
.4
4

8.
17

4.
59

3.
33

0.
20

5.
88

M
ed
iu
m

0.
4

0.
67
25

0.
99
00

1.
32
86

1.
57
08

1.
57
08

12
4.
4

88
87
.7

0.
34

13
.0
1

3.
33

2.
54

1.
83

0.
75

0.
84

0.
5

0.
41
89

0.
87
17

1.
15
22

1.
57
08

1.
57
08

15
5.
5

11
0

10
9.
6

0.
36

8.
81

1.
83

0.
20

1.
47

0.
45

0.
97

0.
6

0.
21
87

0.
61
92

1.
02
06

1.
53
40

1.
56
48

18
6.
6

13
2

13
1.
5

0.
38

7.
47

0.
80

0.
45

0.
17

0.
43

0.
47

H
ig
h

0.
7

0.
05
99

0.
34
67

0.
68
55

1.
53
47

1.
57
08

21
7.
7

15
4

15
3.
4

0.
39

8.
42

0.
37

0.
09

0.
03

0.
24

0.
25

0.
8

0.
16
20

0.
42
62

0.
74
37

1.
06
26

1.
54
93

24
8.
8

17
6

17
5.
2

0.
45

5.
87

0.
93

0.
06

0.
73

0.
44

0.
37

0.
9

0.
11
93

0.
49
19

0.
71
60

0.
89
38

1.
28
79

27
9.
9

19
8

19
7.
2

0.
40

6.
08

0.
76

0.
59

0.
39

0.
14

0.
22

1
0.
13
01

0.
34
72

0.
52
16

0.
82
90

1.
10
12

31
1

22
0

21
9.
0

0.
45

5.
05

5.
59

0.
28

0.
04

0.
40

0.
33

Ta
bl
e
3
Sw

itc
hi
ng

an
gl
es

an
d
ha
rm

on
ic
an
al
ys
is
ca
lc
ul
at
ed

w
ith

D
O

m
θ
1

θ
2

θ
3

θ
4

θ
5

V
re
f

(m
ax
)

V
re
f

(r
m
s)

V
1p

(r
m
s)

E
rr
or

(%
)

T
H
D
(%

)
T
H
D
e
(%

)
5t
h
(%

)
7t
h
(%

)
11

th
(%

)
13

th
(%

)

D
O
-S
H
E

L
ow

0.
1

1.
16
76

1.
57
05

1.
57
08

1.
57
08

1.
57
08

31
.1

22
21
.9
4

0.
27

59
.3
5

55
.1
4

46
.7
0

11
.5
9

22
.1
4

16
.8
5

0.
2

0.
73
70

1.
53
42

1.
56
26

1.
57
07

1.
57
08

62
.2

44
43
.8
8

0.
27

29
.0
3

18
.7
7

16
.0
3

2.
14

8.
60

4.
06

0.
3

0.
77
34

1.
13
35

1.
54
61

1.
55
66

1.
57
05

93
.3

66
65
.7
6

0.
36

20
.6
4

8.
00

4.
54

3.
50

0.
36

5.
57

M
ed
iu
m

0.
4

0.
67
59

0.
98
63

1.
32
96

1.
57
08

1.
57
08

12
4.
4

88
87
.6
8

0.
36

12
.9
3

3.
09

2.
29

1.
42

1.
25

0.
85

0.
5

0.
64
07

0.
86
41

1.
14
15

1.
46
80

1.
57
08

15
5.
5

11
0

10
9.
9

0.
09

9.
06

1.
11

0.
48

0.
35

0.
84

0.
42

0.
6

0.
61
70

0.
81
86

1.
02
14

1.
26
53

1.
53
14

18
6.
6

13
2

13
1.
8

0.
15

6.
85

0.
07

0.
05

0.
01

0.
01

0.
03

H
ig
h

0.
7

0.
06
17

0.
34
26

0.
67
98

1.
53
97

1.
57
07

21
7.
7

15
4

15
3.
4

0.
39

8.
13

0.
04

0.
02

0.
01

0.
00

0.
03

0.
8

0.
16
22

0.
44
07

0.
73
85

1.
06
93

1.
53
83

24
8.
8

17
6

17
5.
4

0.
34

6.
60

0.
06

0.
01

0.
02

0.
01

0.
02

0.
9

0.
13
08

0.
47
70

0.
70
96

0.
91
36

1.
27
40

27
9.
9

19
8

19
7.
5

0.
25

6.
22

0.
04

0.
01

0.
01

0.
02

0.
01

1
0.
13
32

0.
33
64

0.
51
01

0.
82
44

1.
10
08

31
1

22
0

21
9.
8

0.
09

5.
03

0.
03

0.
02

0.
01

0.
01

0.
01

123



Arabian Journal for Science and Engineering (2024) 49:7029–7052 7041

Ta
bl
e
4
Sw

itc
hi
ng

an
gl
es

an
d
ha
rm

on
ic
an
al
ys
is
ca
lc
ul
at
ed

w
ith

G
R
O

m
θ
1

θ
2

θ
3

θ
4

θ
5

V
re
f

(m
ax
)

