Skip to main content
Log in

Optimisation of Adsorption Removal of Bisphenol A Using Sludge-Based Activated Carbons: Application of Response Surface Methodology with a Box–Behnken Design

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The potential use of sewage sludge as a precursor for the production of activated carbon was explored in this paper. After chemical activation with ZnCl2, three activated carbons were used to decontaminate synthetic solutions containing Bisphenol A and the results were compared with a commercial activated carbon. The effect of the impregnation ratio (activating agent/precursor) and the use of CO2 during the second carbonisation on the textural properties and Bisphenol A adsorption performance of the activated carbons were studied. The highest specific surface area achieved was 730 m2/g, obtained with an impregnation ratio of 2:1 with the use of CO2.The kinetics of Bisphenol A adsorption were successfully described by both pseudo-second-order and Elovich models, while the adsorption isotherms were well fitted to the Freundlich model. The prepared activated carbon had excellent adsorption efficiency toward Bisphenol A with a maximum adsorption of 285.8 mg/g which was closer to the retention amount of the commercial one. The best adsorption conditions for Bisphenol A removal were obtained by applying response surface methodology (RSM) coupled with Box-Behnken design (BBD) onto AC-Industrial2. Under these conditions, 657.76 mg/g can be reached. Thus, these optimum conditions were therefore applied for bisphenol A removal from real effluents and the obtained results are very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of the current study are available within the article.

References

  1. Bhadra, B.N.; Lee, J.K.; Cho, C.W.; Jhung, S.H.: Remarkably efficient adsorbent for the removal of bisphenol A from water: Bio-MOF-1-derived porous carbon. Chem. Eng. J. 343, 225–234 (2018)

    Google Scholar 

  2. Dong, S.; Rene, E.R.; Zhao, L.; Xiaoxiu, L.; Ma, M.: Design and preparation of functional azo linked polymers for the adsorptive removal of bisphenol A from water: performance and analysis of the mechanism. Environ. Res. 206, 112601 (2021)

    Google Scholar 

  3. Fenichel, P.; Chevalier, N.; Brucker-Davis, F.: Bisphenol A: an endocrine and metabolic disruptor. Ann. Endocrinol. 74(3), 211–220 (2013)

    Google Scholar 

  4. Geueke, B.: Dossier—bisphenol A food packaging forum (2014). https://doi.org/10.5281/zenodo.33495

  5. Goldinger, D.M.; Demierre, A.-L.; Zoller, O.; Rupp, H.; Reinhard, H.; Magnin, R.; Becker, T.W.; Bourqui-Pittet, M.: Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Regul. Toxicol. Pharmacol. 71(3), 453–462 (2015)

    Google Scholar 

  6. Dodson, R.E.; Nishioka, M.; Standley, L.J.; Perovich, L.J.; Brody, J.G.; Rudel, R.A.: Endocrine disruptors and asthma-associated chemicals in consumer products. Environ. Health Perspect. 120(7), 935–943 (2012)

    Google Scholar 

  7. Manfo, F.P.T.; Jubendradass, R.; Nantia, E.A.; Moundipa, P.F.; Mathur, P.P.: Adverse effects of bisphenol A on male reproductive function. Rev. Environ. Contam. Toxicol. 228, 57–82 (2013)

    Google Scholar 

  8. Karnam, S.; Ghosh, R.; Mondal, S.; Mondal, M.: Evaluation of subacute bisphenol-A toxicity on male reproductive system. Vet. World 8(6), 738–744 (2015)

    Google Scholar 

  9. Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A.: Endocrine disruptors in water and their effects on the reproductive system. Int. J. Mol. Sci. 21(6), 1929–1995 (2020)

    Google Scholar 

  10. Wang, N.; Zhou, Y.; Fu, C.; Wang, H.; Huang, P.; Wang, B.; Su, M.; Jiang, F.; Fang, H.; Zhao, Q.; Chen, Y.; Jiang, Q.: Influence of bisphenol A on thyroid volume and structure independent of iodine in school children. PLoS ONE 10(10), e0141248 (2015)

