Skip to main content
Log in

Free-Weighting Matrix Approach for Event-Triggered Cooperative Control of Generic Linear Multi-agent Systems: An Application for UAVs

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a novel free-weighting matrix (FWM) approach for the event-triggered (ET) consensus and formation control of multi-agent systems over a directed graph. A new FWM equality for the consensus error is proposed. This FWM is applied to attain coherent behavior of systems via a fully distributed ET approach. The proposed approach is also extended for ET formation control to attain a specific pattern of agents. Furthermore, an FWM-based consensus controller design with practical ET cooperative control is considered to address consensus and formation control problems by using the in-degree information of a node rather than the algebraic connectivity of a graph or adaptation of parameters. Additionally, the controller gain is formulated using a more general transformation compared to that used in classical approaches. Moreover, the proposed ET scheme for the designed controller is applied on the transmission side to preserve computational resources by eliminating the Zeno behavior. In contrast to the existing methods, the proposed approach (i) provides a fully distributed protocol without using central information of network or adaptive gain; (ii) provides a practical ET mechanism to assure effective bandwidth and fewer energy consumption; and (iii) can be applied to the ET formation problem for mobile agents. Simulations involving six aerial vehicles are performed to demonstrate the efficacy of the proposed cooperative control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma, L.; Zhu, F.; Zhao, X.: Human-in-the-loop consensus control for multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn. Syst. (2023). https://doi.org/10.1109/TNNLS.2023.3246567

    Article  Google Scholar 

  2. Ahmed, I.; Rehan, M.; Iqbal, N.: A novel exponential approach for dynamic event-triggered leaderless consensus of nonlinear multi-agent systems over directed graphs. IEEE Trans. Circuits Syst. II Express Briefs (2021). https://doi.org/10.1109/TCSII.2021.3120791

    Article  Google Scholar 

  3. Wu, K.; Hu, J.; Ding, Z.; Arvin, F.: Finite-time fault-tolerant formation control for distributed multi-vehicle networks with bearing measurements. IEEE Trans. Autom. Sci. Eng. (2023). https://doi.org/10.1109/TASE.2023.3239748

    Article  Google Scholar 

  4. Basit, A.; Tufail, M.; Hong, K.-S.; Rehan, M.; Ahmed, I.: Event-triggered distributed exponential \({H}_\infty \) observers design for discrete-time nonlinear systems over wireless sensor networks. In: 2022 13th Asian Control Conference (ASCC), pp. 1730–1735 (2022)

  5. Griparic, K.; Polic, M.; Krizmancic, M.; Bogdan, S.: Consensus-based distributed connectivity control in multi-agent systems. IEEE Trans. Netw. Sci. Eng. 9(3), 1264–1281 (2022). https://doi.org/10.1109/TNSE.2021.3139045

    Article  MathSciNet  Google Scholar 

  6. Ahmed, I.; Rehan, M.; Iqbal, N.; Ahn, C.K.: A novel event-triggered consensus approach for generic linear multi-agents under heterogeneous sector-restricted input nonlinearities. IEEE Trans. Netw. Sci. Eng. 10(3), 1648–1658 (2023). https://doi.org/10.1109/TNSE.2022.3232779

    Article  MathSciNet  Google Scholar 

  7. Muñoz, F.; Zúñiga-Peña, N.S.; Carrillo, L.R.G.; Espinoza, E.S.; Salazar, S.; Márquez, M.A.: Adaptive fuzzy consensus control strategy for UAS-based load transportation tasks. IEEE Trans. Aerosp. Electron. Syst. 57(6), 3844–3860 (2021). https://doi.org/10.1109/TAES.2021.3082711

    Article  Google Scholar 

  8. Basit, A.; Tufail, M.; Rehan, M.: Event-triggered distributed state estimation under unknown parameters and sensor saturations over wireless sensor networks. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 1772–1776 (2022)

    Google Scholar 

  9. Ai, Z.; Cui, W.: A proof-of-transactions blockchain consensus protocol for large-scale IoT. IEEE Internet Things J. 9(11), 7931–7943 (2022). https://doi.org/10.1109/JIOT.2021.3108627

    Article  Google Scholar 

  10. Zhang, F.: Geometric cooperative control of particle formations. IEEE Trans. Autom. Control 55(3), 800–803 (2010). https://doi.org/10.1109/TAC.2010.2040508