V
re
f

(r
m
s)

V
1p

(r
m
s)

E
rr
or

(%
)

T
H
D
(%

)
T
H
D
e
(%

)
5t
h
(%

)
7t
h
(%

)
11

th
(%

)
13

th
(%

)

G
R
O
-S
H
E

L
ow

0.
1

1.
16
86

1.
57
08

1.
57
08

1.
57
08

1.
57
08

31
.1

22
22

0.
00

59
.5
2

55
.2
1

46
.5
0

12
.0
9

21
.6
5

16
.4
7

0.
2

0.
75
30

1.
51
99

1.
56
43

1.
57
01

1.
57
06

62
.2

44
44
.0
1

0.
02

29
.5
8

18
.1
4

13
.2
1

2.
26

12
.0
6

2.
06

0.
3

0.
77
23

1.
13
22

1.
55
19

1.
55
88

1.
56
09

93
.3

66
65
.9
9

0.
02

21
.0
4

7.
81

4.
46

3.
39

0.
43

5.
44

M
ed
iu
m

0.
4

0.
68
05

0.
98
14

1.
32
49

1.
57
08

1.
57
08

12
4.
4

88
88
.0
5

0.
06

12
.8
8

2.
97

2.
23

0.
97

1.
61

0.
51

0.
5

0.
64
07

0.
86
42

1.
14
15

1.
46
80

1.
57
08

15
5.
5

11
0

11
0

0.
00

9.
08

1.
14

0.
45

0.
37

0.
87

0.
45

0.
6

0.
61
67

0.
81
84

1.
02
08

1.
26
41

1.
53
08

18
6.
6

13
2

13
1.
9

0.
08

6.
91

0.
06

0.
05

0.
01

0.
01

0.
02

H
ig
h

0.
7

0.
33
64

0.
67
22

0.
98
20

1.
10
81

1.
53
99

21
7.
7

15
4

15
3.
9

0.
06

7.
78

0.
07

0.
01

0.
03

0.
04

0.
02

0.
8

0.
16
76

0.
58
81

0.
75
06

1.
06
33

1.
45
15

24
8.
8

17
6

17
6

0.
00

5.
39

0.
07

0.
04

0.
03

0.
02

0.
01

0.
9

0.
12
79

0.
47
27

0.
70
73

0.
90
96

1.
27
33

27
9.
9

19
8

19
8

0.
00

6.
11

0.
05

0.
04

0.
00

0.
01

0.
01

1
0.
13
12

0.
33
56

0.
50
64

0.
82
06

1.
09
95

31
1

22
0

22
0

0.
00

4.
80

0.
04

0.
02

0.
03

0.
02

0.
01

Table 5 GA statistical analysis

m GA

Best Worst Standard deviation

0.1 40,710.2783 151,561.3917 42,220.90379

0.2 4861.9460 143,777.2538 51,621.89735

0.3 54,186.4763 118,998.9353 26,246.40704

0.4 1204.5750 105,238.0200 37,075.04076

0.5 217.8020 5470.0000 2310.788369

0.6 13.3280 290.7300 111.5045853

0.7 12.1080 763.3059 324.3814641

0.8 11.8447 385.3202 169.5843369

0.9 4.1160 1030.4153 426.4411016

1 2.4655 100,031.0000 44,667.46054

Table 6 PSO statistical analysis

m PSO

Best Worst Standard deviation

0.1 294.1958 15,500.0000 8328.561965

0.2 128.3947 100,273.9862 48,669.46622

0.3 57.6136 908.8325 379.9075853

0.4 13.9336 933.6211 411.2967518

0.5 271.6250 100,016.4333 54,572.84831

0.6 344.9201 100,065.2360 44,453.91904

0.7 2.3071 14,153.6449 6315.576942

0.8 16.6503 96.1384 32.4685887

0.9 4.9925 5579.7193 2470.849103

1 12.1381 3050.7110 1334.463934

Table 7 DO statistical analysis

m DO

Best Worst Standard deviation

0.1 291.9955 292.1113 0.047996771

0.2 130.6145 153.6223 9.548493586

0.3 60.5338 674.1428 326.1488174

0.4 199.9456 231.9490 12.32295746

0.5 6.6128 100,010.4490 44,716.03707

0.6 0.0035 175.3030 74.30242982

0.7 0.0024 0.2201 0.094539408

0.8 0.0052 40.9049 22.36053176

0.9 1.5529 81.9760 32.96209955

1 0.0001 20.9155 11.35011733
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Table 8 GRO statistical analysis

