Skip to main content
Log in

Mounting RIS Panels on Tethered and Untethered UAVs: A Survey

  • Review Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are innovative technologies that aim to enhance the quality of communication in next-generation networks. These technologies are individually tailored to specific applications and have demonstrated impressive results. UAVs are known for their flexibility and ease of deployment, while RIS can adapt to changing environments by altering the traditional propagation and reflection schemes. Recent research has combined these two technologies for various applications, improving communication and data transmission in next-generation networks. This paper surveys recent advancements in using tethered and untethered UAVs and RIS in 5G/6G networks. The main objective of this survey is to inspire further solutions that support RIS-assisted UAVs and to provide insights not covered in published UAV–RIS surveys. The survey summarizes how UAVs and RIS can be used to address communication issues. Two case studies are presented to further illustrate this integration’s potential benefits. The first case study demonstrates a UAV mounting an RIS to mitigate the impact of base station fronthaul failure. The results suggest that co-locating tethered UAVs with a selected number of base stations can proactively restore any failed fronthaul links. The second case study explores the 3D trajectory of the UAV and the phase shift design of the RIS based on the number of RIS elements and height placement of the UAV. The study considers an untethered UAV with a terrestrial RIS and shows that the propulsion energy of the UAV can be reduced by changing and adjusting the height of the UAV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, Z.; Dai, L.; Chen, X.; Liu, C.; Yang, F.; Schober, R.; Poor, H.V.: Active RIS vs. passive RIS: which will prevail in 6G? IEEE Trans. Commun. 71(3), 1707–1725 (2023). https://doi.org/10.1109/tcomm.2022.3231893

    Article  Google Scholar 

  2. Hassouna, S.; Jamshed, M.A.; Rains, J.; Kazim, J.U.R.; Rehman, M.U.; Abualhayja, M.; Mohjazi, L.; Cui, T.J.; Imran, M.A.; Abbasi, Q.H.: A survey on reconfigurable intelligent surfaces: wireless communication perspective. IET Commun. 17(5), 497–537 (2023). https://doi.org/10.1049/cmu2.12571

    Article  Google Scholar 

  3. Wu, Q.; Zhang, R.: Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2020). https://doi.org/10.1109/MCOM.001.1900107

    Article  Google Scholar 

  4. Alhamad, R.: Throughput and detection probability of interweave cognitive radio networks using intelligent reflecting surfaces. Arab. J. Sci. Eng. 47, 3281–3292 (2022). https://doi.org/10.1007/s13369-021-06211-4

    Article  CAS  Google Scholar 

  5. You, C.; Kang, Z.; Zeng, Y.; Zhang, R.: Enabling smart reflection in integrated air-ground wireless network: IRS meets UAV. IEEE Wirel. Commun. 28(6), 138–144 (2021). https://doi.org/10.1109/MWC.001.2100148

    Article  Google Scholar 

  6. Cai, G.; Dias, J.; Seneviratne, L.: A survey of small-scale unmanned aerial vehicles: recent advances and future development trends. Unmanned Syst. 02(02), 175–199 (2014). https://doi.org/10.1142/S2301385014300017

    Article  Google Scholar 

  7. Gupta, L.; Jain, R.; Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2016). https://doi.org/10.1109/COMST.2015.2495297

    Article  Google Scholar 

  8. Din, A.F.U.; Mir, I.; Gul, F.; et al.: Reinforced learning-based robust control design for unmanned aerial vehicle. Arab. J. Sci. Eng. 48, 1221–1236 (2023). https://doi.org/10.1007/s13369-022-06746-0

    Article  Google Scholar 

  9. Mei, H.; Yang, K.; Liu, Q.; Wang, K.: 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning. IEEE Trans. Veh. Technol. 71(3), 3020–3029 (2022). https://doi.org/10.1109/TVT.2022.3143839

    Article  Google Scholar 

  10. Ben Aissa, S.; Ben Letaifa, A.: UAV communications with machine learning: challenges, applications and open issues. Arab. J. Sci. Eng. 47(2), 1559–1579 (2022)