    Google Scholar 

  11. Steinmetz, R.; Brown, N.G.; Allen, D.L.; Bigsby, R.M.; Ben-Jonathan, N.: The environmental estrogen bisphenol A stimulates prolactin release in vitro and in vivo. Endocrinology 138(5), 1780–1786 (1997)

    Google Scholar 

  12. Han, C.; Hong, Y.-C.: Bisphenol A, hypertension, and cardiovascular diseases: epidemiological, laboratory, and clinical trial evidence. Curr. Hypertens. Rep. 18(2), 11–16 (2016)

    MathSciNet  Google Scholar 

  13. Dehghani, M.H.; Ghadermazi, M.; Bhatnagar, A.; Sadighara, P.; Jahed-Khaniki, G.; Heibati, B.; McKay, G.: Adsorptive removal of endocrine disrupting bisphenol A from aqueous solution using chitosan. J. Environ. Chem. Eng. 4(3), 2647–2655 (2016)

    Google Scholar 

  14. Di Donato, M.; Cernera, G.; Giovannelli, P.; Galasso, G.; Bilancio, A.; Migliaccio, A.; Castoria, G.: Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol. Cell. Endocrinol. 457, 35–42 (2017)

    Google Scholar 

  15. Guo, W.; Hu, W.; Pan, J.; Zhou, H.; Guan, W.; Wang, X.; Dai, J.; Xu, L.: Selective adsorption and separation of BPA from aqueous solution using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites. Chem. Eng. J. 171(2), 603–611 (2011)

    Google Scholar 

  16. Bhatnagar, A.; Anastopoulos, I.: Adsorptive removal of bisphenol A (BPA) from aqueous solution: a review. Chemosphere 168, 885–902 (2017)

    Google Scholar 

  17. Akhtar, J.; Amin, N.A.S.; Shahzad, K.: A review on removal of pharmaceuticals from water by adsorption. Desalin. Water. Treat. 57(27), 12842–12860 (2015)

    Google Scholar 

  18. Umar, M.; Roddick, F.; Fan, L.; Aziz, H.A.: Application of ozone for the removal of bisphenol A from water and wastewater: a review. Chemosphere 90(8), 2197–2207 (2013)

    Google Scholar 

  19. Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J.: Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review. J. Hazard. Mater. 323, 274–298 (2017)

    Google Scholar 

  20. Zhang, Y.; Causserand, C.; Aimar, P.; Cravedi, J.P.: Removal of bisphenol A by a nanofiltration membrane in view of drinking water production. Water Res. 40(20), 3793–3799 (2006)

    Google Scholar 

  21. Bensouilah, R.; Hammedi, T.; Ouakouak, A.; Ghorbel, A.; Ksibi, Z.: Comparative study of the efficiency of different noble metals supported on zirconium oxide in the catalytic wet air oxidation of bisphenol-A solution. Chem. Phys. Lett. 761, 138022 (2020)

    Google Scholar 

  22. Rastegari, M.; Saeedi, M.; Mollahosseini, A.; Ayatynia, M.: Phenan-threne sorption onto kaolinite; heavy metals and organic matter effects. Int. J. Environ. Res. 10(3), 441–448 (2016)

    Google Scholar 

  23. Prete, M.C.; Tarley, C.R.T.: Bisphenol A adsorption in aqueous medium by investigating organic and inorganic components of hybrid polymer (Polyvinylpyridine/SiO2/APTMS). Chem. Eng. J. 367, 102–114 (2019)

    Google Scholar 

  24. Wang, Y.; Pan, C.; Chu, W.; Vipin, A.; Sun, L.: Environmental remediation applications of carbon nanotubes and graphene oxide: adsorption and catalysis. Nanomaterials 9(3), 439–464 (2019)

    Google Scholar 

  25. Marsh, H.; Heintz, E.A.; Rodriguez-Reinoso, F.: Introduction to Carbon Technologies; University of Alicante: Alicante, Spain, 669 (Eds.) (1997)