    Article  MathSciNet  Google Scholar 

  11. Basit, A.; Tufail, M.; Rehan, M.; Riaz, M.; Ahmed, I.: Distributed state and unknown input estimation under denial-of-service attacks: a dynamic event-triggered approach. IEEE Trans. Circuits Syst. II Express Briefs 70(6), 2266–2270 (2023). https://doi.org/10.1109/TCSII.2022.3229412

    Article  Google Scholar 

  12. Dong, S.; Chen, G.; Liu, M.; Wu, Z.-G.: Intermittent cluster consensus control of multiagent systems from a static/dynamic output approach. IEEE Trans. Syst. Man Cybern. Syst. 52(12), 7727–7736 (2022). https://doi.org/10.1109/TSMC.2022.3163394

    Article  Google Scholar 

  13. Qi, B.; Lou, K.; Miao, S.; Cui, B.: Second-order consensus of leader-following multi-agent systems with jointly connected topologies and time-varying delays. Arab. J. Sci. Eng. 39, 1431–1440 (2014)

    Article  MathSciNet  Google Scholar 

  14. Ahmed, I.; Rehan, M.; Hong, K.-S.; Basit, A.: Event-triggered leaderless robust consensus control of nonlinear multi-agents under disturbances. In: 2022 13th Asian Control Conference (ASCC), pp. 1736–1741 (2022)

  15. Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y.: A survey of IoT applications in blockchain systems: architecture, consensus, and traffic modeling. ACM Comput. Surv. 53(1), 1–32 (2020)

    Article  Google Scholar 

  16. Chen, C.; Lewis, F.L.; Li, X.: Event-triggered coordination of multi-agent systems via a lyapunov-based approach for leaderless consensus. Automatica 136, 109936 (2021)

    Article  MathSciNet  Google Scholar 

  17. Joordens, M.A.; Jamshidi, M.: Consensus control for a system of underwater swarm robots. IEEE Syst. J. 4(1), 65–73 (2010). https://doi.org/10.1109/JSYST.2010.2040225

    Article  Google Scholar 

  18. Jevtic, A.; Gutiérrez, A.; Andina, D.; Jamshidi, M.: Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst. J. 6(2), 296–304 (2011)

    Article  Google Scholar 

  19. Gao, L.; Tong, C.; Wang, L.: \(h_\infty \) dynamic output feedback consensus control for discrete-time multi-agent systems with switching topology. Arab. J. Sci. Eng. 39, 1477–1487 (2014)

    Article  MathSciNet  Google Scholar 

  20. Shi, Y.; Hu, Q.: Event-driven connectivity-preserving coordinated control for multiple spacecraft systems with a distance-dependent dynamic graph. IEEE Trans. Cybern. 52, 12551 (2021)

    Article  Google Scholar 

  21. Sui, Z.; Pu, Z.; Yi, J.; Wu, S.: Formation control with collision avoidance through deep reinforcement learning using model-guided demonstration. IEEE Trans. Neural Netw. Learn. Syst. 32(6), 2358–2372 (2020)

    Article  Google Scholar 

  22. Nuño, E.; Loría, A.; Panteley, E.: Leaderless consensus formation control of cooperative multi-agent vehicles without velocity measurements. IEEE Control Syst. Lett. 6, 902 (2021)

    Article  MathSciNet  Google Scholar 

  23. Yu, H.; Chen, T.: A new zeno-free event-triggered scheme for robust distributed optimal coordination. Automatica 129, 109639 (2021)

    Article  MathSciNet  Google Scholar 

  24. Basit, A.; Tufail, M.; Rehan, M.; Rashid, H.U.: A non-uniform event-triggered distributed filtering scheme for discrete-time nonlinear systems over wireless sensor networks. Trans. Inst. Meas. Control. (2022). https://doi.org/10.1177/01423312221126233

    Article  Google Scholar 

  25. Wang, S.; Yin, X.; Zhang, Y.; Li, P.; Wen, H.: Event-triggered cognitive control for networked control systems subject to dos attacks and time delay. Arab. J. Sci. Eng. 48(5), 6991–7004 (2023)

    Article  Google Scholar 

  26. Basit, A.; Tufail, M.; Rehan, M.; Ahmed, I.: A new event-triggered distributed state estimation approach for one-sided Lipschitz nonlinear discrete-time systems and its application to wireless sensor networks. ISA Trans. 137, 74–86 (2023)

