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Abstract
The adsorption process was investigated using the ANFIS, ANN, and RSM models. The adaptive neuro-fuzzy inference
system (ANFIS), artificial neural network (ANN), and response surfacemethodology (RSM)were used to develop an approach
for assessing the Cr(VI) adsorption from wastewater using cellulose nanocrystals and sodium alginate. The adsorbent was
characterized using Fourier transform infrared spectroscopy and thermogravimetric analysis. Initial pH of 6, contact time of
100 min, initial Cr(VI) concentration of 175 mg/L, sorbent dose of 6 mg, and adsorption capacity of 350.23 mg/g were the
optimal condition. The Cr(VI) adsorption mechanism was described via four mechanistic models (film diffusion, Weber and
Morris, Bangham, and Dumwald-Wagner models), with correlation values of 0.997, 0.990, and 0.989 for ANFIS, ANN, and
RSM, respectively, and predicted the adsorption of the Cr(VI) with incredible accuracy. Statistical error taskswere additionally
applied to relate the adequacy of the models. Using the central composite design (CCD), the significance of operating factors
such as time, adsorbent dose, pH, and initial Cr(VI) concentration was investigated. The same concept was used to create a
training set for ANN where the Levenberg–Marquardt, variable learning rate, and Polak Ribiere conjugate algorithms were
used. Further statistical indices supported ANFIS as the best prediction model for adsorption compared to ANN and RSM.
The efficient algorithm was used to optimize the process, which resulted in a 350 mg/g adsorption capacity. Film diffusion
was identified as the rate-limiting process via mechanistic modeling.
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ML Multilayer perceptron
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XRF X-ray fluorescence
FTIR Infrared spectroscopy
SEM Scanning electron microscope

1 Introduction

Heavy metals have a more than 5 g/cm3 density and atomic
weights ranging from 63.0 to 200.0. Water pollution caused
by the discharge of heavy metals into the ecosystem met-
als has been a source of concern across the world [1]. Heavy
metals are primarily found in wastewater from various chem-
ical industries such as the production of steel, chemical
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manufacturing, fertilizer, mining, pulp, and pesticides, as
well as metallurgy, mining, coal power, leather industries,
and the manufacture of various polymers such as polyvinyl
chloride [2]. The significant growth in industrialization has
significantly contributed to releasing contaminants into the
environment. Heavy metals, unlike organic pollutants, accu-
mulate in human organisms since they are not biodegradable.
Arsenic, chromium, copper, cadmium, lead, nickel, zinc, and
mercury are toxic heavy metals of crucial significance in
industrial wastewater treatment [3].

Chromium is considered one of the earth crust’s most
abundant elements and is estimated to be the sixthmost abun-
dant transition metal. Chromium is a metal found in natural
deposits as ores containing other elements such as crocoite,
ferric chromite, and chrome ochre [4]. It is a well-known,
very poisonous metal that may be found in drinking water.
Chromium exists in various oxidation states, including 2+ ,
3+ , and 6+ , with the most stable being trivalent Cr(III) and
hexavalent Cr(VI). Cr(III) is much less harmful than Cr(VI)
because it is an essential component of human organisms [1].
Cr(VI), however, is exceedingly hazardous andmay be found
in various industrial wastewater, causing severe nausea, vom-
iting, lung congestion, and liver and kidney problems [5].
Leather tanning, textile industries, metal polishing, electro-
plating, and chromate preparation all require chromiummetal
[4].

As a result, industrial effluent discharge into the envi-
ronment is a possible source of chromium pollution in
wastewater. Industrial sources include refrigeration tower
blowdown, electrolysis, mineral processing, and coating
activities. Dichromate (Cr2O7

2) and chromate (CrO4
2−)

ions are the most common forms of Cr(VI) [6]. Cr(VI)
can exist in water as chromate ion (CrO4

2−), dichromate
(Cr2O7

2) ions, chromic acid (H2CrO4), and hydrogen chro-
mate ion (HCrO4−) depending on the pH of the solution. As
a result of these detrimental impacts, the United States Envi-
ronmental Protection Agency (USEPA) has categorized all
chromium(VI) compounds as potential health hazards and
set the allowable contaminant level in water at 0.1 mg/L.
Because of the strict rules limiting the emission of this dan-
gerous pollutant into water bodies, numerous solutions must
be developed to decrease chromium(VI) to the permissible
limit [7].

Chemical precipitation, electrolysis, ion exchange, coag-
ulation, membrane separation, and adsorption are all well-
known and efficient traditional sewage treatment procedures
[3]. However, because of constraints such as low effi-
cacy, high operating costs, and the danger of secondary
contamination, most of these technologies could not be
widely deployed. The adsorption process has been exten-
sively researched and widely implemented on a large scale
because of its high efficiency, low cost, easy operation, and
lack of polluting by-products [8]. Various authors [4, 7]

have reported methods for adsorbing Cr(VI) from solution,
including ion exchange, electrolysis, chemical precipitation,
membrane separation, and adsorption. Of these methods, the
adsorption process seems to have great potential due to its
ability to remove heavy metal ions from water and wastew-
ater, its simplicity, easy operation, and the potential to be
regenerated by some desorption processes.

Adsorbents based on natural polymers, in particular, are
gaining much interest. Many of them were developed to
address the disadvantages of synthetic polymers, such as
their high cost of manufacture and challenges in regener-
ation. On the other hand, natural polymers can be highly
effective, biodegradable, cost-effective, and recyclable, with
no sludge formation and complete pollution reduction [9, 10].
Cellulose nanocrystals is a biopolymer with a large surface
area that is renewable and sustainable. Cellulose nanocrys-
tals are derived from natural cellulose by acid hydrolysis
and are commonly applied in three industrial sectors: energy
electronics, biomedical, and wastewater treatment [11]. Cel-
lulose nanocrystals and various active OH groups have been
physically and chemically modified using grafting, compos-
ite synthesis, and carboxylation [12]. The last step is to soak
cellulose nanocrystals in citric acid anhydrous. The resulting
carboxylated cellulose nanocrystals retain cellulose’s funda-
mental structure while displaying beneficial properties such
as high specific surface area, hardness, and excellent stability.