    Article  Google Scholar 

  11. Abdalla, A.S.; Rahman, T.F.; Marojevic, V.: UAVs with reconfigurable intelligent surfaces: applications, challenges, and opportunities. arXiv, https://doi.org/10.48550/ARXIV.2012.04775 . arXiv:2012.04775 (2020)

  12. Bor-Yaliniz, I.; Salem, M.; Senerath, G.; Yanikomeroglu, H.: Is 5G ready for drones: a look into contemporary and prospective wireless networks from a standardization perspective. IEEE Wirel. Commun. 26(1), 18–27 (2019). https://doi.org/10.1109/MWC.2018.1800229

    Article  Google Scholar 

  13. Pogaku, A.C.; Do, D.-T.; Lee, B.M.; Nguyen, N.D.: UAV-assisted RIS for future wireless communications: a survey on optimization and performance analysis. IEEE Access 10, 16320–16336 (2022). https://doi.org/10.1109/ACCESS.2022.3149054

    Article  Google Scholar 

  14. Zhu, Y.; Mao, B.; Kato, N.: Intelligent reflecting surface in 6g vehicular communications: a survey. IEEE Open J. Veh. Technol. 3, 266–277 (2022). https://doi.org/10.1109/OJVT.2022.3177253

    Article  Google Scholar 

  15. Selim, M.Y.; Kamal, A.E.: Post-disaster 4G/5G network rehabilitation using drones: solving battery and backhaul issues. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2018). https://doi.org/10.1109/GLOCOMW.2018.8644135

  16. Kishk, M.; Bader, A.; Alouini, M.-S.: Aerial base station deployment in 6G cellular networks using tethered drones: the mobility and endurance tradeoff. IEEE Veh. Technol. Mag. 15(4), 103–111 (2020). https://doi.org/10.1109/MVT.2020.3017885

    Article  Google Scholar 

  17. Bushnaq, O.M.; Kishk, M.A.; Celik, A.; Alouini, M.-S.; Al-Naffouri, T.Y.: Optimal deployment of tethered drones for maximum cellular coverage in user clusters. IEEE Trans. Wirel. Commun. 20(3), 2092–2108 (2021). https://doi.org/10.1109/TWC.2020.3039013

    Article  Google Scholar 

  18. Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.-H.; Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019). https://doi.org/10.1109/COMST.2019.2902862

    Article  Google Scholar 

  19. Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J.: Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Commun. Surv. Tutor. 21(4), 3417–3442 (2019). https://doi.org/10.1109/COMST.2019.2906228

    Article  Google Scholar 

  20. Zeng, Y.; Zhang, R.; Lim, T.J.: Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun. Mag. 54(5), 36–42 (2016). https://doi.org/10.1109/MCOM.2016.7470933

    Article  Google Scholar 

  21. Ren, Q.; Abbasi, O.; Kurt, G.K.; Yanikomeroglu, H.; Chen, J.: High altitude platform station (haps) assisted computing for intelligent transportation systems. In: 2021 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2021). https://doi.org/10.1109/GLOBECOM46510.2021.9685074

  22. Alzahrani, B.; Oubbati, O.S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D.: UAV assistance paradigm: state-of-the-art in applications and challenges. J. Netw. Comput. Appl. 166, 102706 (2020). https://doi.org/10.1016/j.jnca.2020.102706

    Article  Google Scholar 

  23. Shi, W.; Zhou, H.; Li, J.; Xu, W.; Zhang, N.; Shen, X.: Drone assisted vehicular networks: architecture, challenges and opportunities. IEEE Netw. 32(3), 130–137 (2018). https://doi.org/10.1109/MNET.2017.1700206

    Article  Google Scholar 

  24. Shang, B.; Shafin, R.; Liu, L.: UAV swarm-enabled aerial reconfigurable intelligent surface (SARIS). IEEE Wirel. Commun. 28(5), 156–163 (2021). https://doi.org/10.1109/MWC.010.2000526