m GRO

Best Worst Standard deviation

0.1 292.5192 919.2108 296.4834479

0.2 128.7776 132.5788 1.608456321

0.3 56.2588 195.4551 62.22907383

0.4 7.6137 35.8611 10.30114445

0.5 2.5677 25.3847 9.919481259

0.6 0.0000 2.8421 1.099348987

0.7 0.0000 0.6358 0.326434147

0.8 0.0000 0.3560 0.159207371

0.9 0.0000 0.2404 0.128479614

1 0.0000 0.2964 0.128409431

output waveform for GA, while Figs. 10b–d show the output
waveform for PSO, DO, and GRO, respectively.

The harmonic analyses of the waveforms given in Fig. 10
for an MI of 0.3 are shown in Fig. 11 for THD and Fig. 12
for THDe. For the 0.3 MI, the THD value obtained with GA
was 26.39%, the THD value obtained with PSOwas 19.44%,
the THD value obtained with DO was 20.64%, and the THD
value obtained with GRO was 21.07%.

As seen in Fig. 12, themeasured harmonic values for THD
were 12.35% for GA, 8.17% for PSO, 8.0% for DO, and
7.81% for GRO. Although PSO seems more performant for
M � 0.3, since SHE optimization is the focus, the GRO algo-
rithm is the most successful for this MI.

The harmonic analyses of the waveforms given in Fig. 10
for an MI of 0.6 are shown in Fig. 13 for THD. For the 0.6
MI, the THD value obtained with GA was 6.96%, the THD
value obtainedwith PSOwas 7.47%, the THDvalue obtained
with DO was 6.85%, and the value obtained with GRO was
6.91%.

As seen in Fig. 14, the measured harmonic values for
THDe were 1.54% for GA, 0.8% for PSO, 0.07% for DO,
and 0.06% for GRO. Although GA seems more performant
for M � 0.6, since SHE optimization is the focus, the GRO
algorithm is the most successful for this MI.

The harmonic analyses of the waveforms given in Fig. 10
for the MI 1.0 are shown in Fig. 16 for THDe and Fig. 15
for THD. For the 1.0 MI, the THD value obtained with GA
was 7.20%, the THD value obtained with PSO was 5.05%,
the THD value obtained with DO was 4.89%, and the THD
value obtained with GRO was 4.80%.

As seen in Fig. 16, the measured harmonic values for
THDe were 5.0% for GA, 0.59% for PSO, 0.03% for DO,
and 0.04% for GRO. At theM � 1.0 index, the DO algorithm
is more successful than other algorithms in suppressing the

selected harmonics. However, the algorithm that controls the
base voltage more accurately is the GRO algorithm.

5.3 Testing of DO andWell-knownMathematical
Functions

This section evaluates GA, PSO, DO, and GRO algorithms
in 13 criterion functions (30 dimensions). Many researchers
use these classical functions [51]. These test functions were
chosen to compare the results with the results of exist-
ing metaheuristic algorithms. These standard functions are
shown in Tables 9, 10; where ‘Dim’ represents the function
dimensions, ‘Range’ is the boundary of the function’s search
space, and ‘fmin’ is the optimal value.

The algorithm was applied to 13 test functions with 30
dimensions. Of these 13 functions, the first 7 are single-
mode, and the second 6 are multi-mode. Unimodal functions
are suitable for measuring the usage of algorithms. Table
11 (F1–F7) shows that DO and GRO algorithms gave bet-
ter results than GA and PSO algorithms in all 7 functions.
This shows that these algorithms have been used success-
fully in the search space. Multimodal functions were used
to demonstrate the success of the algorithms in the discov-
ery phase. The statistical results of the specified algorithms
for these functions are shown in Table 11 (F8–F13). DO
and GRO algorithms perform better than GA and PSO algo-
rithms in F9-F13 test functions. These results indicate that
DO and GRO algorithms can explore the search space. GRO
was the most successful algorithm in both single and multi-
mode test functions, while the second-best algorithmwas the
DO algorithm. The most unsuccessful algorithm was the GA
algorithm.