Alginate is a naturally present biopolymer of mannuronic
acid and guluronic acid residues obtained from brown algae
[13]. Alginate is a potential biopolymer for various appli-
cations, such as drug administration, surgical dressing, and
wastewater treatment. It has several desirable characteristics,
including non-toxicity, biodegradability, biocompatibility,
and low cost. Alginatemay bemodified physically and chem-
ically to increase its structural performance and durability
and generate new adsorptive structural features. Graft poly-
merization, composite, and developing hydrogel beads are
the most frequent ways of improving alginate’s adsorption
properties [14].

One factor at a time (OFAT) is used in experimental design
where one variable is varied while keeping all other fac-
tors constant. This approach aims to investigate the effect
of each factor on the system or process being studied. This
method is simple and easy to use but has limitations [15].
OFAT assumes that the factors under investigation are inde-
pendent, and that their effects on the system or process are
linear and additive. However, in many cases, the factors are
interdependent, and their effects are nonlinear and interac-
tive. Therefore, OFAT may be unable to identify the optimal
conditions for a process or system and may miss significant
interactions among the factors [16].

OFAT may not be effective regarding heavy metal ions
removal because the factors affecting heavy metal removal
are often interdependent and nonlinear. For example, the pH,
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temperature, and concentration of the heavy metals in the
water can all affect the removal efficiency of a given method
[17]. However, these factors do not act independently, and
their effects on removal efficiency may be nonlinear and
interactive. Therefore, by varying one factor at a time, OFAT
may not capture the system’s true nature and identify the
optimal conditions for effective heavy metals removal. As a
result, a more comprehensive and systematic approach, such
as response surface methodology or factorial design, may be
required to optimize the heavy metals removal process [18].

Unlike one factor at a time, the response surface method-
ology (RSM) is a statistical method for optimizing a process
in which many independent input variables impact a depen-
dent output variable. The response is the name of the output
variable. As an improved systematic approach to experimen-
tation, RSM evaluates all process variables simultaneously
while predicting an outcome. One of the most critical aspects
of RSM is the central composite design (CCD). The central
composite design is a three-level experimental design that
combines the axial and factorial design points in the experi-
ments conducted. One of its key benefits is that it just requires
a few experimental runs to determine the optimal experimen-
tal conditions [19].

The artificial neural network (ANN) is a computational
model that estimates the processing data of biological neu-
rons. In addition to input and output layers, most neural
network models have one or more hidden layers, the number
is affected by the type of investigation. A neural net-
work’s main characteristic is its capacity to perform internal
computations to determine the targeted output from input
information [20]. Since it is reliable and efficient in repre-
senting the nonlinear interactions among the variables and
responses of diverse processes, ANNmay be applied in com-
plex systems. Through training in the multiple input–output
networks algorithm, the ANN can also assess multifactorial
nonlinear and complicated processes given sufficient data
[21].

ANFIS is a neural network that is built on mathematical
computation. Its operation is based on the Takagi–Sugeno
fuzzy inference system, which allows it to handle complex
and nonlinear problems. It consists of a mixed system of
neural networks and fuzzy systems which work together to
provide accurate and better predictions from recorded input
information. The fuzzy inference mechanism enhances the
system’s reliability and dependability, while the neural net-
work regulates its flexibility [22]. In recent years, there has
been a growth in interest in using ANFIS in various pro-
cesses. ANFISwas used by [23] to investigate the indium(III)
removal from leachates of LCD screens [24]. ANFIS based
on a hairpin RNA genetic algorithm for simulating overhead
cranes.

This study used modified cellulose nanocrystals and
sodium alginate to remove Cr(VI) from the aqueous solu-
tion by adsorption. The research’s novelty is based on the
modeling and analysis of Cr(VI) adsorption capacity using
artificial neural networks (ANN), response surface method-
ology (RSM), and adaptive neuro-fuzzy interference system
(ANFIS), as well as the relationship between the output
variable and four input variables, including adsorption time,
dosage, pH, and adsorbate concentration.Theperformanceof
ANN,RSM, andANFIS techniques is compared to the statis-
tically significant nonlinear error functions that measure the
error distribution. However, most Cr(VI) removal research
focused on (OFAT) the one-factor-at-a-time technique. One
factor at a time requires a long time to evaluate. It cannot
be used to predict the desired optimal adsorption efficiency
as a series of contact between process variables. There has
been no comparative investigation of Cr(VI) removal using
complexmodelingmethods such as the adaptive neuro-fuzzy
inference system (ANFIS), artificial neural network (ANN),
and the response surface approach (RSM). As a result, our
research is aimed toward reaching that goal. In addition, four
mechanistic models (Weber and Morris, Dumwald-Wagner
film diffusion, and Bangham models) have been explored to
establish the rate-controlling phase in the adsorption process.
The coefficient of correlation was used to evaluate the mod-
els. As a result, the following are the goals of this work: (1)
CNC-modified adsorbent preparation and characterization;
(2)modeling the adsorption capacity ofCr (VI) usingANFIS,
ANN, and RSM; (3) comparison of the three models pre-
dictive capacities; and (4) determining the rate-controlling
phase of the adsorption process using four mechanistic
models.