    Article  Google Scholar 

  25. Wang, J.; Jiang, C.; Han, Z.; Ren, Y.; Maunder, R.G.; Hanzo, L.: Taking drones to the next level: cooperative distributed unmanned-aerial-vehicular networks for small and mini drones. IEEE Veh. Technol. Mag. 12(3), 73–82 (2017). https://doi.org/10.1109/MVT.2016.2645481

    Article  CAS  Google Scholar 

  26. Wang, J.; Jiang, C.; Wei, Z.; Pan, C.; Zhang, H.; Ren, Y.: Joint UAV hovering altitude and power control for space-air-ground IoT networks. IEEE Internet Things J. 6(2), 1741–1753 (2019). https://doi.org/10.1109/JIOT.2018.2875493

    Article  Google Scholar 

  27. Boon, M.A.; Drijfhout, A.P.; Tesfamichael, S.: Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: a case study. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 42W6, 47–54 (2017). https://doi.org/10.5194/isprs-archives-XLII-2-W6-47-2017

    Article  Google Scholar 

  28. Thamm, F.-P.; Brieger, N.; Neitzke, K.-P.; Meyer, M.; Jansen, R.; Mönninghof, M.: Songbird—an innovative UAS combining the advantages of fixed wing and multi rotor UAS. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL–1/W4, 345–349 (2015). https://doi.org/10.5194/isprsarchives-XL-1-W4-345-2015

    Article  Google Scholar 

  29. Hybrid VTOL fixed wing UAV manufacturers: VTOL fixed wing drones (2022). https://www.unmannedsystemstechnology.com/expo/hybrid-vtol-fixed-wing-uav-manufacturers/

  30. Albatross UAV : Bvlos Drone. https://www.appliedaeronautics.com/

  31. Press, Mortimer, G.: Kargu Rotary Wing Attack Drone (2020). https://www.suasnews.com/2020/11/kargu-rotary-wing-attack-drone/

  32. Belmekki, B.E.Y.; Alouini, M.-S.: Unleashing the potential of networked tethered flying platforms: prospects, challenges, and applications. IEEE Open J. Veh. Technol. 3, 278–320 (2022). https://doi.org/10.1109/OJVT.2022.3177946

    Article  Google Scholar 

  33. Mahmood, K.; Ismail, N.A.; Suhadis, N.M.: Tethered aerostat envelope design and applications: a review. AIP Conf. Proc. 2226(1), 050003 (2020). https://doi.org/10.1063/5.0002358

    Article  Google Scholar 

  34. Selim, M.Y.; Alsharoa, A.; Kamal, A.E.: Short-term and long-term cell outage compensation using UAVs in 5G networks. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018). https://doi.org/10.1109/GLOCOM.2018.8648054

  35. Kumaravelu, V.B.; Jadhav, H.K.; Anjana, B.S.; Gudla, V.V.; Murugadass, A.; Imoize, A.L.: In: Imoize, A.L., Islam, S.M.N., Poongodi, T., Ramasamy, L.K., Siva Prasad, B.V.V. (eds.) Unmanned Aerial Vehicle-Assisted Reconfigurable Intelligent Surface for Energy Efficient and Reliable Communication, pp. 173–201. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-08395-2_8

    Chapter  Google Scholar 

  36. Li, L.; Jun Cui, T.; Ji, W.; Liu, S.; Ding, J.; Wan, X.; Bo Li, Y.; Jiang, M.; Qiu, C.-W.; Zhang, S., et al.: Electromagnetic reprogrammable coding-metasurface holograms. Nature Publishing Group (2017). https://www.nature.com/articles/s41467-017-00164-9

  37. Renzo, M.D.; Debbah, M.; Phan-Huy, D.-T.; Zappone, A.; Alouini, M.-S.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; Rosny, J.; Bounceu, A.; Lerosey, G.; Fink, M.: Smart radio environments empowered by AI reconfigurable meta-surfaces: an idea whose time has come (2019)

