
Arabian Journal for Science and Engineering (2023) 48:10493–10516
https://doi.org/10.1007/s13369-023-07683-2

RESEARCH ART ICLE -COMPUTER ENGINEER ING AND COMPUTER SC IENCE

AMulti-strategy Improved Outpost and Differential Evolution
Mutation Marine Predators Algorithm for Global Optimization

Shuhan Zhang1,2 · Shengsheng Wang1,2 · Ruyi Dong3 · Kai Zhang1 · Xiaohui Zhang4

Received: 4 August 2022 / Accepted: 29 January 2023 / Published online: 17 February 2023
© King Fahd University of Petroleum &Minerals 2023

Abstract
Marine Predators Algorithm (MPA) is a recent efficient metaheuristic algorithm that is enlightened by the biological behavior
of ocean predators and prey. This algorithm simulates the Levy and Brownian movements of prevalent foraging strategy and
has been applied to many complex optimization problems. However, the algorithm has defects such as a low diversity of
the solutions, ease into the local optimal solutions, and decreasing convergence speed in dealing with complex problems.
A modified version of this algorithm called ODMPA is proposed based on the tent map, the outpost mechanism, and the
differential evolutionmutationwith simulated annealing (DE-SA)mechanism. The tentmap andDE-SAmechanism are added
to enhance the exploration capability of MPA by increasing the diversity of the search agents, and the outpost mechanism is
mainly used to improve the convergence speed of MPA. To validate the outstanding performance of the ODMPA, a series of
global optimization problems are selected as the test sets, including the standard IEEE CEC2014 benchmark functions, which
are the authoritative test set, three well-known engineering problems, and photovoltaic model parameters tasks. Compared
with some famous algorithms, the results reveal that ODMPA has achieved better performance than its counterparts in
CEC2014 benchmark functions. And in solving real-world optimization problems, ODMPA could get higher accuracy than
other metaheuristic algorithms. These practical results demonstrate that the mechanisms introduced positively affect the
original MPA, and the proposed ODMPA can be a widely effective tool in tackling many optimization problems.

Keywords Marine Predators Algorithm · Outpost mechanism · Differential evolution · Simulated annealing

1 Introduction

1.1 Background and Literature Review

With the progress of society, when making decisions to solve
obstacles, people always find the best processing method to
keep things in the optimal state. Metaheuristic algorithms
have appeared in recent years as the general alternative in

B Shengsheng Wang
wss@jlu.edu.cn

1 College of Computer Science and Technology, Jilin
University, Changchun 130012, China

2 Key Laboratory of Symbolic Computation and Knowledge
Engineering of Ministry of Education, Jilin University,
Changchun 130012, China

3 College of Information and Control Engineering, Jilin
Institute of Chemical Technology, Jilin 132022, China

4 2012 Laboratories, Huawei Technology Co., Ltd., Beijing
100095, China

dealingwith real-life problems, such as economics, industrial
manufacturing, physical science research, civil engineering
design, manufacturing systems, and communication net-
work applications. When the problem’s dimension increases
extensively, traditional mathematical or physical optimiza-
tion methods cannot solve these problems [1] due to the
complex relationship between high dimensions and vari-
ables. Therefore, nature-inspired optimization algorithms
came into being, broadly including evolutionary algorithms
and swarm intelligence algorithms. With the growth of biol-
ogy and AI, swarm intelligence algorithms have developed
rapidly. They explore randomly between the solution space
and update the optimal location through every iteration of
the agents in the search range. Because of the effective-
ness and convenience of the swarm algorithms [2–7], lots
of researchers devoted themselves to their study of them.

Most metaheuristics are enlightened by the behavior and
physical phenomena of biological groups in nature. For
example, ant colony algorithm (ACO) [8] is encouraged
by the phenomenon of ants’ foraging strategy. That is,
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ants always search for the optimal route for food. Parti-
cle swarm optimization (PSO) [9] is encouraged by the
swarming phenomenon of insects, animal herds, birds, etc.
Grey wolf optimization algorithm (GWO) [10], the basic
idea, is grey wolves’ leadership level and predator rule.
Moth-flame optimization (MFO) [11] mimics the laterally
oriented moths’ navigation mechanism. Multi-verse opti-
mizer (MVO) [12] simulates the salps’ chain phenomenon
and is enlightened by the concepts in the cosmology of mul-
tiple universes. Salp swarm algorithm (SSA) [13], the main
inspiration, is from the salp chain phenomenon, which could
help the salps achieve better sailing and foraging in oceans.
Many metaheuristics are applied to many domains [14–
24], such as solar photovoltaic models, solid oxide fuel cell
(SOFC), hydropower production, trusses optimization, and
feature selection, and obtain excellent performance because
of their efficiency, simplicity, and avoidance of local opti-
mum. However, no algorithm declares it could tackle all the
optimization problems, and the algorithm could exhibit out-
standing performance on all the issues. Hence, the continued
improvement of the optimization algorithms is essential to
tackle more problems.

Marine Predators Algorithm (MPA) [25] has the same
advantages as MAs, like efficiency, flexibility, simplicity,
and excellent robustness, so MPA is effective in solving real-
world problems. For example, Dinh PH et al. [26] introduce
the MPA to generate the optimal parameters, which synthe-
size the low-frequency components. The results present that
MPA performs excellently in improving the quality of fused
images. To settle the problem of optimal power flow (OPF),
Islam,M.Z. et al. [27] adopted theMPAon it and designed the
objective function involving fuel cost, power loss, etc. They
validated the outstanding performance of the IEEE 30-bus
test system.

Besides, many scholars have devoted themselves to the
study of MPA variants, and the proposed MPA variants per-
form outstandingly in global optimization problems. Yousri,
D et al. [28] applied concept learning to MPA and then
applied the improved MPA to deal with the feature selection
problems. Elaziz, MA et al. [29] used the differential evo-
lution operators to improve the original MPA’s exploration
stage. They adopted the improved MPA to the photovoltaic
models. The stable and excellent results show that it is tal-
ented in PV modeling. Yousri, D et al. [30] proposed a new
metaheuristic approach, CLMPA, combining comprehensive
learning, and MPA. The proposed CLMPA is applied to dis-
tinguish the best parameters of the supercapacitor equivalent
circuit. Sahlol AT et al. [31] introduced the fractional order
into the MPA to put forward an improved algorithm, FO-
MPA, for the hybrid classification of COVID-19 images
while improving classification accuracy. Yousri, D et al.
[32] combined the comprehensive learning and multi-swarm
strategies with the MPA to generate an enhanced algorithm,

and then, they used the CLDMMPA to solve the solid oxide
fuel cell (SOFC) models. In order to address the problem of
multilevel threshold image segmentation, Abd Elaziz, M et
al. [33] proposed the developed quantum marine predators.
The improved algorithm gets excellent results according to
convergence and segmentation quality. Aiming at the prob-
lems of losses and voltage deviations in the distribution
systems, Ahmad Eid et al. [34] introduced the MPA method
into the distribution systems and got good results. To better
deal with the Joint Regularized Semi-Supervised Extreme
Learning Machine (JRSSELM) problem, Yang, WB et al.
[35] introduced a multi-strategyMPA to optimize the param-
eter extraction process, and MSMPA-JRSSELM performs
well in logging oil formation identification.

1.2 Novelty and Contributions

From the literature, the MPA-based variants are difficult to
balance exploitation and exploration effectively, and most of
them are only built on sharing historical experiences. How-
ever, the ability to jump out of the local optimum still needs
to be improved. Although the above variants of MPA have
improved the MPA’s explosive ability, they still easily fall
into the local optimal solution when tackling some practical
problems [81], and there are still opportunities to improve
their convergence, consistency, and reliability.

Aiming to address the shortcomings ofMPA, an improved
MPA was established based on two main mechanisms, the
outpost mechanism [36] and differential evolution[37] muta-
tionwith simulated annealing [38] (DE-SA)mechanism. The
convergence efficiency and accuracy of the algorithm are
enhanced by the outpost mechanism, and the solution vari-
ety is increased by the DE-SA mechanism. For the original
MPA, since the population initialization is chosen randomly,
which may cause uneven distribution of solutions, so the
tent chaotic map is introduced in the initialization stage. The
better N individuals are selected from 2N individuals for
iteration, which increases the diversity of the initial popu-
lation and makes the population iterate toward the optimal
direction. After the tent chaotic map [40] processes the ini-
tial population, the outpost mechanism is introduced, which
consists of greedy selection and Gaussian mutation [36]. The
outpost individuals performed exploration to decide whether
the large group would move forward. This mechanism sig-
nificantly improved the convergence efficiency and accuracy
of MPA. Afterward, DE-SAmechanism is used to generate a
new solution and decide whether to accept it. DE-SA mech-
anism greatly increases the solution variety and makes the
solution less prone to fall into the local optima. This modi-
fied MPA is tested on thirty CEC2014 benchmark problems,
and for real-world problems, the engineering design prob-
lems and photovoltaic models are chosen.

This paper’s major contributions are as follows:
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(1) An improved and efficient Marine Predators Algorithm
variant ODMPA is proposed.

(2) Introduce the outpost mechanism and DE-SA strategy
to improve the disadvantages of the premature phe-
nomenon and slow convergence accuracy of MPA.

(3) TheODMPA is validated on the IEEECEC2014 bench-
mark functions and ranks first in the conventional and
advanced MAs by statistical analysis.

(4) The ODMPA is adopted to three classical engineering
design problem and photovoltaic models, and ODMPA
gets the lowest results compared to other algorithms.

The study is organized as follows. The next section
briefly discusses the concise background and conception of
MPA. The outpost mechanism, consisting of the mutation
of Gaussian mutation and the greedy selection and differen-
tial evolution mutation mechanism, is presented in Sect. 3.
It is worth noting that the simulated annealing enriches
the DE mechanism. Furthermore, this section describes a
detailed process for adding the strategies to the originalMPA.
Section4 discusses the performance of ODMPA on IEEE
CEC2014 benchmark functions, engineering design prob-
lems, and photovoltaic models. The last section is arranged
for the conclusions and future work.

2 Overview of theMarine Predators
Algorithm (MPA)

Marine Predators Algorithm (MPA) involved in this study is
a recent meta-heuristic optimization algorithm. The inspira-
tion for MPAmainly comes from the different motion modes
of marine predators under different conditions. When preda-
tors encounter prey in nature, Levy andBrownianmotions are
suitable for predators to adopt encounter strategies. Accord-
ing to the information in the predation process, the different
velocity ratios and motion patterns between the predator and
prey, the predator will adopt Levy or Brownian motion to
achieve the best predation strategy to capture the prey.

Like other nature-inspired metaheuristics, the initial solu-
tion of MPA is produced randomly between the threshold
from the search range. The threshold indicates the solution
space between the upper and lower bound. The search agents
size is predefined, and each individual represents the search
agent:

X0 = Xmin + rand(Xmax − Xmin) (1)

where Xmin and Xmax represent the search space’s lower and
upper bound, and rand is a random number belonging to
[0,1].

MPA considers the top predator, which has the most
optimal fitness value and potential, so the best solution is

nominated to construct the Elitematrix. Elite is the top preda-
tor, and it also has d dimensions. Moreover, the Elite and
Prey matrices participate in each iteration of the predator’s
position migration.

Eli te =
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(2)

where n represents the population size, t represents the cur-
rent iteration, and d represents the problem dimension. Xt

denotes the best predator, and Elite consists of n duplications
of the best solution. Xi, j denotes the ith prey’s jth dimension.
If the top predator is updated, the Elite will be refreshed by
the substituted solution. MPA initializes the Prey matrix and
chooses the optimal agent as the top predator to generate the
Elite matrix.

MPA simulates the widespread foraging strategy in ocean
predators with the consideration of three different velocity
ratio of the predators and preys. And in the following phases,
v represents the velocity ratio of prey to predator. Thus, the
definition and formulas of three stages are given by: Thus,
the definition and formulas of three stages are given by:
Phase 1: High Velocity

The prey swims more rapidly than the predators (v ≥ 10)
under the circumstance, and the predator’s wisest foraging
strategy is remaining stationary. The prey and predators are
the searcher and target, respectively. That is to say, while
I ter < 1/3Max_I ter , the formula of the rule is:

−−→
stepi = −→

RB ⊗ (
−−−→
Eli tei − −→

RB ⊗ −−−→
Preyi )−−−→

Preyi = −−−→
Preyi + P.