2 Material andMethod

2.1 Materials and Equipment

Cellulose nanocrystals were hydrolyzed from waste papers
(≥ 90%). Calcium chloride (> 99%), sodium hydroxide (>
99%), hydrochloric acid (> 99%) and potassium dichromate
(> 99%) were all purchased from Sigma-Aldrich. The pH
of the solution was controlled using a pH meter (Hanna HI
8421). Distilled water was produced using the Ultima 888
water distiller. Using induced coupled plasma, the quantity of
metal ions adsorbed was assessed (ICP, Icap7000). The func-
tional groups available in the CNC-Alg were explored using
Fourier transform infrared spectroscopy (FTIR, PerkinElmer
UATR), and the morphological surface was examined using
scanning electron microscopy (SEM, Philips XL30FEG).
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Fig. 1 Proposed structure of CNC-Alg particles

2.2 Preparation of CNC-Alg Adsorbent

This experiment created a colloidal solution by adding algi-
nate to water and agitating it at 60 °C for 60 min. Cellulose
nanocrystals were dispersed using ultrasound and added to
the alginate solution to achieve a uniform diffusion. The
blended solutionwas then agitated at a continuous high speed
for 120 min. The resulting mixture was injected into a CaCl2
solution and mechanically stirred for 45 min. The cellulose
nanocrystals and sodium alginate particles were then trans-
ferred to a 0.2% CaCl2 solution to solidify. After 36 h, the
particles were removed from the solution and rinsed with
distilled water. Finally, the chemical structure of the par-
ticles was analyzed using Gaussian 6.0 software, and the
optimized structure is represented in Fig. 1. The optimiza-
tion process involves calculating the potential energy surface
of the material, which describes the energy of the system as
a function of the positions of the atoms. The software then
iteratively adjusts the positions of the atoms in the material
until the lowest energy configuration is found. This process is
repeated until the system’s energy converges to a minimum,
indicating that the geometry and structure of the material
have been optimized.

2.3 Adsorption Experimental

Batch experiments were used to develop the adsorption
method. Batch studies were carried out in 200-mL glass-
stoppered flasks reactors holding test solutions at the appro-
priate required Cr(VI) concentration, contact time, adsorbent
dose, and pH at room temperature (27 ± 2 °C). The amounts
of a solution with a particular concentration of Cr(VI) were
placed in the reactor. To maintain a consistent pH throughout
the experiment, the pH of the solution was controlled using
0.1MNaOHorHCl.A shakerwas used to agitate the solution
at 180 rpm, adding the appropriate weight of adsorbent in the
prescribed dose. The mixed phases were then centrifugated
for 10 min at 1500 rpm.

The quantity of Cr(VI) adsorbed onto CNC-Alg (qe) was
determined using the equation below.

qe �
(
Ci − Ceq

) × V

M
(1)

where Ci (mg/L) denotes the starting concentration, Ceq

(mg/L) denotes the equilibrium concentration, M (mg)
denotes the mass of the nanocomposite used, and V (L) is
the volume of the solution.

2.4 Response Surface Methodology

RSM investigation of the adsorption process was performed
using a central composite design (CCD). The four parameters
employed as independent variables at a constant volume of
100 ml and a temperature of (27 ± 2 °C) were adsorbent
dosage, contact time, concentration, and pH. The three levels
of variance for these components are shown in Table 1 (−
1, 0, + 1). Based on the findings of the experiments and past
research, the experimental limit was determined [25]. The
response variable was the adsorbent capacity (mg/g). The
RSM analysis examined 21 experimental data sets, including
six central points. The core points ensured that the higher and
lower values varied equally, the axial points ensured that the
model prediction deviation was equal from the design center,
and the center point facilitated data repeatability. The studies
were carried out randomly to avoid systematic mistakes [26].

The response was estimated using an empirical relation-
ship of the second-order polynomial, as shown in Eq. 2.

Y � γ0 + γa A + γbB + γcC + γd D + γaa A
2

+ γbbB
2 + γccC

2

+ γdd D
2 + γab AB + γac AC + γad AD

+ γbcBC + γbd BD + γCDCD (2)

where Y is the expected response, γ 0 is the model constant,
A, B, C, and D are independent variables, γ a, γ b, γ c and
γ d are linear coefficients, and γ ab, γ ac γ ad γ bc and γ cd are
cross-product coefficients, and γ aa, γ bb γ cc and γ dd are the
quadratic coefficients.

Design Expert version 13 was employed for the experi-
mental design, regression analysis, analysis of variance, and
optimization of process factors in the adsorption of Cr(VI).
The regression coefficient (R2) and theANOVA p-valuewere
used to assess the model’s acceptability. By plotting the
response variable on the z-axis and two independent vari-
ables on the x- and y-axis, the three-dimensional diagram can
visualize how changes in the independent variables affect the
response variable. This visualization can help researchers to
identify the optimal combination of independent variables
that will result in the desired response and understand the
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Table 1 Levels of independent
variables for Cr(VI) adsorption Variable Coded Coded level

Time (min) A 20 100 120

Dosage (g) B 2 6 10

pH C 3 6 9

Concentration (mg/L) D 50 175 300

nature of the relationship between the variables. In addition to
providing a visual representation of the relationship between
variables, a three-dimensional diagramcanbeuseful for com-
municating results to others. It allows researchers to see the
results in a clear and easily understandable way, making it a
valuable tool for presenting and sharing scientific findings.
When the relationship between the input and output variables
is nonlinear, RSM may not accurately capture the underly-
ing relationship, which can result in suboptimal solutions.
Researchers have explored using artificial neural networks
(ANN) as an alternative modeling approach to address this
issue.

2.5 Artificial Neural Network

According to [27], the RSM-generated experimental data
set may be exploited to evaluate the ANN model correctly.
Therefore, given a huge number of data sets, ANN model-
ing performs better. ANN can learn and model nonlinear and
complex interactions, which is significant since many of the
relationships between inputs and outputs in real life are non-
linear and complex [28].ANNcan generalize—after learning
from the original inputs and their relationships, it can also
estimate unseen relationships on unseen data, allowing the
model to generalize and predict unseen data. Unlike many
other prediction algorithms, ANN imposes no constraints on
the input variables. Furthermore, several studies have demon-
strated that ANNs can better predict data with high volatility
and non-constant variance due to their capacity to learn hid-
den correlations without imposing any fixed relationships in
the data [29]. The procedure for optimization by ANN is
presented in Fig. 2.