  38. Sievenpiper, D.F.; Schaffner, J.H.; Song, H.J.; Loo, R.Y.; Tangonan, G.: Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 51(10), 2713–2722 (2003). https://doi.org/10.1109/TAP.2003.817558

    Article  ADS  Google Scholar 

  39. Holloway, C.L.; Mohamed, M.A.; Kuester, E.F.; Dienstfrey, A.: Reflection and transmission properties of a metafilm: with an application to a controllable surface composed of resonant particles. IEEE Trans. Electromagn. Compat. 47(4), 853–865 (2005). https://doi.org/10.1109/TEMC.2005.853719

    Article  Google Scholar 

  40. Liang, Y.-C.; Chen, J.; Long, R.; He, Z.-Q.; Lin, X.; Huang, C.; Liu, S.; Shen, X.S.; Di Renzo, M.: Reconfigurable Intelligent Surfaces for Smart Wireless Environments: Channel Estimation, System Design and Applications in 6G Networks—Science China Information Sciences. Science China Press (2021). https://link.springer.com/article/10.1007/s11432-020-3261-5

  41. Zhang, Q.; Saad, W.; Bennis, M.: Reflections in the sky: millimeter wave communication with UAV-carried intelligent reflectors. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9013626

  42. Lu, H.; Zeng, Y.; Jin, S.; Zhang, R.: Enabling panoramic full-angle reflection via aerial intelligent reflecting surface (2020)

  43. Ndjiongue, A.R.; Ngatched, T.M.N.; Dobre, O.A.; Armada, A.G.; Haas, H.: Analysis of RIS-based terrestrial-FSO link over g-g turbulence with distance and jitter ratios. J. Lightw. Technol. 39(21), 6746–6758 (2021). https://doi.org/10.1109/JLT.2021.3108532

    Article  ADS  Google Scholar 

  44. Cao, X.; Yang, B.; Huang, C.; Yuen, C.; Renzo, M.D.; Niyato, D.; Han, Z.: Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning. IEEE J. Sel. Areas Commun. 39(10), 3035–3050 (2021). https://doi.org/10.1109/JSAC.2021.3088634

    Article  Google Scholar 

  45. Long, R.; Liang, Y.-C.; Pei, Y.; Larsson, E.G.: Active reconfigurable intelligent surface-aided wireless communications. IEEE Trans. Wirel. Commun. 20(8), 4962–4975 (2021). https://doi.org/10.1109/TWC.2021.3064024

    Article  Google Scholar 

  46. Zhou, T.; Xu, K.; Shen, Z.; Xie, W.; Zhang, D.; Xu, J.: AOA-based positioning for aerial intelligent reflecting surface-aided wireless communications: an angle-domain approach. IEEE Wirel. Commun. Lett. 11(4), 761–765 (2022). https://doi.org/10.1109/LWC.2022.3143099

    Article  Google Scholar 

  47. Nguyen-Kha, H.; Nguyen, H.V.; Le, M.T.P.; Shin, O.-S.: Joint UAV placement and IRS phase shift optimization in downlink networks. IEEE Access 10, 111221–111231 (2022). https://doi.org/10.1109/ACCESS.2022.3214663

    Article  Google Scholar 

  48. Abuzainab, N.; Alrabeiah, M.; Alkhateeb, A.; Sagduyu, Y.E.: Deep learning for thz drones with flying intelligent surfaces: Beam and handoff prediction. In: 2021 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6 (2021). https://doi.org/10.1109/ICCWorkshops50388.2021.9473804

  49. Truong, T.P.; Tuong, V.D.; Dao, N.-N.; Cho, S.: Flyreflect: joint flying IRS trajectory and phase shift design using deep reinforcement learning. IEEE Internet Things J. 10(5), 4605–4620 (2023). https://doi.org/10.1109/JIOT.2022.3218740

    Article  Google Scholar 

  50. Zhao, J.; Zhu, Y.; Mu, X.; Cai, K.; Liu, Y.; Hanzo, L.: Simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted UAV communications. IEEE J. Sel. Areas Commun. 40(10), 3041–3056 (2022). https://doi.org/10.1109/JSAC.2022.3196102