    Article  Google Scholar 

  27. Ni, Y.; Wang, Z.; Fan, Y.; Huang, X.; Shen, H.: Memory-based event-triggered control for global synchronization of chaotic Lur’e systems and its application. IEEE Trans. Syst. Man Cybern. Syst. 53(3), 1920–1931 (2023). https://doi.org/10.1109/TSMC.2022.3207353

    Article  Google Scholar 

  28. Zhou, J.; Xu, D.; Tai, W.; Ahn, C.K.: Switched event-triggered \({\cal{H} }_{\infty }\) security control for networked systems vulnerable to aperiodic dos attacks. IEEE Trans. Netw. Sci. Eng. 10(4), 2109–2123 (2023). https://doi.org/10.1109/TNSE.2023.3243095

    Article  MathSciNet  Google Scholar 

  29. Wu, W.; He, L.; Zhou, J.; Xuan, Z.; Arik, S.: Disturbance-term-based switching event-triggered synchronization control of chaotic lurie systems subject to a joint performance guarantee. Commun. Nonlinear Sci. Numer. Simul. 115, 106774 (2022)

    Article  MathSciNet  Google Scholar 

  30. Hu, W.; Liu, L.; Feng, G.: Cooperative output regulation of linear multi-agent systems by intermittent communication: a unified framework of time-and event-triggering strategies. IEEE Trans. Autom. Control 63(2), 548–555 (2017)

    Article  MathSciNet  Google Scholar 

  31. Wang, B.; Chen, W.; Zhang, B.; Zhao, Y.; Shi, P.: Cooperative control-based task assignments for multi-agent systems with intermittent communication. IEEE Trans. Industr. Inf. 17, 6697 (2020)

    Article  Google Scholar 

  32. Xu, Y.; Wang, J.; Zhang, Y.; Xu, Y.: Event-triggered bipartite consensus for high-order multi-agent systems with input saturation. Neurocomputing 379, 284–295 (2020)

    Article  Google Scholar 

  33. Shang, Y.: Resilient consensus in multi-agent systems with state constraints. Automatica 122, 109288 (2020)

    Article  MathSciNet  Google Scholar 

  34. Hu, W.; Yang, C.; Huang, T.; Gui, W.: A distributed dynamic event-triggered control approach to consensus of linear multiagent systems with directed networks. IEEE Trans. Cybern. 50(2), 869–874 (2018)

    Article  Google Scholar 

  35. Rehan, M.; Jameel, A.; Ahn, C.K.: Distributed consensus control of one-sided Lipschitz nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 48(8), 1297–1308 (2017)

    Article  Google Scholar 

  36. Razaq, M.A.; Rehan, M.; Ahn, C.K.; Khan, A.Q.; Tufail, M.: Consensus of one-sided Lipschitz multiagents under switching topologies. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 1485–1495 (2019)

    Google Scholar 

  37. Ahmed, I.; Rehan, M.; Hong, K.-S.; Basit, A.: A consensus-based approach for economic dispatch considering multiple fueling strategy of electricity production sector over a smart grid. In: 2022 13th Asian Control Conference (ASCC), pp. 1196–1201 (2022)

  38. Yue, D.; Cao, J.; Li, Q.; Liu, Q.: Neural-network-based fully distributed adaptive consensus for a class of uncertain multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. 32(7), 2965–2977 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zhao, L.; Liu, Y.; Li, F.; Man, Y.: Fully distributed adaptive finite-time consensus for uncertain nonlinear multiagent systems. IEEE Trans. Cybern. 52, 6972 (2020)

    Article  Google Scholar 

  40. Agha, R.; Rehan, M.; Ahn, C.K.; Mustafa, G.; Ahmad, S.: Adaptive distributed consensus control of one-sided Lipschitz nonlinear multiagents. IEEE Trans. Syst. Man Cybern. Syst. 49(3), 568–578 (2017)

    Article  Google Scholar 

  41. Luo, S.; Ye, D.: Adaptive double event-triggered control for linear multi-agent systems with actuator faults. IEEE Trans. Circuits Syst. I Regul. Pap. 66(12), 4829–4839 (2019). https://doi.org/10.1109/TCSI.2019.2932084