The ANN was truly tested using the abovementioned
parameters, the slope, the validation test variable used to
determine the ANN’s validity, and data analysis regression,
which reveals how theANNplots. The connectionwas exam-
ined, and the weights were re-initialized and modified if
they were too tight or loose. The process of training, test-
ing, validating, and regression was repeated until the fit
was satisfactory. The outcome and error data were collected
when the fitting was satisfactory, and the targets and out-
puts were compared [30]. To develop ANN, [25] state that
the following crucial characteristics must be determined: (1)

Input/output

ANN training

ANN estimation

Test

ANN

Training set

Data set

Test set

ANN training

satisfactory

unsatisfactory

Fig. 2 Procedure for optimization by ANN

Table 2 Back-propagation algorithm

BP algorithm Function MSE

Levenberg–Marquardt back propagation Trainlm 0.002

Variable learning rate back propagation Traingdx 0.130

Polak Ribiere conjugate gradient back
propagation

Traincgp 0.121

Back-propagation training method selection, (2) data distri-
bution, (3) ANN structure selection, and (4) starting weight
selection[21].

2.5.1 Algorithm for BP Training Selection

Three back-propagation training algorithms were examined
to determine the best back-propagation training method, as
shown in Table 2. The ANN Toolbox was used to import
the data’s laboratory findings. Most back-propagation train-
ing techniques used a three-layer NN with a linear transfer
function at the output layer and a tangential sigmoid transfer
function at the hidden layer. TheLevenberg–Marquardt back-
propagation training method was chosen because it has the
minimummean squared error, indicating that the algorithm’s
error is very low. The regression correlation and the MSE
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were determined for NN cross-validation. The Levenberg—
Marquardt back-propagation BP technique was used to build
the NNmodel for the experimental data. The neural network
was trained using these data. The outcome matrix was gener-
ated via a forward pass (feed-forward back-propagation NN)
during training. The input matrix was sent forward through
the network to generate each unit’s output.

As a result, the RSM collected data sets were doubled
yielding forty-two (42) data sets for the ANN analysis.
For the ANN computation, MATLAB software 2015 was
employed. The network was trained using a multi-layer per-
ceptron (MPL). For modeling, the Levenberg–Marquardt
back-propagation, Polak Ribiere conjugate gradient back-
propagation, and variable learning rate back-propagation
algorithm were used (Table 2). The Levenberg–Marquardt
(LM) algorithm, often known as the damped least squares
approach, handles nonlinear least squares problems [31]. The
variable learning approach is computationally cheap since it
does not requiremany operations to assess theHessianmatrix
and calculate the associated inverse. Each iteration gener-
ates an approximation value to the inverse Hessian matrix.
It is calculated using just the first derivatives of the loss
function[32]. The conjugate gradient algorithm, which is a
hybrid of gradient descent and Newton’s technique, might be
regarded as one of the strategies for improving the conver-
gence rate of an artificial neural network.

Trial and error were used to determine the number of neu-
rons in the hidden layer that would give the lowest mean
square error (MSE) and the highest correlation coefficient.
This was done to guarantee that the model’s predictions were
as near as possible to the experimental data and to avoid over-
fitting. Large and small numbers of neurons were avoided
since they might result in complex over-fitting and increased
convergence speed [24]. About 70% of the data sources were
chosen to train the neural network, 15% to test the neural net-
work, and the other 15% to confirm the output. Trainlm was
utilized as the trainingmethod to normalize the bias value. To
eliminate network error, the input parameters and response
were standardized between 0 and 1 [33]. However, ANNs
have limitations, such as the potential for overfitting and
difficulty interpreting the learned model. To address these
issues, researchers have developed ANFIS (adaptive neuro-
fuzzy inference system),which combines the power ofANNs
with the interpretability of fuzzy logic.

2.6 Adaptive Neuro-Fuzzy Inference System

ANFIS has been shown to outperform traditional RSM and
ANN models in various applications, mainly when the rela-
tionships between the input and output variables are highly
nonlinear.ANFIS combines the qualitative approach of fuzzy
logic with the quantitative approach of neural networks. Inte-
grating adaptive capabilities into a single system has certain

drawbacks and benefits. A trial-and-error method defines
membership parameters and rules in a fuzzy system [34].
The ANFIS model was generated using the fuzzy inference
approach. The first and last layers of the ANFIS structure,
respectively, represent the input parameters and the out-
put variable. The model corresponded to first-order Sugeno
inference systems in the second layer, which fuzzify input
parameters by converting them intomembership values using
membership function parameters (MF). In the third layer, the
model output was derived using a set of logical principles. In
the third layer, the model output was computed using logical
rules. The defuzzification of the inferred result to the actual
target value was achieved in the fourth layer by applying the
output membership function [26]. In the fifth layer, only one
node displayed all received signals as the total output, which
is the adsorbent capacity [35]. The procedure for optimiza-
tion by ANFIS is shown in Fig. 3.

2.7 Model Performance Indicator

The ANFIS, ANN, and RSM modeling findings were com-
pared to performance indicators to provide a classification
that identified the model with the highest predictive poten-
tial concerning the results obtained. The analysis used five
high-performance statistical error functions (Eqs. 3–7). The
assessment indices that were chosen were based on the char-
acteristics of the data set that was used. A comparative parity
analysiswas also performed,which indicated particular devi-
ation spots between the ANFIS, ANN, and RSM model
predictions from the experimental results [36].

RMSE

√√√√ 1

N

n∑

i�1

((
qe(exp) − qe(pred)

)2

qe(exp)

)

(3)

ARE
100

N

n∑

i�1

([(
qe(exp) − qe(pred)

)i

qe(exp)

])

(4)

SSE
n∑

i�1

(
qe(exp) − qe(pred)

)2 (5)

MSE
1

N

n∑

i�1

(
qe(exp) − qe(pred)

)2 (6)

MPSD � 100

√√√√ 1

N − P

n∑

i�1

((
qe(exp) − qe(pred)

)2

qe(exp)

)

i (7)

where the number of observations is N , the number of vari-
ables in the model is P, qe(pred), and qe(exp) are predicted and
experimental adsorbent capacity, respectively.
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Fig. 3 Procedure for
optimization by ANFIS Loading training/checking/testing data 

ANFIS model generation  

Input parameters and FIS model optimization method, 
number of epochs for training and checking data  

Training data

Training finished

Result after training 

Checking data ANFIS system

Testing finish 

ANFIS structure, curve, generated 
rules, adjusted membership rules 

and output surface 

Error acceptable
Error unacceptable

Error acceptable

Error unacceptable

Table 3 Mechanistic models

Model Equation Eqn.
Num

References

Liquid film diffusion ln (1 − A) � −
Kdt

(8) [3]

Weber and Morris qX � KXt0.5 +
CX

(9) [20]

Dumwald-Wagner log(1 − A2) �
(−
Kdw/2.3 V)t

(10) [21]

Bangham log (Ca/Ca −
qmax) + Log
(Kbm/2.3)t +
βlogt

(11) [21]

2.8 MechanismModeling

Four mechanistic models were explored to reveal the rate-
controlling phase in removing the Cr(VI) (see Table 3). In
mechanistic modeling, the Bangham model, the film dif-
fusion (Boyd) model, the Dumwald-Wagner model, and
the Weber and Morris (intra-particle) diffusion model were
used[26].