    Article  Google Scholar 

  51. Pan, Y.; Wang, K.; Pan, C.; Zhu, H.; Wang, J.: UAV-assisted and intelligent reflecting surfaces-supported terahertz communications. IEEE Wirel. Commun. Lett. 10(6), 1256–1260 (2021). https://doi.org/10.1109/LWC.2021.3063365

    Article  Google Scholar 

  52. Yao, Y.; Lv, K.; Ma, N.; Yue, X.; Qin, X.; Yun, X.: Energy efficient air-to-ground communication networks with reconfigurable intelligent surface. J. Commun. Netw. 24(5), 555–565 (2022). https://doi.org/10.23919/JCN.2022.000025

    Article  Google Scholar 

  53. Li, Z.; Chen, W.; Cao, H.; Tang, H.; Wang, K.; Li, J.: Joint communication and trajectory design for intelligent reflecting surface empowered UAV SWIPT networks. IEEE Trans. Veh. Technol. 71(12), 12840–12855 (2022). https://doi.org/10.1109/TVT.2022.3196039

    Article  Google Scholar 

  54. Ren, H.; Zhang, Z.; Peng, Z.; Li, L.; Pan, C.: Energy minimization in RIS-assisted UAV-enabled wireless power transfer systems. IEEE Internet Things J. (2022). https://doi.org/10.1109/JIOT.2022.3150178

    Article  Google Scholar 

  55. Heimann, K.; Sliwa, B.; Patchou, M.; Wietfeld, C.: Modeling and simulation of reconfigurable intelligent surfaces for hybrid aerial and ground-based vehicular communications (2021)

  56. Eskandari, M.; Savkin, A.V.; Ni, W.: Consensus-based autonomous navigation of a team of RIS-equipped UAVs for los wireless communication with mobile nodes in high-density areas. IEEE Trans. Autom. Sci. Eng. (2022). https://doi.org/10.1109/TASE.2022.3183335

    Article  Google Scholar 

  57. Nguyen, M.-H.T.; Garcia-Palacios, E.; Do-Duy, T.; Dobre, O.A.; Duong, T.Q.: UAV-aided aerial reconfigurable intelligent surface communications with massive MIMO system. IEEE Trans. Cogn. Commun. Netw. 8(4), 1828–1838 (2022). https://doi.org/10.1109/TCCN.2022.3187098

    Article  Google Scholar 

  58. Mei, H.; Yang, K.; Liu, Q.; Wang, K.: 3d-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning. IEEE Trans. Veh. Technol. 71(3), 3020–3029 (2022). https://doi.org/10.1109/TVT.2022.3143839

    Article  Google Scholar 

  59. Wang, F.; Zhang, X.: IRS/UAV-based edge-computing/traffic-offloading over RF-powered 6G mobile wireless networks. In: 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1272–1277 (2022). https://doi.org/10.1109/WCNC51071.2022.9771971

  60. Guo, J.; Yu, L.; Chen, Z.; Yao, Y.; Wang, Z.; Wang, Z.; Zhao, Q.: RIS-assisted secure UAV communications with resource allocation and cooperative jamming. IET Commun. 16(13), 1582–1592 (2022). https://doi.org/10.1049/cmu2.12416

    Article  Google Scholar 

  61. Quispe, J.J.L.; Maciel, T.F.; Silva, Y.C.B.; Klein, A.: Joint beamforming and BS selection for energy-efficient communications via aerial-RIS. In: 2021 IEEE Globecom Workshops (GC Wkshps), pp. 1–6 (2021). https://doi.org/10.1109/GCWkshps52748.2021.9681981

  62. Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Poor, H.V.: Intelligent reflecting surface enhanced multi-UAV NOMA networks. IEEE J. Sel. Areas Commun. 39(10), 3051–3066 (2021). https://doi.org/10.1109/JSAC.2021.3088679