−→
R ⊗ −−→

stepi i = 1, . . . , n
(3)

where
−→
RB is a normal distribution vector which denotes the

Brownian motion.
−→
R is a vector of the random numbers

between 0 and 1. I ter is the present iteration, and Max_I ter
is the maximum iteration number. P = 0.5 is a constant
number.
Phase 2: Unit Velocity

The velocity is fundamentally the same for the prey and
predator in this phase because they swim simultaneously
(v ≈ 1). The circumstance mimics the trail of prey conducts
the prey and predator’s movement. The roles of the predator
and prey are not stationary. They can be the searcher or tar-
get. The exploration and exploitation operation are the same
significant for this phase, so the population is divided into
two parts. While 1/3Max_I ter < I ter < 2/3Max_I ter ,
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the formula of the first part:

−−→
stepi = −→

RL ⊗ (
−−−→
Eli tei − −→

RL ⊗ −−−→
Preyi )−−−→

Preyi = −−−→
Preyi + P.

−→
R ⊗ −−→

stepi i = 1, . . . , n/2
(4)

where
−→
RL is a Levy movement vector, and

−→
RL ⊗ −−−→

Prey
presents the prey motion. The formula of the second half:

−−−→
ste pi = −→

RB ⊗ (
−→
RB ⊗ −−−→

Eli tei − −−−→
Preyi )−−−→

Preyi = −−−→
Eli tei + P.CF ⊗ −−−→

ste pi i = n/2, . . . , n
(5)

where
−→
RB ⊗ −−−→

Eli tei represents the movement of the preda-
tor, and CF as the step size control parameter for predator
movement, the definition is as follows:

CF =
(
1 − I ter

Max_I ter

)( 2·I ter
Max_I ter )

(6)

Phase 3: Low Velocity
The predators swim more rapidly than the prey (v = 0.1),

and the situation occurs in the last phase of iteration. The
prey is the target, so the predator’s wisest foraging strat-
egy is the Levy movement. While 2/3Max_I ter < I ter <

Max_I ter , this phase is presented as:

−−−→
ste pi = −→

RL ⊗ (
−→
RL ⊗ −−−→

Eli tei − −−−→
Preyi )−−−→

Preyi = −−−→
Eli tei + P.CF ⊗ −−−→

ste pi i = 1, . . . , n
(7)

where
−→
RL ⊗ −−−→

Eli tei represents the levy movement of the
predator.

Besides Levy and Brownian movements in three different
phases, the most influential factor is environmental effects,
fish aggregating devices (FADs). MPA uses long jumps to
avoid getting stuck into the sub-optimal solution, and the
jumping mode’s formula is shown as follows:

−−−→
Preyi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−−−→
Preyi + CF

[−→
X min + −→

R ⊗ (
−→
X max − −→

X min)
]

⊗−→
U i f r ≤ FADs−−−→

Preyi + [FADs(1 − r) + r ]

×(
−−−→
Preyr1 − −−−→

Preyr2) i f r > FADs

(8)

where r is a random number between 0 and 1,
−→
X min and−→

X max represent the lower and upper bound of the search
space, and

−−−→
Preyr1 and

−−−→
Preyr2 are randomly selected, mutu-

ally exclusive search agents in the Prey matrix.
−→
U denotes a

random vector whose elements only can be 0 or 1, and FADs
= 0.2 is the probability of FADs effect.

Finally, themarinememory operation is used to update the
position. This is similar to the greedy selection, which pre-
serves the better solution and makes the population iterate

toward a better direction. The principle is that after updat-
ing the prey matrix, the new solution should be evaluated
to decide whether to update the Elite matrix. Ocean memory
greatly improves the performance ofMPA in population iter-
ation. The main process of MPA is displayed in Algorithm
1.

Algorithm 1 Pseudo-code of MPA
Input: N , D, Max_i ter
Output: The optimal result
1: Initialization:
2: randomly generate Prey matrix by the lower and upper bound based

on Eq. (1)

3: define R, CF ,
−→
RB ,

−→
RL , FADs=0.2, P = 0.5

4: Main loop:
5: while the current iteration is smaller than the maximum iteration do
6: compute the fitness value from each individual, and construct

Elite matrix by finding the best solution
7: compare the previous and current fitness to accomplish memory

saving
8: if I ter < 1/3Max_I ter then
9: update the prey’s location by Eq. (3)
10: else if 1/3Max_I ter < I ter < 2/3Max_I ter then
11: for every individual from the first half (i = 1, 2, . . . , n/2)
12: update the prey’s location by Eq. (4)
13: for every individual from the second half (i=n/2, ..., n)
14: update the prey’s location by Eq. (5)
15: else if 2/3Max_I ter < I ter < Max_I ter then
16: update the prey’s location by Eq. (7)
17: end if
18: compare the previous and current fitness to accomplish memory

saving
19: compute the fitness value from each individual, and construct

Elite matrix by finding the best solution
20: employ the Fish Aggregating Devices (FADs) effect to update

the prey by Eq. (8)
21: end while
22: return result

3 Proposed ODMPA

Although the MPA is well known for its advantages of effi-
cient foraging strategy and simple structure, the algorithm
easily falls into the sub-optimum for complex optimization
problems. In order to avoid the premature phenomenon of the
algorithm and improve the diversity of solutions, the outpost
mechanism and differential evolution mutation with simu-
lated annealing (DE-SA) mechanism are introduced into the
original MPA to propose ODMPA.

3.1 Outpost Mechanism

The outpost mechanism [36] includes the greedy selection
and Gaussianmutation phases, and the process of the outpost
mechanism is shown in Fig. 1. In the first phase, the prey

123



Arabian Journal for Science and Engineering (2023) 48:10493–10516 10497

Fig. 1 Flowchart of outpost mechanism

compares the current fitness value with the last iteration. If
the current fitness is more optimal than the last one, replace
the prey’s position with the current location; otherwise, keep
the previous solution,

{ [u] = min( f i tness(Preycurr ), f i tness(Preylast ))
Preyi = Preyu
i = 1, ...n (9)

where u denotes the prey’s location.
In the second phase, the position search distribution of

prey could be simulated by Gaussian distribution. During the
foraging process of ocean predators and prey, although the
optimal individual will be found, the individual will continue
to find a better position by conducting random searches near
its position. The Gaussian distribution’s definition is given
by,

f (x) = 1

σ
√
2π

e
(x−μ)2

2σ2 ,−∞ < x < ∞ (10)

The normal distribution characteristics obtain the distribu-
tion density of individuals, when μ = 0, σ = 1, and the
normal distribution becomes the standard normal distribu-
tion. According to the literature [36], the standard normal
distribution is also adopted. σ 2 and μ are the standard devi-
ation of the search agents in solution space and the average
value of total preys, respectively, so we also set σ = 0, μ = 1.
In the outpost mechanism, the muted individual is defined:

Preyi
′ = Preyi ⊗ (1 + Gaus), i = 1, . . . , n (11)

and in equation (11), Preyi ′ and Preyi represent the ith prey
after Gaussian mutation and before mutation, respectively.

3.2 Differential EvolutionMutation with Simulated
Annealing

3.2.1 Differential Evolution (DE)

Differential evolution (DE) algorithm is a classical and influ-
ential global optimization algorithm aiming at solving many
optimization problems, proposed by R Storn and Price in
1997 [37]. The steps of DE are mutation, crossover, and
selection, which are simple and effective. Because of the
great power of DE, it has been successfully applied in some
fields.

Like MPA, DE begins by generating an initial N × D
matrix, and N and D denote the number of the population size
and the dimension, respectively. The initialization formula of
differential evolution is defined:

Zi = Zmin + rand × (Zmax − Zmin) (12)

where the Zmin and Zmax mean the lower and upper bound of
the individual. Zi represents the ith individual. rand means
the number randomly generated between 0 and 1. Then using
the mutation operator, the solution is updated to Mt

i
as the

following equation:

Mt
i = Zt

r1 + F × (Zt
r2

− Zt
r3

) (13)

where Zr1, Zr2, and Zr3 are different individuals, and their
selection applied to three randomly generated numbers in the
range of 1 to n, where r1 
= r2 
= r3 
= i . t represents the
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current iteration. F denotes the mutation factor, and is set to
0.5. Then, DE generates the solution V t

i by introducing the
crossover operator CR, and the equation is as follows:

V t
i =

{
Mt

i i f (rand ≤ CR)

Zt
i otherwise

(14)

where rand ∈ [0, 1], and CR is the crossover probability,
which determines whether the solution is mutated or not,
and it is set to 0.2 according to the conventional DE. The last
step to generate the solution by selection is dependent on the
better fitness of Zt

i and V t
i , and the formula is shown as:

Zt+1
i =

{
V t
i i f ( f i t(V t

i ) < f i t(Zt
i ))

Zt
i otherwise

(15)

3.2.2 Simulated Annealing (SA)

The simulated annealing optimization is a classical and effi-
cient algorithm that is easy to achieve, proposed by physicist
S. Kirkpatrick et al. [38]. The inspiration for SA is from
solid annealing. Firstly, to increase the internal energy of the
solid, it should be heated to a very high temperature. As the
temperature continues to grow, the solid turns into a disor-
dered state. Then, when the temperature slowly decreases,
the internal particles of the solid become orderly. Eventu-
ally, the solid achieves a state of internal energy equilibrium
when the temperature drops to a minimum threshold.

SA simulates the slight decrease in the temperature of
a high-temperature solid, aiming at reducing defects and
minimizing the system energy. SA follows the Metropolis
criterion [39]. That is, although the last solution’s fitness
value is more optimal, the current solution also has a certain
probability of being accepted. The definition of simulated
annealing is given by:

P =
{
1 i f ( f i t(preynew) ≤ f i t(prey))
exp( f i t(prey−preynew)

T ) i f ( f i t(preynew) > f i t(prey))

(16)

where f i t(preynew) and f i t(prey) denotes the fitness of
the newly generated solution after DE variation and present
solution, respectively.

3.2.3 Process of the DE-SA Mechanism

DE-SA mechanism combines the differential evolution and
the simulated annealing, and this hybrid improvement mech-
anism has the advantages of DE and SA. This mechanism
can not only generate new competitive solutions but also has
a certain probability of accepting the suboptimal solution,
which significantly improves the MPA’s exploration ability.
Figure2 depicts the DE-SA mechanism’s detailed process
for working in the MPA.

3.3 Tent Chaotic Map

Besides, ODMPA also introduces the chaotic tent map to
increase the diversity of initialization population. Chaos is
a common phenomenon in nonlinear systems. In a spe-
cific range, the change of chaotic variables has randomness,
ergodicity, and regularity, and chaoticmapping operators sig-
nificantly impact the optimization process. The tent map [40]
has better ergodic uniformity than the logisticmap and higher
optimization efficiency. So the tent map is adopted to disturb
the population after the initialization to generate a new N×D
tent matrix and select the top N individuals from 2N individ-
uals for iteration, increasing the initial population’s variety.
The mathematics formula for a tent map is as follows:

xi+1 =
{
xi/α 0 ≤ xi ≤ α

(1 − xi )(1 − α) α < xi ≤ 1
(17)

where α ∈ [0, 1], and the value of alpha affects the chaotic
distribution, which in turn affects the generation of the ini-
tial population. Lots of experience shows that alpha taken
between 0.55 and 0.56 may result in a more evenly distribu-
tion of chaotic values. Therefore, the cases were tested with
the alpha of 0.55,0.555, and 0.56 in increments of 0.005,
and the best results are achieved on CEC2014 benchmark
functions when alpha is taken as 0.555.

3.4 The Proposed ODMPA

In this section, the outpost mechanism and DE-SA mech-
anism are introduced into the conventional MPA to con-
struct an improved MPA, called ODMPA. Figure3 demon-
strates the detailed framework of ODMPA. In the improved
ODMPA, there are three main improvements, tent chaotic
map, outpost mechanism variation, and DE-SA variation.
Firstly, the tent map to disturb the population after the ini-
tialization and then create a new matrix and select the top N
individuals. This disturbance has a beneficial effect on the
initial population and increases the diversity of solutions.
Then, the outpost mechanism and DE-SA mechanism are
sequentially introduced into the MPA. The outpost mecha-
nism includes two main steps. Firstly, the prey compares the
current fitness value with the last one; if it is worth moving
forward, update the position; otherwise, keep the previous
iteration’s fitness. This step greatly enhances the convergence
speed. Secondly, the prey should explore near the best value,
and the motion is simulated by Gaussian mutation. After
the variation of the outpost mechanism, the most important
DE-SA mechanism is introduced. DE-SA variation could
generate competitive new solutions by mutation, crossover,
and selection. And because of the introduction of simulated
annealing, it has also a certain probability of accepting the
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Fig. 2 The detailed process of differential evolution mutation with simulated annealing

Fig. 3 The detailed framework of ODMPA

suboptimal solution, which enhances the solution’s diversity
and ability to escape off the optima.