Kd is the rate constant, andA is the diffusion coefficient for
the liquid film diffusion. KX is the rate constant for Weber
and Morris, and Cx is the equilibrium adsorbent capacity.
Kdw is the rate constant, A is the coefficient, and V is the

volume required for the Dumwald-Wagner model. Kb is the
rate constant, β is the coefficient, m is the mass, qmax is the
maximum adsorption capacity, andC is the concentration for
Bangham model.

3 Results and Discussion

3.1 Characterization of the Cellulose
Nanocrystals-Alginate Nanocomposites

3.1.1 FTIR Analysis

As shown in Fig. 4, the peaks at 3300, 1650, and 1400 cm−1

indicate the stretched vibration of O–H, the asymmetric
vibration of C=O, and the symmetric vibrations of the car-
boxyl group, respectively. TheC–H stretching vibration peak
was between 3000 and 2600 cm−1, and the C–O stretching
vibration peak was at 1200 cm−1. The cellulose nanocrys-
tals include a lot of COOH and OH, whereas Alginate has
a lot of OH but very little COOH. This might imply that
Alginate was successfully coated with cellulose nanocrys-
tals while retaining some OH and COOH in the composite.
The stretching vibration of CH2 is responsible for the peak at
1350 cm−1. Other bands include 1020 cm−1 for morpholog-
ical change in C–O and 850 cm−1 for the normal cellulose
structure with glycoside connections in the glucose ring
[37].
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Fig. 4 FTIR vibrational spectra
of the cellulose nanocrystals and
alginate

3.1.2 TGA Analysis

The TGA curves of cellulose nanocrystals–sodium alginate
samples produced in an N2 atmosphere at a 10 C min−1

heating rate are shown in Fig. 5. The weight loss for cellu-
lose nanocrystals–sodium alginate was rapid at 150–200 °C,
followed by a more gradual reduction at 200–380 °C. The
breakdown of the pyranose rings in CCN’s backbone is
correlated with a distinctive degradation between 250 and
320 C. The last degradation stage occurred at 400–600 °C,
resulting in a 10% weight loss, which was consistent with
the disintegration of alginate and cellulose nanocrystals and
demonstrated the effective synthesis process[37].

3.2 Experimental Design Result

An experimental design was adopted to investigate the indi-
vidual and interacting impacts of the process factors. Most
of the responses from different runs were considered excep-
tional, demonstrating that the input parameters considerably
impacted the response.At a contact timeof 180min, an adsor-
bent dose of 2 g, a solution pH of 6, and a concentration of
50 mg/L, the maximum adsorption capacity of 265 mg/g was
recorded.

3.2.1 Response Surface Method Plots

Graphical representations such as three-dimensional (3-D)
and contour surface plots may be used to explore the
interaction effects of the combination of input factors and

response[33]. Figure 6 shows these plots. The graphs were
used to demonstrate how the combined impacts of the pro-
cess parameters on the adsorbent capacity of CNC-alginate
adsorbent for Cr(VI) removal. The surface plots were devel-
oped by changing any two variables within the experimental
region while keeping the other independent factors constant
at their center points.

Figure 6a, b shows the interaction impact of contact time
and dosage at a constant concentration of 175 mg/L and pH
of 6. It was discovered that as both contact time and dosage
expanded simultaneously, the adsorption capacity was raised
to 466mg/g. This is due to the availability of additional active
adsorption sites for Cr(VI) capture, and the presence of suf-
ficient time for the adsorption process is responsible for the
increase in Cr(VI) [6]. This was corroborated by the contour
plot, which revealed that the optimal predicted adsorption
capacity was 466 mg/g at a contact period of 180 min and a
dosage of 2 g. The 3D plot’s design showed a high interaction
relationship between time and dosage.

Figures 6c, d demonstrates the combined effects of pH and
concentration at a contact time and dosage at CenterPoint of
150min and 150mg/L, respectively. The contour plot resem-
bled a vertical line, indicating that the pH and concentration
interacted.Within the pH range used, the adsorption capacity
dropped as pH increased. Lower pH and high concentration
increased the adsorption capacity. Thiswas because, at acidic
pH, the hydrogen bond degree of the CNCs/Alginate resulted
in greater mobility and, as a result, an increase in adsorption
due to electrostatic charge [38].
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Fig. 5 TGA curve of the cellulose
nanocrystals and alginate

3.2.2 Response Surface Modeling and ANOVA Analysis

The Design Expert software’s central composite design
(CCD) was used in the RSM model study. The two-factor
interactions, linear, cubic, and quadratic models, were com-
pared using statistical model results to explain the interaction
between the output and input variables. A high regression
coefficient (R2) and a low standard variationwere used to find
the optimummodel for the adsorption process [39].As shown
in Table 4, the best model for describing Cr(VI) removal was
a quadratic model with an R2 value of 0.989 and a stan-
dard deviation of 1.62. Furthermore, the quadratic model’s
adjusted R2 of 0.992 was close to the R2, indicating strong
significance and acceptable agreement between the input and
output values [40]. The adjusted R2 value was close to the
predicted R2, suggesting that the model and data were ade-
quate [6].

3.2.3 Anova (Analysis of Variance)

The findings of the analysis of variance are summarized in
Table 7. It was used to determine the significance of the
quadratic model and design variables. The p-value was used
to determine the significance of each term in the quadratic
model. A 95% confidence level was employed in the p-value
probability analysis. This implies that variableswith p-values
more than or equal to 0.05 are insignificant, and terms with
p-values less than or equal to 0.05 are significant.