    Article  Google Scholar 

  63. Li, S.; Duo, B.; Renzo, M.D.; Tao, M.; Yuan, X.: Robust secure UAV communications with the aid of reconfigurable intelligent surfaces. IEEE Trans. Wirel. Commun. 20(10), 6402–6417 (2021). https://doi.org/10.1109/TWC.2021.3073746

    Article  Google Scholar 

  64. Badarneh, O.S.; Awad, M.K.; Muhaidat, S.; Almehmadi, F.S.: Performance analysis of intelligent reflecting surface-aided decode-and-forward UAV communication systems. IEEE Syst. J. 17(1), 246–257 (2023). https://doi.org/10.1109/JSYST.2022.3178327

    Article  ADS  Google Scholar 

  65. Nguyen, M.D.; Le, L.B.; Girard, A.: UAV placement and resource allocation for intelligent reflecting surface assisted UAV-based wireless networks. IEEE Commun. Lett. 26(5), 1106–1110 (2022). https://doi.org/10.1109/LCOMM.2022.3149467

    Article  Google Scholar 

  66. Tian, K.; Chi, Y.; Duo, B.; Yuan, X.: Hybrid offline-online design for reconfigurable intelligent surface aided UAV communication. IEEE Commun. Lett. 27(5), 1372–1376 (2023). https://doi.org/10.1109/LCOMM.2023.3255241

    Article  Google Scholar 

  67. Boulogeorgos, A.-A.A.; Alexiou, A.; Renzo, M.D.: Outage performance analysis of RIS-assisted UAV wireless systems under disorientation and misalignment. IEEE Trans. Veh. Technol. 71(10), 10712–10728 (2022). https://doi.org/10.1109/TVT.2022.3187050

    Article  Google Scholar 

  68. Fang, S.; Chen, G.; Li, Y.: Joint optimization for secure intelligent reflecting surface assisted UAV networks. IEEE Wirel. Commun. Lett. 10(2), 276–280 (2021). https://doi.org/10.1109/LWC.2020.3027969

    Article  Google Scholar 

  69. Khalil, A.A.; Selim, M.Y.; Rahman, M.A.: CURE: enabling RF energy harvesting using cell-free massive MIMO UAVs assisted by RIS (2021)

  70. Belmekki, B.E.Y.; Alouini, M.-S.: Unleashing the potential of networked tethered flying platforms: prospects, challenges, and applications. IEEE Open J. Veh. Technol. 3, 278–320 (2022). https://doi.org/10.1109/OJVT.2022.3177946

    Article  Google Scholar 

  71. Bhowal, A.; Aïssa, S.: RIS-aided communications in indoor and outdoor environments: performance analysis with a realistic channel model. IEEE Trans. Veh. Technol. 71(12), 13356–13360 (2022). https://doi.org/10.1109/TVT.2022.3143841

    Article  Google Scholar 

  72. Alexandropoulos, G.C.; Shlezinger, N.; Hougne, P.: Reconfigurable intelligent surfaces for rich scattering wireless communications: recent experiments, challenges, and opportunities. IEEE Commun. Mag. 59(6), 28–34 (2021). https://doi.org/10.1109/MCOM.001.2001117

    Article  Google Scholar 

  73. Saigre-Tardif, C.; Hougne, P.D.: A self-adaptive RIS that estimates and shapes fading rich-scattering wireless channels. In: 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). IEEE (2022). https://doi.org/10.1109/vtc2022-spring54318.2022.9860667 .