4 Experiment Results and Analysis

In Sect. 4.1, ODMPA was compared to the CEC2014 [41]
benchmark functions with other algorithms, including MPA,

classical swarm intelligence algorithms, the latest swarm
intelligence algorithms of the last two years, MPA variants,
and advanced algorithms. The purpose of the comparison
with the classical algorithms and improved MPA variants is
to verify whether the ODMPA is improved or not. The com-
parison with the advanced algorithms is to demonstrate the
effectiveness of ODMPA. In Sect. 4.2, ODMPA was vali-
dated on some engineering problems, including WBD [79],
PVD [78], and SRD [80]. Moreover, in Sect. 4.3, ODMPA
was adopted into the static and dynamic photovoltaic mod-
els. Engineering design problems and photovoltaic models
are the real-world problems, compared to other counterparts,
ODMPA could successfully tackle real-world problems in
extracting the unknown parameters to get theminimum error.
The results showed that ODMPA has great effectiveness in
solving the practical problems.

For the results of the CEC2014 benchmark functions, the
mean value result (Average) and standard deviation (Stdv)
were adopted, validating the performance, and Table 4 lists
the overall results. The Friedman test [42], the nonpara-
metric statistical test, is used to assess the performance
of ODMPA and the other swarm algorithms statistically.
Moreover, the sign “+/=/−” results for each algorithm are
calculated through the Friedman test. So through the over-
all information, the average ranking value (ARV) can be
calculated, and ODMPA’s ARV value is 4.55. The low-
est ARV value indicates ODMPA’s performance excels its
counterparts. Moreover, all experiments were carried out on
MATLAB R2016a, and the hardware platform is Core i7
CPU, 8 GB RAM.

4.1 IEEE CEC2014 Benchmark Functions

The benchmark functions are always a strong tool [82–86] to
evaluate the effectiveness of optimization algorithms. IEEE
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Table 1 Detail of the IEEE CEC2014 test functions

No Class Functions F∗
i = Fi (x∗)

1 Unimodal Rotated High Conditioned Elliptic Function 100

2 Unimodal Rotated Bent Cigar Function 200

3 Unimodal Rotated Discus Function 300

4 Multimodal Shifted and Rotated Rosenbrock’s Function 400

5 Multimodal Shifted and Rotated Ackley’s Function 500

6 Multimodal Shifted and Rotated Weierstrass Function 600

7 Multimodal Shifted and Rotated Griewank’s Function 700

8 Multimodal Shifted Rastrigin’s Function 800

9 Multimodal Shifted and Rotated Rastrigin’s Function 900

10 Multimodal Shifted Schwefel’s Function 1000

11 Multimodal Shifted and Rotated Schwefel’s Function 1100

12 Multimodal Shifted and Rotated Katsuura Function 1200

13 Multimodal Shifted and Rotated HappyCat Function 1300

14 Multimodal Shifted and Rotated HGBat Function 1400

15 Multimodal Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function 1500

16 Multimodal Shifted and Rotated Expanded Schaffer’s F6 Function 1600

17 Hybrid Hybrid Function 1 1700

18 Hybrid Hybrid Function 2 1800

19 Hybrid Hybrid Function 3 1900

20 Hybrid Hybrid Function 4 2000

21 Hybrid Hybrid Function 5 2100

22 Hybrid Hybrid Function 6 2200

23 Composition Composition Function 1 2300

24 Composition Composition Function 2 2400

25 Composition Composition Function 3 2500

26 Composition Composition Function 4 2600

27 Composition Composition Function 5 2700

28 Composition Composition Function 6 2800

29 Composition Composition Function 7 2900

30 Composition Composition Function 8 3000

CEC2014 benchmark functions is a standard test function
set divided into four parts, which can well test the algo-
rithm’s performance. Table 1 displays the details ofCEC2014
benchmark functions. ODMPA is compared with the well-
known advanced and original algorithms. The parameters
were set to the same value to make sure the competition’s
fairness. And the total experiments were carried on the same
environment. The search agents scale and dimension are
installed as 30, and the Max_I ter is 1000 based on the
settings of the most experiments. And each algorithm was
run for thirty independent trials to guarantee the fairness and
reliability of the experiments. Table 2 displays the partic-
ular parameter settings of the conventional and advanced
metaheuristics. Table 3 provides the average and standard
deviation values of best-so-far solutions found in each run.
The counterparts include MPA, classical swarm intelligence

algorithms, the latest swarm intelligence algorithms of the
last two years, MPA variants, and advanced algorithms. The
comparisonwith these algorithms, especiallywithMPAvari-
ants and advanced algorithms, and the better results obtained
by ODMPA prove the effectiveness of our improvements to
MPA, all these algorithms are important.

• Differential Evolution Algorithm (DE)
• Gravitational Search Algorithm (GSA) [43]
• Multi-Verse Optimizer (MVO)
• Manta Ray Foraging Optimization (MRFO) [44]
• Marine Predators Algorithm (MPA)
• Harris Hawks Optimization (HHO) [45]
• Pathfinder Algorithm (PFA) [46]
• Sine Cosine Algorithm (SCA) [47]
• Slime Mould Algorithm (SMA) [48]
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Table 2 The parameter settings
of the conventional and
advanced metaheuristics

Algorithm Settings

ODMPA FADs=0.2; f ai=0.555; T0 = 0.025; α = 0.99; P=0.5; CF ∈ [1, 0]
DE CR=0.2; Mutation factor=[0.2,0.8]

GSA α = 20; G0=100; T = 1000; K0 ∈ [10001]
GWO α ∈ [20]
HHO E0 ∈ [−11]; u, v ∈ [01]; beta=1.5
MPA P=0.5; FADs=0.2; CF ∈ [1, 0]
MRFO beta, r , r1, r2, r3 ∈ [01]; T=1000; S=2
MVO WEP ∈ [0.21]; T DR ∈ [0.60]
PFA ∼
SCA A = 2

SMA vc = [10]; z ∈ [00.1]
SSA prodP = 0.2; threat = 0.1; ST = 0.8

SSAsalp c1, c2 ∈ [01]
TSA Pmin = 1; Pmax = 4

WOA a1 = [20]; a2 = [−2 − 1]; b = 1

AVOA p1 = 0.6; α = 0.8; β = 0.2; p2 = 0.4; γ = 2.5; p3 = 0.6;
Ex-GWO α ∈ [20]
MMPA P = 0.5; FADs = 0.2; μ = 4

COOT R1, R2, R3, R4 ∈ [01]; R ∈ [−11]
EMPA P = 0.5; FADs = 0.2; CF ∈ [1, 0]
IMPA P = 0.5; FADs = 0.2; CF ∈ [1, 0]

• Sparrow Search Algorithm (SSA) [49]
• Grey Wolf Optimizer (GWO)
• Tunicate Swarm Algorithm (TSA) [50]
• Salp Swarm Algorithm (SSAsalp)
• Whale Optimization Algorithm (WOA) [51]
• COOT Bird Optimization Method (COOT) [52]
• African Vultures Optimization Algorithm (AVOA) [53]
• Expanded GWO (Ex-GWO) [54]
• Modified Self-adaptive Marine Predators Algorithm
(MMPA) [55]

• Enhanced Marine Predators Algorithm (EMPA)
• Improved Marine Predators Algorithm (IMPA) [56]

Table 3 displays the mean value (Average) and standard
deviation (Stdv) results. The results show that ODMPA has
obtained the most minimum value in general, which shows
that ODMPA can perform better than other algorithms in the
precision of the solution. The minimum values are bolded
in the table. Friedman’s rank test fully uses the complete
information of the average fitness values of the obtained
algorithms to perform nonparametric tests and generate a
combined ranking of the ARV values of all algorithms. The
ARV values are calculated by SPSS and are shown in Table
4. ODMPA ranks first and has the lowest ARV value, which
verifies that ODMPA displays best in finding the optimal
solution.

Figures4, 5, and 6 show the iterative curve graphs. F1–
F3 unimodal functions’ properties decide they do not have
the sub-optima, so they are suitable for evaluating the ele-
mentary performance of ODMPA. F1, F2, and F3 functions’
optimal values by ODMPA are closer to the global optima
than the original MPA. The numerical results show that the
search ability and convergence speed of the ODMPA were
vastly enhanced on unimodal functions. The differential evo-
lutionmutationwith simulated annealingmechanismhelps to
extend new feasible solutions in the threshold range. The out-
post mechanism enhances the convergence efficiency. Tent
mapping in the initialization phase makes the initial random-
ization of the population closer to the optima. In F4 and F7
functions, almost all the algorithms’ best values are close to
the optima. Moreover, ODMPA’s convergence speed is rela-
tively faster than the originalMPAandmost algorithms. In F8
and F9 functions, while the convergence speed of ODMPA is
slower in earlier iterations, as the iteration increases,ODMPA
finally reaches the global optimal value. For the F12 function,
ODMPA’s convergence speed and optimal value are better
than other counterparts.

F18 and F19 are taken as the representative functions for
the hybrid functions. From the iterative graphs of F18 and
F19, it can be derived that ODMPA has the best capacity to
find the best optimal value. Moreover, for the composition
functions, F23 and F24 also have the same phenomenon.
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Table 3 Results of ODMPA and
other algorithms on IEEE
CEC2014 functions

F1 F2 F3

Average Stdv Average Stdv Average Stdv

ODMPA 4.477E+06 3.800E+06 4.460E+04 3.970E+04 1.789E+03 1.470E+03

DE 5.963E+07 1.390E+07 6.311E+05 2.010E+05 8.637E+02 3.910E+02

GSA 3.555E+08 8.290E+07 2.104E+10 4.770E+09 9.011E+04 8.420E+03

GWO 2.844E+08 1.340E+08 1.272E+10 3.570E+09 8.822E+04 2.030E+03

HHO 5.333E+07 2.170E+07 6.357E+07 1.890E+07 4.103E+04 7.860E+03

MPA 3.479E+07 1.970E+07 2.298E+05 2.220E+05 2.451E+04 1.940E+04

MRFO 1.717E+06 1.080E+06 2.355E+03 1.950E+03 3.472E+03 4.320E+03

MVO 8.896E+06 5.340E+06 6.343E+05 2.250E+05 2.335E+03 1.560E+03

PFA 3.494E+07 1.650E+07 4.046E+07 2.840E+07 4.293E+04 1.770E+04

SCA 1.059E+09 4.290E+08 4.205E+10 7.290E+09 6.998E+05 1.060E+06

SMA 6.874E+06 3.630E+06 7.695E+05 4.290E+05 7.332E+03 5.780E+03

SSA 3.930E+06 2.300E+06 1.043E+04 9.220E+03 1.354E+04 1.190E+04

SSAsalp 2.469E+07 9.790E+06 1.212E+04 1.180E+04 2.378E+05 7.080E+04

TSA 2.074E+09 1.060E+08 8.749E+10 3.440E+09 2.847E+05 3.000E+05

WOA 1.548E+08 6.380E+07 2.161E+09 9.720E+08 7.832E+04 4.340E+04

AVOA 1.385E+07 7.900E+06 1.524E+04 1.210E+04 2.172E+04 6.380E+03

COOT 1.279E+08 5.440E+07 1.077E+09 5.700E+08 5.463E+04 1.060E+04

Ex-GWO 1.983E+09 2.860E+04 1.026E+11 2.080E+03 8.989E+04 1.520E+03

MMPA 1.420E+07 6.590E+06 3.257E+05 2.880E+05 7.321E+03 4.610E+03

EMPA 3.486E+07 1.910E+07 1.792E+05 9.420E+04 2.116E+04 1.460E+04

IMPA 3.238E+07 2.280E+07 1.882E+05 3.010E+05 2.322E+04 1.860E+04

F4 F5 F6

Average Stdv Average Stdv Average Stdv

ODMPA 4.968E+02 2.400E+01 5.213E+02 3.060E-01 6.172E+02 3.890E+00

DE 5.485E+02 1.930E+01 5.207E+02 6.480E-02 6.261E+02 1.570E+00

GSA 2.649E+03 5.340E+02 5.200E+02 3.270E-04 6.306E+02 2.600E+00

GWO 1.264E+03 4.850E+02 5.210E+02 1.220E-01 6.302E+02 2.840E+00

HHO 6.316E+02 5.780E+01 5.207E+02 1.400E-01 6.342E+02 3.220E+00

MPA 5.811E+02 4.660E+01 5.201E+02 3.290E-02 6.260E+02 5.210E+00

MRFO 4.980E+02 3.840E+01 5.209E+02 1.750E-01 6.232E+02 4.650E+00

MVO 5.099E+02 3.610E+01 5.205E+02 1.010E-01 6.170E+02 3.260E+00

PFA 5.800E+02 5.310E+01 5.210E+02 5.700E-02 6.257E+02 4.220E+00

SCA 6.158E+03 1.970E+03 5.213E+02 8.490E-02 6.429E+02 2.500E+00

SMA 5.050E+02 3.630E+01 5.215E+02 9.840E-02 6.130E+02 2.680E+00

SSA 5.100E+02 3.290E+01 5.200E+02 4.960E-02 6.292E+02 4.200E+00

SSAsalp 5.273E+02 2.850E+01 5.200E+02 4.100E-05 6.162E+02 3.580E+00

TSA 1.682E+04 1.730E+03 5.216E+02 5.540E-02 6.493E+02 1.430E+00

WOA 8.759E+02 1.590E+02 5.211E+02 1.330E-01 6.354E+02 3.620E+00

AVOA 5.420E+02 3.560E+01 5.201E+02 9.680E-02 6.247E+02 3.040E+00

COOT 6.864E+02 6.470E+01 5.210E+02 1.040E-01 6.332E+02 4.290E+00

Ex-GWO 2.404E+04 1.090E-01 5.216E+02 1.920E-05 6.520E+02 1.630E-01

MMPA 5.350E+02 4.100E+01 5.203E+02 1.210E-01 6.158E+02 3.570E+00

EMPA 5.836E+02 8.640E+01 5.201E+02 4.290E-02 6.258E+02 3.270E+00

IMPA 5.990E+02 7.620E+01 5.201E+02 6.780E-02 6.263E+02 3.350E+00
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Table 3 continued F7 F8 F9