The magnitude of the model’s relevance and each of the
quadratic model’s independent input data were both deter-
mined using Fisher’s F-test values. The ratio between the
model’s mean square was determined to achieve this. The
greater the F-value for each significant model term, the

greater the term’s impact on the response. The p-value was
less than 0.0001, and the F-value was 93.45, suggesting that
the quadratic model recommended was acceptable [41].

The variables time (A), dosage (B), pH (C), and concen-
tration (D) were significant, as were the interacting variables
of AB, BC, AC, CD, AD, and BD, as well as the exponential
variables of A2,C2, B2, andD2. For the interactive and expo-
nential variables, Time had the most singularly significant
influence, followed by the concentration on the adsorption
of the Cr(VI). In contrast, the dose and the combination of
pHanddosage had themost significant effects. TheRSMpro-
cess’s coefficient of variation was 2.10%, indicating that the
model equation was adequately predictable. The coefficient
of variationwas calculated by dividing the standard deviation
by the mean of the output variable. A model is considered
highly replicable if the coefficient of variation is below 10%,
according to [42]. Equation 12 shows the quadratic model
equation that relates the response of Cr(VI) removal to the
independent input variables (pH, time, dosage, and initial
concentration).

Adsorption capacity (mg/g)

� 294.73 + 95.37A − 42.63B

− 36.68C − 43.00D − 30.10A2 + 38.53B2 + 92.14C2

+ 24.03D2 − 25.30AB − 11.92AC − 3.38AD

− 30.51BC − 11.37BD + 3.38CD (12)

Themodel equationmight predict the response for a given
set of variables. It was also important to compare the vari-
ables’ coefficients to see how they influenced the results.
Any model term with a positive sign had a synergistic effect,
whereas those with a negative value had an antagonistic
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Fig. 6 Three-dimensional surface and contour plots of Cr(VI) adsorption

Table 4 Statistical overview of
the models examined Model P-value df Standard deviation R2 R2(Adj) R2(Pred)

Linear 0.0010 12 4.20 0.845 0.795 0.686

Quadratic 0.0001 4 1.62 0.989 0.992 0.995

Cubic 0.0322 2 1.84 0.954 0.938 0.934

2FI 0.0010 6 3.25 0.899 0.857 0.876
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Table 5 ANOVA
Source Sum of squares DF Mean square F-value P-value

Model 2.06E+05 14 14,716.92 532.95 < 0.0001

A 18,909.98 1 18,909.98 684.8 < 0.0001

B 3779.17 1 3779.17 136.86 < 0.0001

C 1410.55 1 1410.55 51.08 0.0004

D 18,490 1 18,490 669.59 < 0.0001

A2 1714.07 1 1714.07 62.07 0.0002

B2 3756.77 1 3756.77 136.05 < 0.0001

C2 12,026.43 1 12,026.43 435.52 < 0.0001

D2 1461.4 1 1461.4 52.92 0.0003

AB 593.46 1 593.46 21.49 0.0036

AC 238.57 1 238.57 8.64 0.0026

AD 120.13 1 120.13 4.35 0.0821

BC 1536.03 1 1536.03 55.63 0.0003

BD 1035.13 1 1035.13 37.49 0.0009

CD 91.13 1 91.13 3.3 0.1192

Residual 165.68 6 27.61

Lack of fit 155.68 2 77.84 31.14 0.0036

effect. AD and CD were negligible in the ANOVA analysis
in Table 5. Equation 13 shows the complete model equation
after removing the negligible component.

Adsorption capacity(mg/g)

� 294.73 + 95.37A − 42.63B

− 36.68C − 43.00D − 30.10A2 + 38.53B2 + 92.14C2

+ 24.03D2 − 25.30AB − 11.92AC

− 30.51BC − 11.37BD (13)

The observed values were compared to predicted values
obtained by the model in Fig. 8a, while residual values are
shown in Fig. 7b. The points were quite close to the straight
line, showing that the actual and predicted response values
are very well-connected. According to the residuals plot,
most data points were between − 1.0 and + 1.0 points. The
majority of residualswere negligible, according to these find-
ings. In Fig. 8c, the perturbation plot depicted the variation
from the reference point for input parameters. The mean at
300 mg/g adsorption capacity was the reference point for
this variation[25]. Table 6 compares the three models with
the experimental data set.

3.3 Modeling of Artificial Neural Network

The outcomematrixwas thenmatched to the requiredmatrix,
providing an error signal for each output. Appropriate mod-
ifications were performed for each network’s weights to

reduce the inaccuracy. After several rounds, the discrepan-
cies between training and validation errors began to increase;
the trainingwas terminated. The algorithmsLevenberg–Mar-
quardt, variable learning rate, and Polak Ribiere conjugate
are shown in Figs. 8, 9, and 10.

The best method for training, testing, and validation was
Levenberg–Marquardt, as illustrated in Fig. 11. The R-value
for the Levenberg–Marquardt back-propagation method was
0.994 for training, 0.998 for validation, 0.999 during testing,
and 0.990 for all phases. This suggests that the network’s
predicted output is substantially identical to the laboratory
analyses’ result, as seen by the lowerMSE.Because it had the
minimum MSE value, this approach was chosen to provide
the best structure. This indicates that the Levenberg–Mar-
quardt algorithm is appropriate for training theANNToolbox
to predict Cr (VI) removal.

The ideal network architecture has to be developed to iden-
tify the best performance of the NN structure. The number
of hidden neurons was calculated based on the training and
prediction sets’minimalMSEvalues.Using theLevenberg—
Marquardt back-propagation algorithm, theminimal value of
MSE. The ideal structure: in the input layer (four neurons), in
the hidden layer (six neurons), and the output layer (one neu-
ron). The network was discovered to be completely linked.
This indicates that every neuron for each layer was connected
to each neuron in the next layer, as seen in Fig. 12.