6 Conclusion and FutureWork

In this paper, the issues of harmonic elimination and
THD minimization in cascade H-bridge MLI are exam-
ined through the implementation of four distinct intelli-
gent optimization algorithms. Among these algorithms, two
are novel optimization techniques, namely DO and GRO,
which have been recently developed and are being used
for the first time in resolving SHE-PWM equations. PSO
and GA have been applied to the SHE-PWM problem by
many researchers. Numerical simulations were performed
on eleven-level CHB-MLI. All methods calculate and show
optimum switched angles for cases with modulation indices
ranging from 0.1 to 1.0. In addition, THD and THDe val-
ues are also calculated and displayed. The performance of
the algorithms in controlling the fundamental voltage is also
evaluated. Numerical simulations have illustrated that when
tackling the issue of harmonic elimination, the DO and GRO
algorithms aremore effective than the PSO andGAmethods.

123



Arabian Journal for Science and Engineering (2024) 49:7029–7052 7043

Fig. 9 Simulink model for eleven-level cascaded H-bridge MLI

Furthermore, the GRO algorithm has exhibited more con-
sistent numerical simulation outcomes and has displayed a
lower standard deviation than DO. An eleven-level cascade
H-bridgeMLIwasmodelled to validate the simulation results
using MATLAB/Simulink. The voltages and harmonic anal-
yses were presented using optimal switching angles for MI
values of 0.3, 0.6, and 1.0. The FFT analysis tool was
employed to calculate the THD values for these scenarios.
The numerical values derived from the simulation scenarios

and theMATLAB/Simulinkmodel showcase consistent find-
ings. In forthcoming research, this studywill extend its scope
to encompass MLIs with unequal DC sources to mimic
photovoltaic systems with varying outputs. Additionally, a
hybrid approach of optimization methods will be imple-
mented to enhance performance refinement further.
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Fig. 10 Load Voltage Waveform Comparison of Optimization Algorithms a GA, b PSO, c DO, and d GRO
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Fig. 11 THD harmonic spectrums (M � 0.3) a GA, b PSO, c DO, and d GRO

Fig. 12 THDe harmonic spectrums (M � 0.3) a GA, b PSO, c DO, and d GRO
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Fig. 13 THD harmonic spectrums (M � 0.6) a GA, b PSO, c DO, and d GRO

Fig. 14 THDe harmonic spectrums (M � 0.6) a GA, b PSO, c DO, and d GRO
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Fig. 15 THD harmonic spectrums (M � 1.0) a GA, b PSO, c DO, and d GRO

Fig. 16 THDe harmonic spectrums (M � 1.0) a GA, b PSO, c DO, and d GRO
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Table 9 Unimodal benchmark
functions Function Dim Range fmin

f1(x) �
n∑

i�1
x2i

30,100,500 [− 100,100] 0

f2(x) �
n∑

i�1
|xi | +

n∏
i�1

|xi |a 30,100,500 [− 10,10] 0

f3(x) �
n∑

i�1

(
i∑

j−1
x j

)2 30,100,500 [− 100,100] 0

f4(x) � max{|xi |, 1 ≤ i ≤ n} 30,100,500 [− 100,100] 0

f5(x) �
n−1∑
i�1

[
100
(
xi+1 − x2i

)2
+ (xi − 1)2

] 30,100,500 [− 30,30] 0

f6(x) �
n∑

i�1
([xi + 0.5])2

30,100,500 [− 100,100] 0

f7(x) � max{|xi |, 1 ≤ i ≤ n} 30,100,500 [− 1.28,1.28] 0

Table 10 Multimodal benchmark functions

Function Dim Range fmin

F8(x) �
n∑

i�1
−xi sin

(√|xi |
) 30,100,500 [− 500,500] 0

F9(x) �
n∑

i�1

[
x2i − 10 cos(2πxi ) + 10

] 30,100,500 [− 5.12,5.12] 0

F10(x) � −20 exp

(
−0.2

√
1
n

n∑
i�1

x2i

)
− exp

(
1
n

n∑
i�1

cos(2πxi )

)
+ 20 + e

30,100,500 [− 32,32] 0

F11(x) � 1
4000

n∑
i�1

x2i −
n∏

i�1
cos
(

xi√
i

)
+ 1

30,100,500 [− 600,600] 0

F12(x) � π

n

{
10 sin(πy1) +

n−1∑

i�1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}

+
n∑

i�1

u(xi , 10, 100, 4) +
n∑

i�1

u(xi , 10, 100, 4) yi � 1 +
xi + 1

4

u(xi , a, k, m) �

⎧
⎪⎪⎨

⎪⎪⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

⎫
⎪⎪⎬

⎪⎪⎭

30,100,500 [− 50,50] 0

F13(x) � 0.1

{
sin2(3πx1) +

n∑

i�1

(xi − 1)2
[
1 + sin2(3πxi + 1)