  74. Beaulieu, N.C.; Jiandong, X.: A novel fading model for channels with multiple dominant specular components. IEEE Wirel. Commun. Lett. 4(1), 54–57 (2015). https://doi.org/10.1109/LWC.2014.2367501

    Article  Google Scholar 

  75. Kansal, V.; Singh, S.: Analysis of effective capacity over Beaulieu-Xie fading model. In: 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), pp. 207–210 (2017). https://doi.org/10.1109/WIECON-ECE.2017.8468917

  76. Bjornson, E.: intelligent reflecting surface vs. decode-and-forward: how large surfaces are needed to beat relaying? https://github.com/emilbjornson/IRS-relaying

  77. Further advancements for E-UTRA physical layer aspects (Release 9) (2010). https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2493

  78. He, Z.-Q.; Yuan, X.: Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 9(2), 210–214 (2020). https://doi.org/10.1109/LWC.2019.2948632

    Article  Google Scholar 

  79. Taha, A.; Alrabeiah, M.; Alkhateeb, A.: Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9013256

  80. Haibo, M.: 3D-trajectory and phase-shift design for RIS-assisted UAV systems using deep reinforcement learning. https://github.com/HaiboMei/UAV-RIS-DRL/

  81. Bie, Q.; Liu, Y.; Wang, Y.; Zhao, X.; Zhang, X.Y.: Deployment optimization of reconfigurable intelligent surface for relay systems. IEEE Trans. Green Commun. Netw. 6(1), 221–233 (2022). https://doi.org/10.1109/TGCN.2022.3145026

    Article  Google Scholar 

  82. Selim, M.Y.; Kamal, A.E.; Nait-Abdesselam, F.: X-haul outage compensation in 5G/6G using reconfigurable intelligent surfaces. In: 2022 International Telecommunications Conference (ITC-Egypt), pp. 1–6 (2022). https://doi.org/10.1109/ITC-Egypt55520.2022.9855706

  83. Abeywickrama, H.V.; Jayawickrama, B.A.; He, Y.; Dutkiewicz, E.: Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance. IEEE Access 6, 58383–58394 (2018). https://doi.org/10.1109/ACCESS.2018.2875040

    Article  Google Scholar 

  84. Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Renzo, M.D.; Chae, C.-B.; Hanzo, L.: Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access 8, 45913–45923 (2020). https://doi.org/10.1109/ACCESS.2020.2977772

    Article  Google Scholar 

  85. Tethered drone systems: Tethered UAV & tethering stations: Elistair (2023). https://www.unmannedsystemstechnology.com/company/elistair/

  86. Ahmed, M.; Wahid, A.; Laique, S.S.; Khan, W.U.; Ihsan, A.; Xu, F.; Chatzinotas, S.; Han, Z.: A survey on star-RIS: use cases, recent advances, and future research challenges. IEEE Internet Things J. (2023). https://doi.org/10.1109/JIOT.2023.3279357

    Article  Google Scholar 

  87. Mahbub, M.; Shubair, R.M.: IRS for multi-access edge computing in 6G networks. arXiv preprint arXiv:2206.05290 (2022)

  88. Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Renzo, M.D.; Hao, Y.; Wang, J.; Swindlehurst, A.L.; You, X.; Hanzo, L.: Reconfigurable intelligent surfaces for 6G systems: principles, applications, and research directions. IEEE Commun. Mag. 59(6), 14–20 (2021)

    Article  Google Scholar 

  89. Laroui, M.; Moungla, H.; Afifi, H.; Selim, M.Y.; Kamal, A.E.: Intelligent reflecting surface aided vehicular edge computing. In: GLOBECOM 2022—2022 IEEE Global Communications Conference, pp. 5577–5582 (2022). https://doi.org/10.1109/GLOBECOM48099.2022.10000899

  90. Shahjalal, M.; Kim, W.; Khalid, W.; Moon, S.; Khan, M.; Liu, S.; Lim, S.; Kim, E.; Yun, D.-W.; Lee, J.; Lee, W.-C.; Hwang, S.-H.; Kim, D.; Lee, J.-W.; Yu, H.; Sung, Y.; Jang, Y.M.: Enabling technologies for ai empowered 6g massive radio access networks. ICT Express (2022). https://doi.org/10.1016/j.icte.2022.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Y. Selim.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazar, A.M., Selim, M.Y. & Kamal, A.E. Mounting RIS Panels on Tethered and Untethered UAVs: A Survey. Arab J Sci Eng 49, 2857–2885 (2024). https://doi.org/10.1007/s13369-023-08603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08603-0

Keywords

Navigation