According to the literature, a key issue faced when train-
ing ANN was determining the correct beginning values for
the connection weights. These weights are adjusted during
use to meet a performance requirement [43]. ANN adds the

123



16078 Arabian Journal for Science and Engineering (2023) 48:16067–16085

Fig. 7 RSM plots predicted vs actual (a), normal plot (b) and perturbation (c)

signal from its inputs and multiplies it by the weights. If the
result exceeds the threshold, the neuron can fire and transmit
a signal at the output through a transfer function. Effective
weight initiation is related to performance factors such as
the time required to successfully train the network and the
generalization ability of the trained network. The incorrect
selection of initialweightsmight cause an increase in training
time or possibly non-convergence of the training algorithm.
The Garson equation was used to calculate the initial weight
for NN training [44]. Using the Levenberg–Marquardt back-
propagation technique, the initial weights to layer one from
input onewere as follows: [1.325; 1.656; 1.442; 1.463; 0.913;
1.717; 1.417; 0.179; 1.853; 1.611; 1.753; 0.056; 0.561; 1.968;
1.252]. These weights led to using the Levenberg–Marquardt
back-propagation method (trainlm). The best algorithm was
chosen because it produced an MSE of 0.002. After evalu-
ating ten methods, the MSE with this algorithm and weights

produced the leastMSE, indicating that this algorithm’s error
is very low. These weights also reduced training duration. It
produced a clean straight line with R values of 0.990 for
training, validation, and testing.

3.4 Modeling of Adaptive Neuro-Fuzzy Inference
System

The ANFIS model was generated as a five-layered neural
network using a fuzzy inference system approach. Figure 13
shows the ANFIS structure, with the input parameters (time,
dosage, pH, and concentration) and the response or outcome
variable (adsorption capacity) represented by the first and
last layers, respectively. The model is related to first-order
Sugeno inference systems in the second layer, which fuzzify
input parameters by transforming them tomembership values
using membership functions (MF). In the third layer, a set
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Fig. 8 Training, validation, and test for the Levenberg–Marquardt algorithm

Table 6 RSM, ANN and ANFIS
models Run Time

(min)
Dosage
(g)

pH Concentration
(mg/L)

qe
(pred)

qe (exp)
RSM

qe (exp)
ANN

qe (exp)
ANFIS

1 100 6 6 175 300 297 298 300

2 100 6 6 300 270 274 267 271

3 180 2 9 50 413 409 410 412

4 180 2 9 300 350 352 351 349

5 180 10 3 50 403 404 405 402

6 180 6 6 175 360 358 358 361

7 100 6 6 175 297 295 293 298

8 100 10 6 175 289 290 288 289

9 180 10 3 300 281 285 283 280

10 20 10 9 300 21 25 22 20

11 180 6 9 175 216 213 217 215

12 20 2 3 300 122 120 124 121

13 20 6 6 175 166 163 165 166

14 20 2 3 50 183 180 184 182

15 100 6 6 175 298 298 296 298

16 20 10 9 50 114 116 113 114

17 100 6 6 175 296 295 294 295

18 100 6 6 175 299 297 295 298

19 100 2 6 175 371 370 369 370

20 100 6 6 50 361 360 359 360

21 100 6 3 175 236 234 237 236
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Fig. 9 Training, validation, and test for variable learning rate algorithm

Fig. 10 Training, validation, and test for Polak Ribiere conjugate algorithm
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Fig. 11 Performance of the Levenberg–Marquardt algorithm

of logical rules were used to determine the model’s output.
Output membership functions were used in the fourth layer
to defuzzify the inferential output to actual output values. In
the fifth layer, only one node was used, and the overall output
was the total of all input variables [2, 24].

The ANFIS model’s data prediction capacity is shown in
Fig. 14 (rule viewer). For illustration, the absorption capac-
ity for pH 6.14, the concentration of 175 mg/L, contact time
of 100 min, and dosage of 12.5 is about 350 mg/g. The

model can predict all output data for every input parame-
ter within the data range. Simultaneously, the inputs for a
necessary output may be selected using the rule viewer. As
a consequence, the model can predict output data (absorp-
tion capacity) basedon input variables (Cr(VI) concentration,
time, pH, and adsorbent dose) and vice versa.

Threemembership functions (MFs) were assigned to each
element in the input layer to create the FIS (Fig. 15). The
ANFIS modeling yielded a high correlation value of 0.997,
indicating that the fuzzy inference system network is capa-
ble of predicting the absorption of Cr(VI) from solution
using modified cellulose nanocrystals. The main advantage
of ANFIS is that it reduces error by augmenting fuzzy con-
trollers with self-learning abilities [22]. After seven epochs
of training, the fuzzy network exhibited an errormagnitude of
0.0005, confirming its suitability formodeling the removal of
Cr(VI). Also, the lowMSDE value indicated that the training
procedure was not overfitting, and that the ANFIS model can
accurately predict the removal of Cr(VI) using adsorption.

When it comes to advantages in adsorption results anal-
ysis, ANFIS has the advantage of being able to handle both
numerical and linguistic input variables. This makes it use-
ful for modeling systems where some input variables are
challenging to quantify or where there is uncertainty in the
data. ANFIS can also provide insights into the relationships

Fig. 12 ANN architecture of the
adsorption process

Fig. 13 Architecture of ANFIS
model
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Fig. 14 Rule viewer of the ANFIS model

Fig. 15 Predicted and experimental data of the adsorption for ANFIS

between the input and output variables, which can be useful
for understanding the underlying mechanisms of the system
being studied.