Average Stdv Average Stdv Average Stdv

ODMPA 7.003E+02 1.350E-01 8.511E+02 1.660E+01 9.523E+02 1.730E+01

DE 7.004E+02 8.050E-02 8.818E+02 9.010E+00 1.115E+03 1.940E+01

GSA 9.252E+02 4.190E+01 9.578E+02 1.320E+01 1.083E+03 1.610E+01

GWO 7.902E+02 2.860E+01 1.088E+03 2.230E+01 1.186E+03 2.620E+01

HHO 7.019E+02 3.610E-01 9.448E+02 1.170E+01 1.099E+03 2.020E+01

MPA 7.004E+02 1.820E-01 9.189E+02 3.600E+01 1.083E+03 4.980E+01

MRFO 7.000E+02 1.730E-02 9.415E+02 2.280E+01 1.072E+03 2.370E+01

MVO 7.007E+02 9.390E-02 8.581E+02 1.500E+01 1.050E+03 3.930E+01

PFA 7.014E+02 2.520E-01 9.679E+02 3.940E+01 1.138E+03 6.630E+01

SCA 1.100E+03 6.340E+01 1.164E+03 3.320E+01 1.295E+03 3.640E+01

SMA 7.012E+02 9.970E-02 8.556E+02 1.300E+01 1.000E+03 2.640E+01

SSA 7.000E+02 1.340E-02 9.546E+02 2.290E+01 1.097E+03 1.510E+01

SSAsalp 7.000E+02 1.110E-02 8.680E+02 1.550E+01 9.904E+02 2.570E+01

TSA 1.529E+03 5.160E+01 1.319E+03 7.140E+00 1.333E+03 2.610E+01

WOA 7.115E+02 2.880E+00 1.016E+03 5.030E+01 1.163E+03 5.870E+01

AVOA 7.000E+02 3.180E-02 8.919E+02 2.240E+01 1.061E+03 2.710E+01

COOT 7.110E+02 3.980E+00 9.846E+02 3.420E+01 1.124E+03 3.780E+01

Ex-GWO 1.619E+03 8.910E-04 1.205E+03 3.120E+00 1.378E+03 1.590E-05

MMPA 7.005E+02 1.950E-01 8.627E+02 1.580E+01 1.040E+03 2.480E+01

EMPA 7.004E+02 1.760E-01 9.064E+02 2.590E+01 1.072E+03 5.560E+01

IMPA 7.004E+02 1.680E-01 9.276E+02 3.490E+01 1.077E+03 4.860E+01

F10 F11 F12

Average Stdv Average Stdv Average Stdv

ODMPA 2.504E+03 4.710E+02 3.985E+03 5.110E+02 1.200E+03 2.470E-01

DE 3.555E+03 3.040E+02 6.656E+03 2.550E+02 1.201E+03 1.960E-01

GSA 5.176E+03 5.340E+02 5.697E+03 5.960E+02 1.200E+03 6.960E-03

GWO 6.883E+03 6.520E+02 7.448E+03 9.200E+02 1.202E+03 6.220E-01

HHO 4.443E+03 4.970E+02 5.746E+03 7.210E+02 1.202E+03 3.970E-01

MPA 4.674E+03 5.700E+02 5.239E+03 7.310E+02 1.200E+03 1.870E-01

MRFO 3.836E+03 8.800E+02 5.048E+03 6.960E+02 1.202E+03 8.190E-01

MVO 2.717E+03 3.810E+02 4.508E+03 7.110E+02 1.201E+03 2.660E-01

PFA 4.468E+03 7.310E+02 5.372E+03 6.100E+02 1.203E+03 5.460E-01

SCA 9.790E+03 5.220E+02 1.042E+04 4.640E+02 1.206E+03 1.140E+00

SMA 2.168E+03 3.870E+02 4.012E+03 4.230E+02 1.201E+03 1.990E-01

SSA 4.568E+03 6.560E+02 5.620E+03 8.520E+02 1.202E+03 7.850E-01

SSAsalp 4.233E+03 7.060E+02 4.473E+03 6.530E+02 1.200E+03 1.710E-01

TSA 1.133E+04 3.210E+02 1.246E+04 5.040E+02 1.206E+03 1.290E+00

WOA 5.876E+03 6.960E+02 7.005E+03 6.740E+02 1.202E+03 6.920E-01

AVOA 3.058E+03 5.460E+02 5.029E+03 7.730E+02 1.201E+03 2.260E-01

COOT 5.552E+03 6.950E+02 6.905E+03 7.220E+02 1.203E+03 7.040E-01

Ex-GWO 1.122E+04 7.650E+01 1.290E+04 2.730E+02 1.208E+03 3.990E-01

MMPA 2.130E+03 3.670E+02 4.343E+03 8.140E+02 1.200E+03 1.430E-01

EMPA 4.544E+03 8.040E+02 5.196E+03 7.100E+02 1.200E+03 1.350E-01

IMPA 4.776E+03 7.800E+02 5.108E+03 1.010E+03 1.200E+03 1.050E-01
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Table 3 continued F13 F14 F15

Average Stdv Average Stdv Average Stdv

ODMPA 1.301E+03 6.380E-02 1.400E+03 3.490E-02 1.508E+03 2.080E+00

DE 1.301E+03 1.890E+00 1.400E+03 2.630E-01 1.520E+03 1.770E+00

GSA 1.304E+03 4.420E-01 1.492E+03 1.530E+01 2.797E+03 1.030E+03

GWO 1.302E+03 6.540E-01 1.432E+03 9.690E+00 4.554E+03 3.470E+03

HHO 1.301E+03 1.170E-01 1.400E+03 6.360E-02 1.547E+03 9.810E+00

MPA 1.301E+03 1.250E-01 1.401E+03 3.740E-01 1.516E+03 5.930E+00

MRFO 1.301E+03 1.110E-01 1.400E+03 1.930E-01 1.516E+03 6.080E+00

MVO 1.301E+03 1.270E-01 1.401E+03 3.340E-01 1.512E+03 3.050E+00

PFA 1.301E+03 1.340E-01 1.401E+03 3.240E-01 1.531E+03 7.470E+00

SCA 1.305E+03 4.950E-01 1.545E+03 2.160E+01 2.180E+05 1.980E+05

SMA 1.301E+03 1.250E-01 1.401E+03 3.730E-01 1.513E+03 2.290E+00

SSA 1.301E+03 1.490E-01 1.400E+03 1.630E-01 1.542E+03 1.900E+01

SSAsalp 1.301E+03 1.030E-01 1.400E+03 2.050E-01 1.509E+03 2.960E+00

TSA 1.309E+03 4.610E-01 1.686E+03 2.460E+01 4.442E+05 1.230E+05

WOA 1.301E+03 2.860E-01 1.403E+03 4.440E+00 1.860E+03 7.840E+02

AVOA 1.301E+03 1.080E-01 1.400E+03 1.000E-01 1.512E+03 4.000E+00

COOT 1.301E+03 1.490E-01 1.401E+03 1.050E+00 1.605E+03 8.530E+01

Ex-GWO 1.311E+03 2.230E-07 1.706E+03 4.360E-03 2.763E+05 1.800E+01

MMPA 1.301E+03 1.370E-01 1.400E+03 2.610E-01 1.511E+03 2.820E+00

EMPA 1.301E+03 1.430E-01 1.401E+03 3.650E-01 1.518E+03 5.780E+00

IMPA 1.301E+03 1.120E-01 1.401E+03 3.630E-01 1.521E+03 1.260E+01

F16 F17 F18

Average Stdv Average Stdv Average Stdv

ODMPA 1.615E+03 4.970E-01 2.625E+04 2.620E+04 2.412E+03 1.270E+03

DE 1.612E+03 3.250E-01 3.050E+06 1.060E+06 8.277E+04 5.270E+04

GSA 1.614E+03 2.400E-01 2.821E+07 8.030E+06 1.062E+07 5.090E+07

GWO 1.614E+03 3.350E-01 1.456E+07 7.380E+06 2.181E+08 4.300E+07

HHO 1.613E+03 3.400E-01 6.026E+06 4.150E+06 3.063E+05 1.620E+05

MPA 1.613E+03 4.440E-01 3.414E+06 2.360E+06 2.671E+04 5.090E+03

MRFO 1.612E+03 5.650E-01 2.101E+05 1.410E+05 6.979E+03 6.260E+03

MVO 1.612E+03 6.070E-01 6.764E+05 5.270E+05 9.742E+03 6.130E+03

PFA 1.613E+03 2.690E-01 1.881E+06 1.450E+06 4.628E+04 6.210E+04

SCA 1.614E+03 2.710E-01 1.138E+08 6.780E+07 1.301E+09 4.820E+08

SMA 1.613E+03 5.860E-01 7.205E+05 4.740E+05 1.612E+04 1.100E+04

SSA 1.613E+03 4.160E-01 8.682E+05 6.190E+05 5.287E+03 4.210E+03

SSAsalp 1.612E+03 7.360E-01 1.639E+06 9.690E+05 1.260E+04 8.440E+03

TSA 1.615E+03 1.810E-01 4.033E+08 1.210E+08 8.787E+09 1.650E+09

WOA 1.613E+03 4.240E-01 1.587E+07 1.120E+07 1.188E+06 1.180E+06

AVOA 1.613E+03 5.900E-01 2.219E+06 1.630E+06 5.481E+03 4.220E+03

COOT 1.613E+03 3.070E-01 6.259E+06 4.660E+06 2.470E+05 2.840E+05

Ex-GWO 1.615E+03 3.170E-01 3.889E+08 8.250E+03 1.478E+10 3.590E+04

MMPA 1.613E+03 5.300E-01 1.216E+06 9.870E+05 4.070E+03 2.480E+03

EMPA 1.613E+03 5.020E-01 2.772E+06 1.410E+06 2.690E+04 3.800E+03

IMPA 1.613E+03 6.620E-01 3.411E+06 2.200E+06 2.667E+04 5.180E+03
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Table 3 continued F19 F20 F21