    Article  MathSciNet  Google Scholar 

  42. Yan, C.; Zhang, W.; Su, H.; Li, X.: Adaptive bipartite time-varying output formation control for multiagent systems on signed directed graphs. IEEE Trans. Cybern. 59, 8987 (2021)

    Google Scholar 

  43. Yue, D.; Baldi, S.; Cao, J.; Li, Q.; De Schutter, B.: A directed spanning tree adaptive control solution to time-varying formations. IEEE Trans. Control of Netw. Syst. 8(2), 690–701 (2021)

    Article  MathSciNet  Google Scholar 

  44. Bae, Y.-B.; Lim, Y.-H.; Ahn, H.-S.: Distributed robust adaptive gradient controller in distance-based formation control with exogenous disturbance. IEEE Trans. Autom. Control 66(6), 2868–2874 (2020)

    Article  MathSciNet  Google Scholar 

  45. Basit, A.; Tufail, M.; Rehan, M.; Ahn, C.K.: Dynamic event-triggered approach for distributed state and parameter estimation over networks subjected to deception attacks. IEEE Trans. Signal Inf. Process. Netw. 9, 373–385 (2023). https://doi.org/10.1109/TSIPN.2023.3277278

    Article  MathSciNet  Google Scholar 

  46. Zhou, J.; Sang, C.; Li, X.; Fang, M.; Wang, Z.: H consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)

    MathSciNet  Google Scholar 

  47. Li, Z.; Yan, J.; Yu, W.; Qiu, J.: Event-triggered control for a class of nonlinear multiagent systems with directed graph. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2019.2962827

    Article  Google Scholar 

  48. Basit, A.; Tufail, M.; Rehan, M.: An adaptive gain based approach for event-triggered state estimation with unknown parameters and sensor nonlinearities over wireless sensor networks. ISA Trans. 129, 41–54 (2022)

    Article  Google Scholar 

  49. Tran, V.P.; Santoso, F.; Garratt, M.A.; Anavatti, S.G.: Distributed artificial neural networks-based adaptive strictly negative imaginary formation controllers for unmanned aerial vehicles in time-varying environments. IEEE Trans. Industr. Inf. 17(6), 3910–3919 (2020)

    Article  Google Scholar 

  50. Hu, Q.; Shi, Y.; Wang, C.: Event-based formation coordinated control for multiple spacecraft under communication constraints. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 3168–3179 (2019)

    Article  Google Scholar 

  51. Maaruf, M.; Khan, K.; Khalid, M.: Robust control for optimized islanded and grid-connected operation of solar/wind/battery hybrid energy. Sustainability 14(9), 5673 (2022)

    Article  Google Scholar 

  52. Gulzar, M.M.; Gardezi, S.; Sibtain, D.; Khalid, M.: Discrete-time modeling and control for lfc based on fuzzy tuned fractional-order pd controller in a sustainable hybrid power system. IEEE Access 11, 63271–63287 (2023). https://doi.org/10.1109/ACCESS.2023.3288991

    Article  Google Scholar 

  53. Gulzar, M.M.; Munaward, M.; Alismail, F.; Khalid, M.: Finite-time consensus algorithm for power systems using cucker-smale model. In: 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), pp. 1–5 (2023). https://doi.org/10.1109/GlobConHT56829.2023.10087559

  54. Li, K.; Hua, C.; You, X.; Ahn, C.K.: Leader-following consensus control for uncertain feedforward stochastic nonlinear multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2021)

  55. Rehman, A.; Rehan, M.; Iqbal, N.; Ahn, C.K.: Regional leader-following consensus of generalized one-sided lipschitz multiagents: a Monte Carlo simulation-based strategy. IEEE Syst. J. 15(3), 3769–3780 (2020)

Download references

Acknowledgements

The authors would like to express their profound gratitude to King Abdullah City for Atomic and Renewable Energy (K.A.CARE) for their financial support in accomplishing this work.

Funding

This work was funded in part by the Interdisciplinary Research Center for Renewable Energy and Power Systems within King Fahd University of Petroleum and Minerals (Grant Number: INRE2321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Khalid.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I., Rehan, M., Iqbal, N. et al. Free-Weighting Matrix Approach for Event-Triggered Cooperative Control of Generic Linear Multi-agent Systems: An Application for UAVs. Arab J Sci Eng 49, 6761–6772 (2024). https://doi.org/10.1007/s13369-023-08465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08465-6

Keywords

Navigation