  26. Bansal, R.C.; Donnet. J.-B.; Stoeckli. F.: Active Carbon; Marcel Dekker: New York, NY, USA (1988)

  27. Supong, A.; Bhomick, P.C.; Baruah, M.; Pongener, C.; Sinha, U.B.; Sinha, D.: Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustain. Chem. Pharm. 13, 100159–100172 (2019)

    Google Scholar 

  28. Hadi, P.; Xu, M.; Ning, C.; Lin, C.S.K.; McKay, G.: A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment. Chem. Eng. J. 260, 895–906 (2015)

    Google Scholar 

  29. Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M.: Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 337, 616–641 (2018)

    Google Scholar 

  30. Mu’azu, N.; Jarrah, N.; Zubair, M.; Alagha, O.: Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review. Int. J. Environ. Res. Public Health 14(10), 1094–1128 (2017)

    Google Scholar 

  31. Im, U.-S.; Kim, J.; Lee, S.H.; mi Lee, S.; Lee, B.-R.; Peck, D.-H.; Jung, D.-H.: Preparation of activated carbon from needle coke via two-stage steam activation process. Mater. Lett. 237, 22–25 (2018)

    Google Scholar 

  32. Guo, S.; Peng, J.; Li, W.; Yang, K.; Zhang, L.; Zhang, S.; Xia, H.: Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl. Surf. Sci. 255(20), 8443–8449 (2009)

    Google Scholar 

  33. Brito, M.J.P.; Veloso, C.M.; Bonomo, R.C.F.; Fontan, R.D.C.I.; Santos, L.S.; Monteiro, K.A.: Activated carbons preparation from yellow mombin fruit stones for lipase immobilization. Fuel Process. Technol. 156, 421–428 (2017)

    Google Scholar 

  34. Hock, P.E.; Zaini, M.A.A.: Activated carbons by zinc chloride activation for dye removal: a commentary. Acta. Chim. Slov. 11(2), 99–106 (2018)

    Google Scholar 

  35. Sanz-Santos, E.; Álvarez-Torrellas, S.; Ceballos, L.; Larriba, M.; Águeda, V.I.; García, J.: Application of sludge-based activated carbons for the effective adsorption of neonicotinoid pesticides. Appl. Sci. 11(7), 3087–3102 (2021)

    Google Scholar 

  36. Kumar, A.; Jena, H.M.: Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys. 6, 651–658 (2016)

    Google Scholar 

  37. Smisek, M.; Cerny, S.: Active Carbon: Manufacture, Properties and Applications. Elsevier, New York (1970)

    Google Scholar 

  38. Box, G.E.P.; Hunter, W.G.; Hunter, J.S.: Statistics for Experimenters. Wiley, New York (1978)

    Google Scholar 

  39. Montgomery, D.C.: Design and Analysis of Experiments, 3rd edn., p. 270. Wiley, New York (1991)

    Google Scholar 

  40. Box, G.E.P.; Wilson, K.B.: On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 13(1), 1–38 (1951)

    MathSciNet  Google Scholar 

  41. Box, G.E.P.; Behnken, D.W.: Some new three level designs for the study of quantitative variables. Technometrics 2(4), 455–475 (1960)

    MathSciNet  Google Scholar 

  42. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, Singapore (2001)

    Google Scholar 

  43. Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)

    Google Scholar 

  44. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure. Appl. Chem. 87(9–10), 1051–1069 (2015)

    Google Scholar 

  45. Chen, R.; Li, L.; Liu, Z.; Lu, M.; Wang, C.; Li, H.; Ma, W.; Wang, S.: Preparation and characterization of activated carbons from tobacco stem by chemical activation. J. Air Waste Manag. Assoc. 67(6), 713–724 (2017)

    Google Scholar 

  46. Mohanty, K.; Das, D.; Biswas, M.N.: Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12(2), 119–132 (2006)

    Google Scholar 

  47. Rojas-Morales, J.L.; Gutiérrez-González, E.C.; de Jesús Colina-Andrade, G.: Obtaining and characterization of activated carbon obtained sludge treatment plant wastewater from a poultry industry. Ing. Investig. Tecnol. 17(4), 453–462 (2016) (ISSN 2594-0732)