3.5 Error Analysis

To further investigate the model accuracy abilities, five sta-
tistical error functions were used for the model predictions
with the data reported in Table 7. The RMSE, ARE, SSE,
MSE, and MPSD error functions were used to evaluate each
model. The low values of these error functions proved the
model’s potential to predict. According to the findings, all
of the models displayed insignificant error levels. The value
of R2 must be more than 0.8, according to [24], to establish
a satisfactory correlation between predicted and experimen-
tal data. To see if the R2 was overstated, the adjusted-R2

was used, and the findings were satisfactory for all models,
demonstrating their significance. According to the statistical
findings, the RSMandANNwere the least successfulmodels

Table 7 Statistical error analysis of RSM, ANN, and ANFIS

Error function RSM ANN ANFIS

RMSE 0.011 0.008 0.007

ARE 0.471 0.375 0.371

SSE 0.023 0.022 0.017

MSE 0.021 0.020 0.015

MPSD 0.012 0.008 0.008

R2 0.989 0.990 0.997

in predicting the accuracy of the Cr(VI) adsorption process.
The ANFIS model performed slightly better than the other
two. The results of the current study were consistent with
those of [2, 34, 45], and all reported that ANFIS was more
reliable than ANN in predicting efficiency.

The choice between ANFIS, ANN, and RSM depends on
the application’s specific needs. ANFIS helps handle linguis-
tic input variables and provides insights into the underlying
mechanisms of the system. ANN is suitable for recogniz-
ing patterns and making predictions based on historical
data, while RSM is useful for identifying optimal conditions
and optimizing processes for maximum efficiency. However,
ANFISmay require more computational effort than the other
two methods.

3.6 Mechanistic Modeling

Table 8 summarizes the model constants. The plotting of ln
(1 − A) versus time was used to assess the liquid film diffu-
sion model. The rate factor was determined using the linear
plot’s gradient. TheR2 of 0.987 indicates that Cr(VI) removal
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Table 8 Mechanistic model parameters for Cr (VI) removal at optimum
condition (pH of 6, contact time of 100min, initial Cr(VI) concentration
of 175 mg/L, and sorbent dose of 6 mg)

Model Parameter Value

Liquid film diffusion Kd (min−1) 0.085

R2 0.987

Weber and Morris KX (mg/g min0.5) 0.359

CX (mg/g) 12.25

R2 0.954

Dumwald-Wagner KDW (min−1) 0.082

R2 0.932

Bangham Kb (min−1) 0.687

B (g/min) 0.210

R2 0.969

was controlled by film diffusion, with time and proportionate
approach to optimumbeing linearly related [46]. The plotting
of qt versus t0.5 was used to explore the Weber and Morris
model. With increasing duration of solute uptake, the rate
constant Kd dropped. The intra-particle diffusion model has
a correlation value of 0.954. Since C is not equal to 0, this
shows that intra-particle diffusion was not the only limiting
rate in the Cr(VI) removal. This is likely due to a discrepancy
in the Cr(VI) starting and ending mass transfer rates from
solution to adsorbent [47]. TheDumwald-Wagnermodelwas
investigated using log plotting (1 − A2) as a function of time
t. The Dumwald-Wagner model is an intra-particle model.
The high fit of the near linear fit indicated that pore dis-
persion was implicated in the removal mechanism. The line
did not pass through the origin, showing that Cr(VI) adsorp-
tion onto adsorbent pores was not the only limiting rate step.
These studies revealed that while pore diffusion had a part in
the adsorption process, film dispersion was the most impor-
tant rate-controlling phase of the adsorption process [3]. The
Banghammethodwas assessed using the log (Ca/Ca − qmax)
as a factor of log t. The model was used to analyze if pore
dispersion was the only rate-limiting step in the adsorption
mechanism. A good model fit was shown by a high corre-
lation value of 0.979, indicating that pore dispersion was
involved in the adsorption mechanism. The lack of a perfect
linear line in the double logarithm plot suggests that pore
dispersion was not the primary rate-limiting phase [48].

3.7 Comparison with Other Adsorbents

Table 9 compares the current study’s findingswith previously
published chromium removal data from other researchers
who used commonly accessible and low-cost adsorbents. The
adsorption capacities of the adsorbents were employed as the
basis. The present study’s results were similar to those of

Table 9 Comparison of Cr(VI) removal with different adsorbents

Adsorbent Adsorption cap.
(mg/g)

Time
(min)

References

Chitosan 154.88 85 [49]

Nanocellulose 147.30 60 [6]

Carbon nanotube 180.56 120 [1]

Cellulose
nanocrystals
and sodium
alginate

270.52 100 This study

other adsorbents. It has a reasonably high adsorption capac-
ity of 270mg/g. Based on the findings, it was determined that
the cellulose nanocrystals and sodium alginate were low-cost
and efficient adsorbent for removing Cr(VI)from an aqueous
solution.

4 Conclusion

Traditional time series prediction algorithms are incapable
of handling complicated nonlinear forecasts. ML predic-
tion approaches cannot accommodate the known unknown
complicated prediction processes required to include the
complex attitudinal features of the outcome. Furthermore,
such approaches cannot lower the computational cost of
a huge data collection without losing significant informa-
tion. This research offers a unique prediction model that
incorporates the RSM, ANN, and ANFIS prediction abili-
ties in modeling Cr(VI) removal using cellulose nanocrystals
and sodium alginate which was investigated in this work.
OH and COOH imply that alginate was successfully coated
with cellulose nanocrystals. The consistency in the disinte-
gration of alginate and cellulose nanocrystals demonstrated
the effective synthesis process by FTIR and TGA analyses.
Increases in contact time, adsorbent dose, and concentra-
tion led to higher adsorption capacity, but increases in pH
above 6 resulted in lower adsorption capacity. The interaction
impacts of the process variables and their optimal conditions
were identified. Initial pH of 6, contact time of 100 min,
initial Cr(VI) concentration of 175 mg/L, sorbent dose of
6 mg, and adsorption capacity of 350.23 mg/g were the opti-
mal condition. ANN approaches with the BP algorithm are
described and compared to experimental data. The Leven-
berg–Marquardt algorithm (4-6-1) with a tangent sigmoid
transfer function at the hidden layer and a linear transfer
function at the output layer produced the minimum MSE. In
terms of predicting Cr(VI) uptake, ANFIS, ANN, and RSM
were shown to be accurate and similar. According to five
statistical error indicators, the ANFIS model has the most
outstanding quality and reliability, followed by the ANN and
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RSM model. The most likely rate-controlling phase of the
removal process was film diffusion, according to mechanis-
tic modeling. The cellulose nanocrystals were shown to be
suitable adsorbents in this investigation.
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