Average Stdv Average Stdv Average Stdv

ODMPA 1.910E+03 2.280E+00 2.213E+03 1.800E+02 5.187E+03 3.450E+03

DE 1.912E+03 8.950E-01 1.199E+04 4.280E+03 6.267E+05 3.170E+05

GSA 2.082E+03 3.540E+01 4.404E+05 2.780E+05 1.376E+07 5.060E+06

GWO 2.027E+03 2.480E+01 3.361E+05 8.110E+04 1.032E+07 6.760E+06

HHO 1.937E+03 3.650E+01 3.199E+04 1.040E+04 1.079E+06 1.050E+06

MPA 1.942E+03 3.940E+01 3.593E+04 1.980E+04 8.561E+05 8.410E+05

MRFO 1.921E+03 2.290E+01 1.485E+04 9.820E+03 1.080E+05 1.250E+05

MVO 1.917E+03 1.760E+01 5.290E+03 3.510E+03 2.584E+05 2.270E+05

PFA 1.920E+03 1.780E+01 2.747E+04 1.620E+04 5.185E+05 3.810E+05

SCA 2.219E+03 8.820E+01 4.237E+06 3.760E+06 3.436E+07 2.070E+07

SMA 1.912E+03 1.990E+00 2.900E+04 1.750E+04 5.202E+05 4.380E+05

SSA 1.923E+03 2.630E+01 2.768E+04 1.970E+04 4.634E+05 3.730E+05

SSAsalp 1.917E+03 1.220E+01 1.088E+05 4.570E+04 3.898E+05 2.730E+05

TSA 2.418E+03 1.390E+02 5.416E+07 1.030E+08 3.493E+08 2.380E+08

WOA 1.985E+03 3.950E+01 1.528E+05 3.590E+05 8.380E+06 8.690E+06

AVOA 1.922E+03 2.450E+01 2.685E+04 1.330E+04 5.863E+05 4.640E+05

COOT 1.950E+03 3.310E+01 5.634E+04 3.160E+04 1.983E+06 2.090E+06

Ex-GWO 2.803E+03 2.080E-02 1.628E+07 6.720E+04 1.758E+09 4.450E+04

MMPA 1.913E+03 1.060E+01 2.076E+04 1.000E+04 5.556E+05 3.830E+05

EMPA 1.950E+03 3.530E+01 3.190E+04 1.880E+04 7.906E+05 8.220E+05

IMPA 1.941E+03 3.810E+01 3.318E+04 1.910E+04 9.539E+05 8.980E+05

F22 F23 F24

Average Stdv Average Stdv Average Stdv

ODMPA 2.462E+03 1.560E+02 2.500E+03 0.000E+00 2.600E+03 0.000E+00

DE 2.623E+03 1.300E+02 2.616E+03 7.350E-02 2.634E+03 1.780E+00

GSA 3.659E+03 4.140E+02 2.631E+03 1.100E+02 2.621E+03 7.280E+00

GWO 3.256E+03 3.040E+02 2.701E+03 1.490E+01 2.600E+03 6.630E-04

HHO 3.134E+03 2.480E+02 2.500E+03 0.000E+00 2.600E+03 0.000E+00

MPA 3.120E+03 3.000E+02 2.630E+03 9.910E+00 2.648E+03 8.730E+00

MRFO 2.864E+03 1.850E+02 2.500E+03 0.000E+00 2.600E+03 0.000E+00

MVO 2.859E+03 2.290E+02 2.617E+03 1.130E+00 2.634E+03 6.960E+00

PFA 2.850E+03 2.190E+02 2.617E+03 8.030E-01 2.641E+03 1.030E+01

SCA 4.157E+03 3.710E+02 2.953E+03 8.770E+01 2.622E+03 3.050E+01

SMA 2.690E+03 2.330E+02 2.500E+03 0.000E+00 2.600E+03 0.000E+00

SSA 3.102E+03 3.530E+02 2.500E+03 2.590E-11 2.600E+03 1.190E-02

SSAsalp 2.656E+03 1.880E+02 2.632E+03 9.740E+00 2.642E+03 5.470E+00

TSA 3.988E+05 2.000E+05 2.500E+03 0.000E+00 2.600E+03 0.000E+00

WOA 3.088E+03 2.940E+02 2.682E+03 2.030E+01 2.606E+03 3.200E+00

AVOA 3.003E+03 2.180E+02 2.500E+03 0.000E+00 2.600E+03 0.000E+00

COOT 3.090E+03 2.310E+02 2.610E+03 6.220E+01 2.600E+03 1.460E-06

Ex-GWO 4.457E+06 6.850E+02 2.500E+03 0.000E+00 2.600E+03 0.000E+00

MMPA 3.051E+03 2.150E+02 2.500E+03 1.720E-03 2.600E+03 1.830E-03

EMPA 3.188E+03 2.670E+02 2.634E+03 1.010E+01 2.649E+03 7.860E+00

IMPA 3.142E+03 2.870E+02 2.632E+03 9.570E+00 2.649E+03 8.750E+00

123



10506 Arabian Journal for Science and Engineering (2023) 48:10493–10516

Table 3 continued F25 F26 F27

Average Stdv Average Stdv Average Stdv

ODMPA 2.700E+03 9.190E-01 2.760E+03 4.960E+01 2.900E+03 0.000E+00

DE 2.715E+03 2.020E+00 2.701E+03 1.320E-01 3.152E+03 5.410E+01

GSA 2.708E+03 1.920E+00 2.800E+03 2.020E-02 6.186E+03 9.440E+02

GWO 2.700E+03 1.690E-13 2.751E+03 5.020E+01 3.639E+03 2.150E+02

HHO 2.700E+03 0.000E+00 2.777E+03 4.280E+01 2.900E+03 0.000E+00

MPA 2.714E+03 4.630E+00 2.701E+03 1.210E-01 3.610E+03 2.820E+02

MRFO 2.700E+03 0.000E+00 2.701E+03 1.070E-01 2.900E+03 0.000E+00

MVO 2.708E+03 2.740E+00 2.779E+03 7.120E+01 3.455E+03 1.770E+02

PFA 2.716E+03 5.170E+00 2.749E+03 9.240E+01 3.512E+03 2.710E+02

SCA 2.758E+03 3.980E+01 2.707E+03 2.780E+00 4.184E+03 8.230E+01

SMA 2.700E+03 0.000E+00 2.701E+03 1.390E-01 2.900E+03 0.000E+00

SSA 2.700E+03 1.920E-12 2.764E+03 4.870E+01 2.900E+03 1.450E-11

SSAsalp 2.719E+03 6.650E+00 2.701E+03 1.210E-01 3.458E+03 7.390E+01

TSA 2.700E+03 0.000E+00 2.800E+03 0.000E+00 2.917E+03 9.540E+01

WOA 2.718E+03 2.010E+01 2.727E+03 4.480E+01 3.774E+03 3.340E+02

AVOA 2.700E+03 0.000E+00 2.744E+03 5.020E+01 2.900E+03 0.000E+00

COOT 2.700E+03 0.000E+00 2.757E+03 5.010E+01 3.490E+03 4.180E+02

Ex-GWO 2.700E+03 0.000E+00 2.800E+03 0.000E+00 2.900E+03 0.000E+00

MMPA 2.700E+03 1.610E-05 2.787E+03 3.440E+01 2.900E+03 2.340E-04

EMPA 2.715E+03 5.980E+00 2.701E+03 1.230E-01 3.648E+03 2.540E+02

IMPA 2.718E+03 5.340E+00 2.701E+03 1.230E-01 3.550E+03 2.920E+02

F28 F29 F30

Average Stdv Average Stdv Average Stdv

ODMPA 3.000E+03 0.000E+00 3.267E+03 5.650E+02 4.742E+03 1.640E+03

DE 3.795E+03 3.020E+01 1.329E+04 4.780E+03 1.176E+04 2.040E+03

GSA 5.980E+03 8.260E+02 1.319E+08 1.610E+08 1.999E+06 4.730E+05

GWO 5.387E+03 1.080E+03 4.148E+07 3.040E+07 2.081E+06 6.990E+05

HHO 3.000E+03 0.000E+00 2.279E+05 1.230E+06 2.641E+04 3.900E+04

MPA 4.109E+03 2.740E+02 6.965E+06 7.670E+06 5.957E+04 5.160E+04

MRFO 3.000E+03 0.000E+00 3.293E+03 6.170E+02 8.012E+03 1.090E+04

MVO 4.539E+03 6.220E+02 1.331E+06 3.440E+06 9.007E+03 2.210E+03

PFA 4.058E+03 4.240E+02 1.957E+06 4.540E+06 1.734E+04 7.390E+03

SCA 9.140E+03 9.720E+02 2.228E+08 8.060E+07 3.341E+06 1.600E+06

SMA 3.000E+03 0.000E+00 3.130E+05 1.680E+06 6.860E+03 1.380E+03

SSA 3.000E+03 2.540E-11 3.100E+03 2.280E-04 3.200E+03 6.950E-03

SSAsalp 3.777E+03 5.930E+01 2.249E+04 6.870E+03 3.530E+04 1.530E+04

TSA 3.000E+03 0.000E+00 3.100E+03 0.000E+00 3.365E+06 6.940E+06

WOA 5.394E+03 5.140E+02 1.466E+07 1.520E+07 2.896E+05 1.470E+05

AVOA 3.000E+03 0.000E+00 5.231E+03 4.490E+03 1.407E+04 1.250E+04

COOT 4.621E+03 7.410E+02 6.534E+06 7.660E+06 8.692E+04 4.190E+04

Ex-GWO 3.000E+03 0.000E+00 3.100E+03 0.000E+00 3.200E+03 0.000E+00

MMPA 3.000E+03 6.870E-04 4.020E+03 1.930E+03 3.229E+03 8.450E+01

EMPA 4.014E+03 1.910E+02 7.504E+06 5.850E+06 6.408E+04 5.640E+04

IMPA 4.133E+03 3.130E+02 7.236E+06 6.830E+06 5.331E+04 5.320E+04

Bold values indicate the minimum values calculated by all the algorithms of CEC2014 test set
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Table 4 Over rank off ODMPA and other algorithms by Friedman
assessment

Algorithm Rank +/−/= ARV

ODMPA 1 ∼ 4.55

DE 9 24/0/6 9.2

GSA 17 11/15/04 15.92

GWO 18 11/17/02 16.12

HHO 10 18/0/12 10.72

MPA 11 1/13/16 10.98

MRFO 2 23/0/7 5.63

MVO 8 1/8/21 7.58

PFA 14 3/14/13 11.83

SCA 21 0/15/15 18.8

SMA 5 2/4/24 6.82

SSA 7 3/6/21 7.45

SSAsalp 6 19/0/11 7.4

TSA 20 6/16/8 17.35

WOA 16 6/18/06 15.65

AVOA 4 25/0/5 6.35

COOT 15 2/20/08 13.85

Ex-GWO 19 7/15/8 16.65

MMPA 3 1/4/25 5.72

EMPA 12 1/11/18 11.02

IMPA 13 2/11/17 11.42

Bold value indicates the lowest ARV

These results prove that ODMPA can obtain excellent results
on complex optimization problems.

4.2 ODMPA for Engineering Design Problems

The engineering application problem is also the mainstream
test problem of the proposed algorithm, which can better test
the ability of the algorithm to solve real-world problems. It
is vital to optimizing the problems with a constrained search
space, and these problems always belong to the engineering
domain. ODMPA is adapted to three real-life engineering
design problems with constraints, including pressure vessel
design (PVD) problem [78], welded beam design (WBD)
[79] problem, and speed reducer design (SRD)[80] problem.
There are numerous constraints in the mathematics model
of engineering problems, so choosing a proper approach to
deal with them is essential. Therefore, the penalty func-
tion is added to the original objective function to obtain
an augmented objective function. The work [57] mentioned
many types of penalty functions, including segregated GA
functions, death penalty functions, static penalty functions,
etc. In solving engineering problems, a simple and practi-
cal approach should be taken to ensure there is no infeasible
solution in the search range. Thus, the death penalty func-
tion is the most suitable for engineering design problems.

Moreover, the penalty factor weighs the loss and is usually
specified as a large positive number.

4.2.1 Welded Beam Design Problem

The welded beam is a continuous engineering optimization
problem, andwhosemain target is tominimize the cost of the
welded beam. The point is to find an optimal set of dimen-
sions: the height of beam (t), the width of beam (b), the
thickness of beam (h), the length of beam (l). The seven con-
straints, the definition ofWBD problem, are given by Eq. 18.

−→x = [x1, x2, x3, x4] = [h, l, t, b],
Minimize : f (−→x ) = 1.10471x2x

2
1 + 0.04811x3x4(14 + x2),

Subjectto :
g1(

−→x ) = τ(
−→x ) − τmax ≤ 0

g2(
−→x ) = σ(

−→x ) − σmax ≤ 0
g3(

−→x ) = δ(
−→x ) − δmax ≤ 0

g4(
−→x ) = x1 − x4 ≤ 0

g5(
−→x ) = P − Pc(

−→x ) ≤ 0
g6(

−→x ) = 0.125 − x1 ≤ 0
g7(

−→x ) = 0.10471x21 + 0.04811x3x4(14 + x2) − 5 ≤ 0,
Variablerange0.1≤x1≤2, 0.1≤x2≤10, 0.1≤x3≤10, 0.1≤x4≤2,

whereτ(
−→x ) =

√
(τ ′)2 + 2τ ′τ ′′ x2

2R + (τ ′′)2,
τ ′ = P√

2x1x2
, τ ′′ = MR

J , M = P(L + x2
2 ),

R =
√

x22
4 +

(
x1+x3

2

)2
,

J = 2

{√
2x1x2

[
x22
4 +

(
x1+x3

2

)2]}
,

σ (
−→x ) = 6PL

x4x23
, δ(

−→x ) = 4PL3

Ex4x23
,

Pc(
−→x ) = 4.013E

√
x23 x

6
4

36

L2

(
1 − x3

2L

√
E
4G

)
,

P = 6000lb, L = 14in., δmax = 0.25in., E = 30 × 106 psi,
G = 12 × 106 psi, τmax = 13600psi, σmax = 30000psi .

(18)

A lot of algorithms have solved the WBD problem and
obtained good results. The comparison results to other
famous traditional and advanced algorithms, including BA
[58], RO [59],GSA, IHS [60], hHHO-SCA [61],MTSA [62],
CPSO [63], are displayed in Table 5. The results demonstrate
that ODMPA has a more excellent performance than other
algorithms, and the best cost is 1.7017.