    Google Scholar 

  48. Liou, T.-H.: Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 158(2), 129–142 (2010)

    Google Scholar 

  49. Streit, A.F.M.; Côrtes, L.N.; Druzian, S.P.; Godinho, M.; Collazzo, G.C.; Perondi, D.; Dotto, G.L.: Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Sci. Total Environ. 660, 277–287 (2019)

    Google Scholar 

  50. Wu, C.; Li, L.; Zhou, H.; Ai, J.; Zhang, H.; Tao, J.; Wang, D.; Zhang, W.: Effects of chemical modification on physicochemical properties and adsorption behavior of sludge-based activated carbon. J. Enviro. Sci. 100, 340–352 (2021)

    Google Scholar 

  51. Zhang, J.; Shao, J.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H.: Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 252, 101–108 (2019)

    Google Scholar 

  52. Khoshbouy, R.; Takahashi, F.; Yoshikawa, K.: Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environ. Res. 175, 457–467 (2019)

    Google Scholar 

  53. Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D.: Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 846, 3973–3993 (1960)

    Google Scholar 

  54. Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V.: Adsorption of bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng. 6(1), 823–833 (2018)

    Google Scholar 

  55. Fazeli Zafar, F.; Barati, B.; Rasoulzadeh, H.; Sheikhmohammadi, A.; Wang, S.; Chen, H.: Adsorption kinetics analysis and optimization of Bisphenol A onto magnetic activated carbon with shrimp shell based precursor. Biomass Bioenergy 166, 106604 (2022)

    Google Scholar 

  56. Gómez-Serrano, V.; Adame-Pereira, M.; Alexandre-Franco, M.; Fernández-González, C.: Adsorption of bisphenol A by activated carbon developed from PET waste by KOH activation. Environ. Sci. Pollut. Res. 28, 24342–24354 (2020)

    Google Scholar 

  57. Zbair, M.; Ainassaari, K.; Drif, A.; Ojala, S.; Bottlinger, M.; Pirilä, M.; Keiski, L.R.; Bensitel, M.; Brahmi, R.: Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ. Sci. Pollut. Res. 25(2), 1869–1882 (2017)

    Google Scholar 

  58. Hacıosmanoğlu, G.G.; Doğruel, T.; Gençc, S.; Oner, E.T.; Can, Z.S.: Adsorptive removal of bisphenol A from aqueous solutions using phosphonated levan. J. Hazard. Mater. 374, 43–49 (2019)

    Google Scholar 

  59. Mohammadi, A.A.; Dehghani, M.H.; Mesdaghinia, A.; Yaghmaian, K.; Es’haghi, Z.: Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: functionalization, kinetics, and isotherms studies. Int. J. Biol. Macromol. 155(15), 1019–1029 (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Comunidad de Madrid through the Industrial PhD Projects (under Grant Numbers IND2017/AMB-7720 and IND2019/AMB-17114) and REMTAVARES-CM Network (under Grant Number S2018/EMT-4341) and The European Social Fund. Also, the authors thank the project PID 2020-116478RB-I00 supported by MCIN/AEI/10.13039/501100011033 and gratefully acknowledge the financial support furnished by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

MO helped in writing—original draft, writing—review and editing, conceptualization, validation, investigation, methodology, formal analysis and software. ES-S was involved in writing—review and editing, conceptualization, investigation, formal analysis and software. FF, SÁ-T and MKY contributed to writing—review and editing, conceptualization, methodology and supervision. BH performed writing—review and editing, conceptualization, methodology, validation, formal analysis and software. ML helped in writing—review and editing. JG was involved in resources, project administration, funding acquisition and validation.

Corresponding author

Correspondence to Mabrouka Ounis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to report.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ounis, M., Sanz-Santos, E., Fakhfakh, F. et al. Optimisation of Adsorption Removal of Bisphenol A Using Sludge-Based Activated Carbons: Application of Response Surface Methodology with a Box–Behnken Design. Arab J Sci Eng 49, 497–514 (2024). https://doi.org/10.1007/s13369-023-08203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08203-y

Keywords

Navigation