]

+(xn − 1)2
[
1 + sin2(2πxn)

]}
+

n∑

i�1

u(xi , 5, 100, 4)

30,100,500 [− 50,50] 0
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Table 11 Results for the
Unimodal and Multimodal
benchmark functions with 30
Dimension and 10,000 NFE

Function GA PSO DO GRO

F1 min 1.514e+00 9.314e−08 2.305e−06 2.47e−59

max 7.485e+00 5.013e−05 1.295e−05 3.98e−59

avg 3.685e+00 2.780e−06 8.565e−06 1.34e−59

std 1.305e+00 9.169e−06 4.215e−06 1.65e−59

F2 min 2.201e−01 1.121e−04 1.005e−04 3.23e−43

max 6.685e−01 1.084e−02 2.445e−03 2.65e−40

avg 4.675e−01 1.780e−06 1.513e−03 5.37e−41

std 1.045e−01 2.399e−03 6.221e−03 1.18e−40

F3 min 2.982e+03 3.101e+01 9.34e+00 1.50e−14

max 1.163e+04 4.450e+02 2.24e+01 4.65e−06

avg 5.156e+03 1.540e+02 1.35e+01 9.35e−07

std 2.145e+03 1.019e+02 5.22e+00 2.08e−06

F4 min 4.989e+00 1.088e+00 3.89e−01 7.41e−16

max 2.111e+01 6.165e+00 1.57e+00 9.11e−09

avg 9.145e+00 2.222e+00 7.51e−01 2.05e−09

std 3.045e+00 1.084e+00 4.89e−01 3.97e−09

F5 min 1.731e+02 1.601e+01 1.10e+01 1.06e+01

max 9.014e+02 1.045e+02 2.75e+01 2.59e+01

avg 4.155e+02 3.677e+01 2.40e+01 2.16e+01

std 1.778e+02 2.480e+01 7.29e+00 6.22e+00

F6 min 1.545e+00 3.788e−04 1.04e−05 4.31e−04

max 7.585e+00 9.787e−04 2.55e−05 9.77e−04

avg 3.599e+00 1.455e−04 1.76e−05 6.87e−04

std 1.574e+00 2.430e−04 6.35e−05 2.34e−04

F7 min 5.485e−02 1.018e−02 6.70e−03 2.03e−04

max 2.115e−01 5.560e−02 1.31e−03 8.26e−04

avg 1.220e−01 2.525e−02 9.08e−03 4.68e−04

std 3.855e−02 1.025e−02 2.49e−03 2.61e−04

F8 min - 1.151e+04 - 7.805e+03 - 7.67e+03 - 8.91e+03

max - 1.029e+04 - 4.807e+03 - 6.86e+03 - 7.25e+03

avg - 1.089e+04 - 6.452e+03 - 7.34e+03 - 8.10e+03

std 3.072e+02 8.011e+02 3.04e+02 6.72e+03

F9 min 2.850e+00 4.505e+01 4.02e+00 0

max 1.455e+01 9.505e+01 2.50e+01 0

avg 7.785e+00 4.815e+01 1.53e+01 0

std 2.815e+00 1.595e+01 9.45e+00 0

F10 min 3.235e−01 4.506e−05 3.83e−04 4.44e−15

max 1.655e+00 2.713e+00 1.40e−04 4.44e−15

avg 7.459e−01 1.270e+00 6.93e−04 4.44e−15

std 3.175e−01 8.205e−01 4.19e−04 4.44e−15

F11 min 9.105e−01 3.850e−08 1.20e−08 0

max 1.058e+00 7.085e−02 3.38e−07 0

avg 1.022e+00 1.458e−02 1.78e−07 0

std 3.085e−02 1.657e−02 9.26e−07 0

F12 min 2.985e−03 3.078e−09 1.26e−09 4.31e−04
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Table 11 (continued)
Function GA PSO DO GRO

max 2.415e−01 9.385e−01 4.91e−08 9.32e−04

avg 3.145e−02 1.750e−01 3.63e−08 6.72e−04

std 4.552e−02 2.482e−01 2.03e−08 2.18e−04

F13 min 7.585e−02 3.450e−07 8.11e−10 2.00e−16

max 6.145e−01 6.215e−01 2.35e−09 3.80e−14

avg 3.055e−01 3.455e−02 1.45e−09 8.31e−15

std 1.358e−01 1.132e−01 6.03e−10 1.66e−14
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