4.2.2 Pressure Vessel Design Problem

Themain target of this engineering problem is aimed at mini-
mizing the total cost pf the pressure vessel. The PVDproblem
has four variables: thickness of the shell (Ts), thickness of
the head (Th), internal range (R), and length of the shell (L).
The four constraints and the structural formulation are given
by Eq. 19.
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Fig. 4 The iteration curve of
ODMPA on CEC2014
benchmark functions

123



Arabian Journal for Science and Engineering (2023) 48:10493–10516 10509

Fig. 5 The iteration curve of
ODMPA on CEC2014
benchmark functions
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Fig. 6 The iteration curve of ODMPA on CEC2014 benchmark functions

Table 5 WBD problem’s results
on different algorithms

Optimal solution variables Optimal cost

h I t b

ODMPA 0.24011 2.8581 9.0366 0.20573 1.7017

BA 2 0.1 3.174303 2 1.818138

RO 0.203687 3.528467 9.004233 0.207241 1.735344

GSA 0.20573 3.47049 9.03662 0.20573 1.7248

IHS 0.20573 3.47049 9.03662 0.20573 1.7248

hHHO-SCA 0.190086 3.696496 9.386343 0.204157 1.779032249

MTSA 0.24415742 6.22306595 8.29555011 0.24440474 2.38241101

CPSO 0.202369 3.544214 9.048210 0.205723 1.728024

Bold results are the minimum fitness values calculated by ODMPA

−→x = [x1, x2, x3, x4] = [Ts, Th, R, L],
Minimize : f (−→x ) = 0.6224x1x3x4+1.7781x2x

2
3

+3.1661x21 x4+19.84x21 x3,

Subjectto :
g1(

−→x ) = −x1 + 0.0193x3 ≤ 0,

g2(
−→x ) = −x2 + 0.00954x3 ≤ 0,

g3(
−→x ) = −πx4x

2
3 − 4

3
πx33 + 1296000 ≤ 0,

g4(
−→x ) = x4 − 240 ≤ 0,

where

0.0625≤x1≤6.1875, 0.0625≤x2

≤6.1875, 10≤x3≤200, 10≤x4≤200. (19)

The comparison results of ODMPA and other famous tra-
ditional and advanced algorithms for PVD problem, includ-
ing BA, IHS, PSO,GA, ES [64], SGOA [2], andMMPA [55],

are shown in Table 6. The results demonstrate that ODMPA
performs more excellent than other algorithms, and the best
cost is 5835.5822.

4.2.3 Speed Reducer Design Problem

The model of this engineer problem is aiming at minimizing
the cost of the speed reducer. The SRD problem has seven
variables: teeth number of the pinion (z), width of reducer
(b), first shaft’s length (l1), diameter of shaft 1 (d1), module
of teeth (m), second shaft’s length (l2), diameter of shaft 2
(d2). The eleven constraints and the mathematical formula of
SRD are shown in Eq. 20.

−→x = [x1, x2, x3, x4, x5, x6, x7]
Minimize : f (−→x ) = 0.7854x1x

2
2 (3.3333x

2
3 + 14.9334x3

− 43.0934) − 1.508x1(x
2
6 + x27 )

+ 7.4777(x36 + x37) + 0.7854(x4x
2
6 + x5x

2
7 ),
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Table 6 PVD problem’s results
on different algorithms

Optimal solution variables Optimal cost

Ts Th R L

ODMPA 0.51375 0.25013 45.2658 200 5835.5822

BA 97.8015 98.10897 10.98606 200 7258.5640

IHS 1.125000 0.625000 58.29015 43.69268 7197.7300

PSO 0.812500 0.437500 42.091266 176.746500 6061.0777

GA 0.937500 0.500000 48.329000 112.679000 6410.3811

ES 0.812500 0.437500 42.098087 176.640518 6059.7456

SGOA 0.816637 0.403014 42.209181 175.779778 5977.4951

MMPA 0.778168 0.38464899 40.319629 199.999897 5885.3326

Bold results are the minimum fitness values calculated by ODMPA

Subjectto :
g1(

−→x ) = 27

x1x22 x3
− 1 ≤ 0,

g2(
−→x ) = 397.5

x1x22 x
2
3

− 1 ≤ 0,

g3(
−→x ) = 1.93x34

x2x46 x3
− 1 ≤ 0,

g4(
−→x ) = 1.93x35

x2x47 x3
− 1 ≤ 0,

g5(
−→x ) =

[(
745x4
x2x3

)2 + 16.9 × 106
]

110x36

1/2

− 1 ≤ 0,

g6(
−→x ) =

[(
745x4
x2x3

)2 + 157.5 × 106
]

85x37

1/2

− 1 ≤ 0,

g7(
−→x ) = x2x3

40
− 1 ≤ 0,

g8(
−→x ) = 5x2

x1
− 1 ≤ 0,

g9(
−→x ) = x1

12x2
− 1 ≤ 0,

g10(
−→x ) = 1.5x6 + 1.9

x4
− 1 ≤ 0,

g11(
−→x ) = 1.1x7 + 1.9

x5
− 1 ≤ 0,

where

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3

≤ 28, 7.3 ≤ x4 ≤ 8.3,

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5. (20)

In this problem, ODMPA is compared with other algo-
rithms, including WCA [65], HEAA [66], MDE [67], m-
-HHO [68], EHHO, GLF-GWO [69], and m-SSA [70]. The
results displayed in Table 7 demonstrate that ODMPA per-

forms more excellent than other algorithms, and the optimal
cost is 2753.9866.

4.3 Static and Dynamic Photovoltaic Models

The performance of the whole PV system now depends on its
effectivemodeling, and the swarm intelligence algorithm can
effectively solve the problemofPV identification parameters.
Comparedwith other algorithms, ODMPAperforms better in
solving the problem of PV system identification parameters
and also shows its superior performance. The model of this
problem is nonlinearly optimized, and the main target is to
extract the parameters of photovoltaic models. The static and
dynamic models are chosen in this paper. An objective func-
tion was designed to set up accurate photovoltaic models for
efficient reproduction. The minimization objective function
involves the parameters needed to distinguish. Considering
the sensitivity of themodel parameters, the root-mean-square
error is introduced into these experiments as the final evalu-
ation standard, and the value of RMSE is calculated among
the measured and estimated current.

4.3.1 Single-Diode Model

Modeling of photovoltaic modules is usually based on an
equivalent circuit model with total parameters. The theory
of SDM is established in the Shockley equation [71]. The
formula of the output current is given by Eqs. (21–22):

IL = Iph − Id − Ish

Id = Isd · [exp
(
VL + RS · IL

n · Vt
)

− 1]

Ish = VL + RS · IL
Rsh

where

Vt=kT

q
, k=1.3806503×10−23,
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Table 7 SRD problem’s results
on different algorithms

Optimal solution variables Optimal cost

b m z l1 l2 d1 d2

ODMPA 3.4764 0.7000 17.0000 8.2922 8.2999 3.3509 5.2781 2753.9866

WCA 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4711

HEAA 3.5000 0.7000 17.0000 7.3004 7.7153 3.3502 5.2867 2994.4991

MDE 3.5000 0.7000 17.0000 7.3002 7.8000 3.3502 5.28687 2996.3567

m-HHO 3.5000 0.7000 17.0000 7.3000 7.8000 3.3512 5.2867 2996.6162

EHHO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4710

GLF-GWO 3.5000 0.7000 17.0000 7.3000 7.8000 3.3502 5.2867 2996.3680

m-SSA 3.5000 0.7000 17.0000 7.3470 7.8032 3.3517 5.2867 2997.2376

Bold results are the minimum fitness values calculated by ODMPA

q=1.60217646×10−19. (21)

According to the above equations, the output current
expression can be derived:

−→x = [x1, x2, x3, x4, x5] = [Iph, Isd , RS, Rsh, n],
IL = Iph − Isd ·

[
exp

(
VL+RS ·IL

n·Vt
)

− 1
]

− VL+RS ·IL
Rsh

.
(22)

4.3.2 Double-Diode Model

For the SDM in harsh external environments, producing the
compound current loss is easy. DDM considers this situation
andmakes up for it. The formula of theDDM’s output current
is given by Eq. (23):

−→x = [x1, x2, x3, x4, x5, x6, x7]
= [Iph, Isd1 , Isd2 , RS, Rsh, n1, n2],

IL = Iph − Isd1 ·
[
exp

(
VL + IL · RS

n1 · Vt
)

− 1

]

− Isd2 ·
[
exp

(
VL + IL · RS

n2 · Vt
)

− 1

]

− VL + IL · RS

Rsh
,

where

Vt = kT

q
, k = 1.3806503 × 10−23,

q = 1.60217646 × 10−19. (23)

4.3.3 PV Module Model

In practical cases, the PV module is made up of some
sunshine-based cells in series and parallel. The current for-
mula of SDM for the PV module is expressed in Eq. (24).

−→x = [x1, x2, x3, x4, x5, x6, x7]
= [Np, Ns, Iph, Isd , RS, Rsh, n],

IL = Iph Np − Isd Np

[
exp

(
VL + (Ns RS IL/Np)

nNsVt

)
− 1

]

− VL + (Ns RS IL/Np)(
Ns Rsh/Np

) ,

where

Vt = kT

q
, k = 1.3806503 × 10−23,

q = 1.60217646 × 10−19. (24)

where Np and Ns denote the number of sun-oriented cells in
parallel and arrangement, respectively. The parameters set-
ting is the same as the SDM model.

4.3.4 Objective Function

The target of algorithms to optimize the photovoltaic models
is minimizing the gap of the estimated and measured current.
In order to achieve the goal of validating the performance
of photovoltaic models, the choice of evaluation standard
is crucial. Root-mean-square error (RMSE) is appropriate,
and the original problem is turned into the minimization of
RMSE. The mathematical formula is given by Eq. (25):

RMSE =
√∑N

i=1 (Isimulated − Imeasured)
2

N
(25)

where the Imeasured represents the actual measured current,
Isimulated is the current calculated by formulas (21)–(24),
and N indicates the number of groups of the current.

Two literature datasets [72] are used to extract the parame-
ters of PVmodels, and the detailed informationof the datasets
is listed as follows. The RTC France cell consists of twenty-
six pairs of data of the current and voltage, and its irradiance
and temperature are 1000 W/m2 and 33◦C, respectively,
while the Photowatt-PWP201 consists of twenty-five pairs
of data with thirty-six polysilicon cells, and the temperature
is 45◦C.
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Table 8 The value range of
photovoltaic models

SDM/DDM PV module

Parameters Lower bound Upper bound Lower bound Upper bound

Iph(A) 0 1 0 2

Isd (μA) 0 1 0 50

Rs(	) 0 0.5 0 2

Rsh(	) 0 100 0 2000

n 1 2 1 50

Isd1(μA) 0 1 – –

Isd1(μA) 0 1 – –

n1 1 2 – –

n2 1 2 – –

Table 9 Comparison results for
SDM problem (data: RTC
France)

Algorithm Iph(A) Isd (μA) Rs(	) Rsh(	) n RMSE

ODMPA 0.76078 0.32242 0.036384 53.6349 1.481 9.86E-04

SFLA [73] 0.7602 0.3212 0.0374 75.362 1.4802 1.8791E-03

IJAYA [74] 0.7607 0.7607 0.0363 55.429 1.4832 9.8871E-04

GOTLBO [75] 0.7608 0.3102 0.0365 51.971 1.4771 9.8997E-04

WOA 0.76034 0.62123 0.032216 61.7541 1.5505 2.71E-03

MPA 0.76057 0.46231 0.034933 66.9487 1.5182 1.20E-03

Bold results are the minimum fitness values calculated by ODMPA

Table 10 Comparison results
for DDM problem (data: RTC
France)

Algorithm Iph(A) Isd1(μA) Isd2(μA) Rs(	) Rsh(	) n1 n2 RMSE

ODMPA 0.76078 0.31048 0.25477 0.036563 54.5384 1.8749 1.462 9.84E-04

MPA 0.76012 0.9656 0.34761 0.034917 89.0604 2 1.4953 1.39E-03

AVOA 0.76103 0.12458 0.18621 0.037681 46.0647 1.4128 1.5879 1.14E-03

PSO 0.75777 0.16188 0.34265 0.03461 44.0048 1.7683 1.4929 3.63E-03

COOT 0.76708 0.11858 0.37383 0.03402 22.3821 1.7436 1.5018 4.62E-03

MVO 0.7601 0.09545 0.83353 0.034821 95.9077 1.4177 1.6861 1.50E-03

Bold results are the minimum fitness values calculated by ODMPA

ODMPA and other counterparts are run on MATLAB
R2016a, and each algorithm is executed thirty times in case
of contingency. The search agents size and dimension are
30, and the maximum number of evaluations is 300000. PV
models’ parameter setting is displayed in Table 8.

4.3.5 Identify SDM and DDM on the RTC France

Tables 9 and 10 record the RMSE values obtained by running
SDM and DDM models with various algorithms and record
the parameter groups corresponding to the optimal values.
It can be seen that ODMPA shows optimal results, which
indicates that ODMPA is more reliable and effective.

4.3.6 Identify the Photovoltaic Cell Module on the
Photo-Watt-PWP201

Table 11 records the RMSE values obtained by running SDM
and DDMmodels with various algorithms and the parameter
groups corresponding to the optimal values. The results show
that ODMPA obtains the lowest RMSE values.

These practical experiments prove that when extracting
different models’ unknown parameters, ODMPA can always
have a solid ability to get optimal results.
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Table 11 Comparison results
for PV module problem (data:
Photo-watt-PWP201)

Algorithm Iph(A) Isd (μA) Rs(	) Rsh(	) n RMSE

ODMPA 1.0304 3.521 1.2002 995.0763 48.6851 2.43E-03

DE 1.0297 3.9448 1.1882 1141.3032 49.125 2.45E-03

EMPA 1.0288 4.7905 1.1677 1513.2231 49.8943 2.58E-03

GA 1.0303 4.0485 1.1843 1075.9085 49.2293 2.47E-03

HHO 1.0274 4.7219 1.1704 1993.3263 49.8301 2.62E-03

WOA 1.0274 4.9109 1.1648 1999.6029 49.9901 2.64E-03

Bold results are the minimum fitness values calculated by ODMPA

5 Conclusion and Future Direction

This study proposes a new MPA variant: ODMPA. The
improved algorithm has stronger search capability and can
jump out quickly when it is trapped in a local optimum. In
order to retain the advantages of the original MPA and try to
overcome the shortcomings, the main framework of MPA is
reserved. Firstly, the outpost mechanism is introduced after
the three-stage velocity ratio, which improves the exploita-
tion ability in the neighborhood of feasible solutions and
enhances the convergence accuracy. Then theDE-SAmecha-
nism is introduced intoMPA after the FADs stage to generate
a new solution. The best candidate is selected among the
traditional MPA variant and the DE-SA variant. The DE-
SA strategy helps to improve the variety of solutions, which
increases the spaces that can be explored and avoid prema-
ture phenomenon. The improved ODMPA is employed to
tackle CEC2014 benchmark problems, engineering design
problems, and photovoltaic models. Based on the Friedman
assessment, the ODMPA ranks first in the 30 CEC2014 func-
tions test set. Combining the excellent convergence speed
and accuracy of ODMPA’s convergence curve, the empirical
results have demonstrated that ODMPA outperforms other
algorithms in terms of search capability and convergence
speed. Moreover, in complex real-life problems like engi-
neering design problems and parameter extraction of PV
cells, the application of ODMPA also shows it can perform
outstandingly to find optimal results.

Accordingly, the ODMPA is an optimizer with great
potential, ODMPA can be applied in information fusion
[76], recommender systems [77], and machine learning.
Moreover, ODMPA has the hope to be improved to tackle
discrete or multi-objective optimization problems. Based on
the excellent results of combining MPA with DE, combin-
ing other optimizers with MPA is also a valuable research
direction in the future.

Acknowledgements Thiswork is supported by the InnovationCapacity
Construction Project of Jilin Province Development and Reform Com-
mission (2021FGWCXNLJSSZ10, 2019C053-3), the National Key

Research andDevelopment Program of China (No. 2020YFA0714103),
and the Fundamental Research Funds for the Central Universities, JLU.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Mohapatra, P.; et al.: A modified competitive swarm optimizer for
large scale optimization problems. Appl. Soft Comput. 59, 340–
362 (2017). https://doi.org/10.1016/j.asoc.2017.05.060

2. Yu, C.; et al.: SGOA: annealing-behaved grasshopper optimizer
for global tasks. Eng. Comput. 2, 1–28 (2021). https://doi.org/10.
1007/s00366-020-01234-1

3. Zhao, S.; et al.: An enhanced cauchy mutation grasshopper opti-
mization with trigonometric substitution: engineering design and
feature selection. Eng. Comput. (2021). https://doi.org/10.1007/
s00366-021-01448-x

4. Krishna, A.B.; et al.: hSMA-PS: a novel memetic approach
for numerical and engineering design challenges. Eng. Comput.
(2021). https://doi.org/10.1007/s00366-021-01371-1

5. Abbasi, A.; et al.: Multi-strategy Gaussian Harris hawks optimiza-
tion for fatigue life of tapered roller bearings. Eng. Comput. (2021).
https://doi.org/10.1007/s00366-021-01442-3

6. Nautiyal, B.; et al.: Improved Salp SwarmAlgorithmwithmutation
schemes for solving global optimization and engineering problems.
Eng.Comput. (2021). https://doi.org/10.1007/s00366-020-01252-
z

7. Dong, R.Y.; et al.: Boosted kernel search: framework, analysis and
case studies on the economic emission dispatch problem. Knowl.-
Based Syst. 233, 107529 (2021). https://doi.org/10.1016/j.knosys.
2021.107529

8. Dorigo, M.; et al.: Ant colony optimization theory: a survey. Theor.
Comput. Sci. 344(2–3), 243–278 (2005). https://doi.org/10.1016/
j.tcs.2005.05.020

9. Eberhart, R.; et al.: A new optimizer using particle swarm theory.
In: Mhs95 Sixth International Symposium on Micro Machine &
Human Science. IEEE (2002)

10. Sm, A.; et al.: Grey Wolf optimizer. Adv. Eng. Softw. 69, 46–61
(2014)

11. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-
inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249
(2015). https://doi.org/10.1016/j.knosys.2015.07.006

12. Mirjalili, S.; et al.: Multi-verse optimizer: a nature-inspired algo-
rithm for global optimization. Neural Comput. Appl. 27(2), 495–
513 (2016). https://doi.org/10.1007/s00521-015-1870-7

123

https://doi.org/10.1016/j.asoc.2017.05.060
https://doi.org/10.1007/s00366-020-01234-1
https://doi.org/10.1007/s00366-020-01234-1
https://doi.org/10.1007/s00366-021-01448-x
https://doi.org/10.1007/s00366-021-01448-x
https://doi.org/10.1007/s00366-021-01371-1
https://doi.org/10.1007/s00366-021-01442-3
https://doi.org/10.1007/s00366-020-01252-z
https://doi.org/10.1007/s00366-020-01252-z
https://doi.org/10.1016/j.knosys.2021.107529
https://doi.org/10.1016/j.knosys.2021.107529
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1016/j.tcs.2005.05.020
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1007/s00521-015-1870-7


Arabian Journal for Science and Engineering (2023) 48:10493–10516 10515

13. Mirjalili, S.; et al.: Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv. Eng. Softw. 114, 163–191
(2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

14. Wang,D.; et al.: Heterogeneous differential evolution algorithm for
parameter estimation of solar photovoltaic models. Energy Rep. 8,
4724–4746 (2022). https://doi.org/10.1016/j.egyr.2022.03.144

15. Wang, Y.; et al.: The utilization of adaptive African vulture opti-
mizer for optimal parameter identification of SOFC. Energy Rep.
8, 551–560 (2022). https://doi.org/10.1016/j.egyr.2021.11.257

16. Xu, S.; et al.: A modified stochastic fractal search algorithm for
parameter estimation of solar cells and PV modules. Energy Rep.
8, 1853–1866 (2022). https://doi.org/10.1016/j.egyr.2022.01.008

17. Dang, K.D.; et al.: A single step optimization method for topology,
size and shape of trusses using hybrid differential evolution and
symbiotic organisms search. Comput. Struct. 270, 106846 (2022).
https://doi.org/10.1016/j.compstruc.2022.106846

18. Zhang, Y.N.; et al.: Boosted binary Harris hawks optimizer and
feature selection. Eng. Comput. 37(4), 3741–3770 (2021). https://
doi.org/10.1007/s00366-020-01028-5

19. Zhang, Y.N.; et al.: Towards augmented kernel extreme learn-
ing models for bankruptcy prediction: algorithmic behavior and
comprehensive analysis. Neurocomputing 430, 185–212 (2021).
https://doi.org/10.1016/j.neucom.2020.10.038

20. Zeng, G.Q.; et al.: Adaptive population extremal optimization-
based PID neural network for multivariable nonlinear control
systems. Swarm Evol. Comput. 44, 320–334 (2019). https://doi.
org/10.1016/j.swevo.2018.04.008

21. Zhao, D.; et al.: Chaotic random spare ant colony optimization for
multi-threshold image segmentation of 2DKapur entropy. Knowl.-
Based Syst. 216, 106510 (2021). https://doi.org/10.1016/j.knosys.
2020.106510

22. Pang, J.H.; et al.: A scatter simulated annealing algorithm for the bi-
objective scheduling problem for the wet station of semiconductor
manufacturing. Comput. Ind. Eng. 123, 54–66 (2018). https://doi.
org/10.1016/j.cie.2018.06.017

23. Zeng, G.Q.; et al.: Modified extremal optimization for the hard
maximum satisfiability problem. J. Zhejiang Univ.-Sci. C-Comput.
Electron. 12(7), 589–596 (2011). https://doi.org/10.1631/jzus.
C1000313

24. Zhao, X.H.; et al.: Chaos enhanced grey wolf optimization
wrapped ELM for diagnosis of paraquat-poisoned patients. Com-
put. Biol. Chem. 78, 481–490 (2019). https://doi.org/10.1016/j.
compbiolchem.2018.11.017

25. Faramarzi, A.; et al.: Marine predators algorithm: a nature-inspired
metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

26. Dinh, P.H.; et al.: An improved medical image synthesis approach
based on marine predators algorithm and maximum Gabor energy.
Neural Comput. Appl. 34(6), 4367–4385 (2022). https://doi.org/
10.1007/s00521-021-06577-4

27. Islam, M.Z.; et al.: Marine predators algorithm for solving single-
objective optimal power flow. PLoS ONE 16(8), e0256050 (2021).
https://doi.org/10.1371/journal.pone.0256050

28. Yousri, D.; et al.: Fractional-order comprehensive learning marine
predators algorithm for global optimization and feature selection.
Knowl.-Based Syst. 235, 107603 (2022)

29. Elaziz,M.A.; et al.: Enhancedmarine predators algorithm for iden-
tifying static and dynamic photovoltaic models parameters. Energy
Convers. Manag. 236, 113971 (2021)

30. Yousri, D.; et al.: A new comprehensive learning marine predator
algorithm for extracting the optimal parameters of supercapacitor
model. J. Energy Storage 42, 103035 (2021)

31. Sahlol, A.T.; et al.: Covid-19 image classification using deep fea-
tures and fractional-order marine predators algorithm. Sci. Rep.
10(1), 15364 (2020)

32. Yousri, D.; et al.: Parameters identification of solid oxide fuel cell
for static and dynamic simulation using comprehensive learning

dynamic multi-swarm marine predators algorithm. Energy Con-
vers. Manag. 228, 113692 (2021)

33. Abd Elaziz, M.; et al.: Quantum marine predators algorithm for
addressing multilevel image segmentation. Appl. Soft Comput.
110, 107598 (2021)

34. Eid, A.; et al.: Marine predators algorithm for optimal allocation
of active and reactive power resources in distribution networks.
Neural Comput. Appl. 33(21), 14327–14355 (2021). https://doi.
org/10.1007/s00521-021-06078-4

35. Yang, W.B.; et al.: A multi-strategy marine predator algorithm and
its application in joint regularization semi-supervised ELM. Math-
ematics 9(3), 291 (2021)

36. Chen,H.L.; et al.: Efficientmulti-populationoutpost fruit fly-driven
optimizers: framework and advances in support vector machines.
Expert Syst. Appl. 142, 112999 (2020)

37. Storn, R.; et al.: Differential evolution—a simple and efficient
heuristic for global optimization over continuous spaces. J. Global
Optim. 11(4), 341–359 (1997)

38. Kirpatrick, S.; et al.: Optimization by simulated annealing. Read.
Comput. Vis. 220, 606–615 (1983)

39. Metropolis, A.; et al.: Teller, and E. Teller. J. Chem. Phys. 95,
2048–2055 (1953)

40. He, Y.; et al.: A precise chaotic particle swarm optimization algo-
rithmbased on improved tentmap. Fourth InternationalConference
on Natural Computation, 2008. ICNC ’08. (2008)

41. Erlich, I.; et al.: Evaluating the mean-variance mapping optimiza-
tion on the IEEE-CEC 2014 test suite. In: 2014 IEEE Congress on
Evolutionary Computation (CEC). IEEE. (2014)

42. Joaquín, D.A.; et al.: A practical tutorial on the use of nonparamet-
ric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm Evolut. Comput. 1(1),
3–18 (2011)

43. Rashedi, E.; et al.: GSA: a gravitational search algorithm. Inf. Sci.
179, 2232–2248 (2009)

44. Zhao, W.; et al.: Manta ray foraging optimization: an effective bio-
inspired optimizer for engineering applications. Eng. Appl. Artif.
Intell. 87(1), 103300.1-103300.25 (2020)

45. Aaha, B.; et al.: Harris hawks optimization: algorithm and appli-
cations. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

46. Yapici, H.; et al.: A new meta-heuristic optimizer: pathfinder algo-
rithm. Appl. Soft Comput. 78, 545–568 (2019)

47. Mirjalili, S.; et al.: SCA: a sine cosine algorithm for solving opti-
mization. Probl. Knowl.-Based Syst. 96, 120–133 (2016)

48. Li, S.; et al.: Slime mould algorithm: a new method for stochastic
optimization. Future Gener. Comput. Syst. 111, 300–323 (2020)

49. Xue, J.; et al.: A novel swarm intelligence optimization approach:
sparrow search algorithm. Syst. Sci. Control Eng. 8(1), 22–34
(2020). https://doi.org/10.1080/21642583.2019.1708830

50. Kaur, S.; et al.: Tunicate swarmalgorithm: a newbio-inspired based
metaheuristic paradigm for global optimization. Eng. Appl. Artif.
Intell. 90, 103541 (2020)

51. Mirjalili: The whale optimization algorithm. Adv. Eng. Softw. 95,
51–67 (2016)

52. Naruei, I.; et al.: A new optimization method based on coot bird
natural life model. Expert Syst. Appl. 183(2), 115352 (2021)

53. Abdollahzadeh, B.; et al.: African vultures optimization algorithm:
a new nature-inspired metaheuristic algorithm for global optimiza-
tion problems. Comput. Ind. Eng. 158, 107408 (2021)

54. Seyyedabbasi, A.; et al.: I-GWO and Ex-GWO: improved algo-
rithms of the grey Wolf optimizer to solve global optimization
problems. Eng. Comput. 37, 509–532 (2019)

55. Fan,Q.; et al.:Amodified self-adaptivemarine predators algorithm:
framework and engineering applications. Eng. Comput. (2021).
https://doi.org/10.1007/s00366-021-01319-5

123

https://doi.org/10.1016/j.advengsoft.2017.07.002
https://doi.org/10.1016/j.egyr.2022.03.144
https://doi.org/10.1016/j.egyr.2021.11.257
https://doi.org/10.1016/j.egyr.2022.01.008
https://doi.org/10.1016/j.compstruc.2022.106846
https://doi.org/10.1007/s00366-020-01028-5
https://doi.org/10.1007/s00366-020-01028-5
https://doi.org/10.1016/j.neucom.2020.10.038
https://doi.org/10.1016/j.swevo.2018.04.008
https://doi.org/10.1016/j.swevo.2018.04.008
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.1016/j.cie.2018.06.017
https://doi.org/10.1016/j.cie.2018.06.017
https://doi.org/10.1631/jzus.C1000313
https://doi.org/10.1631/jzus.C1000313
https://doi.org/10.1016/j.compbiolchem.2018.11.017
https://doi.org/10.1016/j.compbiolchem.2018.11.017
https://doi.org/10.1007/s00521-021-06577-4
https://doi.org/10.1007/s00521-021-06577-4
https://doi.org/10.1371/journal.pone.0256050
https://doi.org/10.1007/s00521-021-06078-4
https://doi.org/10.1007/s00521-021-06078-4
https://doi.org/10.1080/21642583.2019.1708830
https://doi.org/10.1007/s00366-021-01319-5


10516 Arabian Journal for Science and Engineering (2023) 48:10493–10516

56. Abdel-Basset, M.; et al.: A hybrid COVID-19 detection model
using an improvedmarine predators algorithm and a ranking-based
diversity reduction strategy. IEEE Access PP(99), 1–1 (2020)

57. Coello, C.A.C.: Use of a self-adaptive penalty approach for engi-
neering optimization problems. Comput. Ind. 41(2), 113–127
(2000). https://doi.org/10.1016/s0166-3615(99)00046-9

58. Yang, X.S.: A newmetaheuristic bat-inspired algorithm. Studies in
Computational Intelligence [Nicso 2010: nature inspired coopera-
tive strategies for optimization]. InternationalWorkshop on Nature
Inspired Cooperative Strategies for Optimization (NICSO 2008),
Tenerife, SPAIN (2008)

59. Kaveh, A.; et al.: A new meta-heuristic method: ray Optimiza-
tion.Comput. Struct 112, 283–294 (2012). https://doi.org/10.1016/
j.compstruc.2012.09.003

60. Mahdavi, M.; et al.: An improved harmony search algorithm
for solving optimization problems. Appl. Math. Comput. 188(2),
1567–1579 (2007). https://doi.org/10.1016/j.amc.2006.11.033

61. Kamboj, V.K.; et al.: An intensify Harris Hawks optimizer for
numerical and engineering optimization problems. Appl. Soft
Comput. 89, 106018 (2020). https://doi.org/10.1016/j.asoc.2019.
106018

62. Babalik, A.; et al.: A modification of tree-seed algorithm using
Deb’s rules for constrained optimization. Appl. Soft Comput. 63,
289–305 (2018). https://doi.org/10.1016/j.asoc.2017.10.013

63. He, Q.; et al.: An effective co-evolutionary particle swarm
optimization for constrained engineering design problems. Eng.
Appl. Artif. Intell. 20(1), 89–99 (2007). https://doi.org/10.1016/j.
engappai.2006.03.003

64. Mezura-Montes, E.; et al.: An empirical study about the usefulness
of evolution strategies to solve constrained optimization problems.
Int. J. Gen. Syst. 37(4), 443–473 (2008). https://doi.org/10.1080/
03081070701303470

65. Eskandar, H.; et al.: Water cycle algorithm—Anovel metaheuristic
optimizationmethod for solving constrained engineering optimiza-
tion problems. Comput. Struct. 110, 151–166 (2012). https://doi.
org/10.1016/j.compstruc.2012.07.010

66. Wang, Y.; et al.: Constrained optimization based on hybrid evo-
lutionary algorithm and adaptive constraint-handling technique.
Struct. Multidiscip. Optim. 37(4), 395–413 (2009). https://doi.org/
10.1007/s00158-008-0238-3

67. Mezura-Montes, E.; Velázquez-Reyes, J.; Coello Coello, C.A.:
Modifed diferential evolution for constrained optimization. In:
2006 IEEE Congress on Evolutionary Computation. IEEE (2006)

68. Gupta, S.; et al.: Opposition-based learning Harris hawks opti-
mization with advanced transition rules: principles and analysis.
Expert Syst. Appl. 158, 113510 (2020). https://doi.org/10.1016/j.
eswa.2020.113510

69. Gupta, S.; et al.: Enhanced leadership-inspired grey wolf optimizer
for global optimization problems. Eng. Comput. 36(4), 1777–1800
(2020). https://doi.org/10.1007/s00366-019-00795-0

70. Gupta, S.; et al.: Harmonized salp chain-built optimization.
Eng. Comput. 37(2), 1049–1079 (2021). https://doi.org/10.1007/
s00366-019-00871-5

71. Shockley, W.; et al.: Electrons and holes in semiconductors. Phys.
Today 5(12), 18 (1952)

72. Easwarakhanthan, T.; et al.: Nonlinear minimization algorithm for
determining the solar cell parameters with microcomputers. Int. J.
Solar Energy 4(1), 1–12 (1986)

73. Eusuff,M.; et al.: Shuffled frog-leaping algorithm: amemeticmeta-
heuristic for discrete optimization. Eng. Optim. 38(2), 129–154
(2006). https://doi.org/10.1080/03052150500384759

74. Yu, K.J.; et al.: Parameters identification of photovoltaic models
using an improved JAYA optimization algorithm. Energy Convers.
Manag. 150, 742–753 (2017). https://doi.org/10.1016/j.enconman.
2017.08.063

75. Chen, X.; et al.: Parameters identification of solar cell models
using generalized oppositional teaching learning based optimiza-
tion. Energy 99, 170–180 (2016). https://doi.org/10.1016/j.energy.
2016.01.052

76. Chen, Z.G.; et al.: Information synergy entropy basedmulti-feature
information fusion for the operating condition identification in alu-
minium electrolysis. Inf. Sci. 548, 275–294 (2021). https://doi.org/
10.1016/j.ins.2020.07.031

77. Wang, D.H.; et al.: A content-based recommender system for com-
puter science publications. Knowl.-Based Syst. 157, 1–9 (2018).
https://doi.org/10.1016/j.knosys.2018.05.001

78. Chen, H.; et al.: A balanced whale optimization algorithm for
constrained engineering design problems. Appl. Math. Modell.
71(JUL.), 45–59 (2019)

79. Zhang; et al.: Chaos-induced and mutation-driven schemes boost-
ing salp chains-inspired optimizers. IEEE Access 7, 31243–31261
(2019)

80. Gandomi, A.H.; Yang, X.S.: Benchmark problems in structural
optimization. In: Koziel, S., Yang, X.S. (eds.) Chapter 12 in Com-
putational Optimization, Methods and Algorithms, pp. 267–291.
Springer, Berlin (2011)

81. Sun,X.; et al.: Optimal performance of a combined heat-power sys-
tem with a proton exchange membrane fuel cell using a developed
marine predators algorithm. J. Clean. Prod. 284, 124776 (2020)

82. Zhao, S.; et al.: Elite dominance scheme ingrained adaptive salp
swarm algorithm: a comprehensive study. Eng. Comput. 38, 4501–
4528 (2022). https://doi.org/10.1007/s00366-021-01464-x

83. Liang, X.; et al.: Chaotic oppositional sine-cosine method for solv-
ing global optimization problems. Eng. Comput. 38(2), 1223–1239
(2022). https://doi.org/10.1007/s00366-020-01083-y

84. Wang, J.; et al.: Hybrid seagull optimization algorithm and its engi-
neering application integrating yin-yang pair idea. Eng. Comput.
38(3), 2821–2857 (2022)

85. Zhang, H.; et al.: Differential evolution assisted salp swarm algo-
rithmwith chaotic structure for real-world problems. Eng. Comput.
(2022). https://doi.org/10.1007/s00366-021-01545-x

86. Hao, C.; et al.: Advanced orthogonal learning-driven multi-
swarm sine cosine optimization: framework and case studies–
sciencedirect. Expert Syst. Appl. 144, 113113 (2019)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/s0166-3615(99)00046-9
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1016/j.compstruc.2012.09.003
https://doi.org/10.1016/j.amc.2006.11.033
https://doi.org/10.1016/j.asoc.2019.106018
https://doi.org/10.1016/j.asoc.2019.106018
https://doi.org/10.1016/j.asoc.2017.10.013
https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1016/j.engappai.2006.03.003
https://doi.org/10.1080/03081070701303470
https://doi.org/10.1080/03081070701303470
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1007/s00158-008-0238-3
https://doi.org/10.1007/s00158-008-0238-3
https://doi.org/10.1016/j.eswa.2020.113510
https://doi.org/10.1016/j.eswa.2020.113510
https://doi.org/10.1007/s00366-019-00795-0
https://doi.org/10.1007/s00366-019-00871-5
https://doi.org/10.1007/s00366-019-00871-5
https://doi.org/10.1080/03052150500384759
https://doi.org/10.1016/j.enconman.2017.08.063
https://doi.org/10.1016/j.enconman.2017.08.063
https://doi.org/10.1016/j.energy.2016.01.052
https://doi.org/10.1016/j.energy.2016.01.052
https://doi.org/10.1016/j.ins.2020.07.031
https://doi.org/10.1016/j.ins.2020.07.031
https://doi.org/10.1016/j.knosys.2018.05.001
https://doi.org/10.1007/s00366-021-01464-x
https://doi.org/10.1007/s00366-020-01083-y
https://doi.org/10.1007/s00366-021-01545-x

	A Multi-strategy Improved Outpost and Differential Evolution Mutation Marine Predators Algorithm for Global Optimization
	Abstract
	1 Introduction
	1.1 Background and Literature Review
	1.2 Novelty and Contributions

	2 Overview of the Marine Predators Algorithm (MPA)
	3 Proposed ODMPA
	3.1 Outpost Mechanism
	3.2 Differential Evolution Mutation with Simulated Annealing
	3.2.1 Differential Evolution (DE)
	3.2.2 Simulated Annealing (SA)
	3.2.3 Process of the DE-SA Mechanism

	3.3 Tent Chaotic Map
	3.4 The Proposed ODMPA

	4 Experiment Results and Analysis
	4.1 IEEE CEC2014 Benchmark Functions
	4.2 ODMPA for Engineering Design Problems
	4.2.1 Welded Beam Design Problem
	4.2.2 Pressure Vessel Design Problem
	4.2.3 Speed Reducer Design Problem

	4.3 Static and Dynamic Photovoltaic Models
	4.3.1 Single-Diode Model
	4.3.2 Double-Diode Model 
	4.3.3 PV Module Model
	4.3.4 Objective Function
	4.3.5 Identify SDM and DDM on the RTC France
	4.3.6 Identify the Photovoltaic Cell Module on the Photo-Watt-PWP201


	5 Conclusion and Future Direction
	Acknowledgements
	References




