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Abstract
A physiological-based emotion recognition system (ERS) with a unimodal approach such as an electrocardiogram (ECG) is
not as popular compared to a multimodal approach. However, a single modality has the advantage of lower development and
computational cost. Therefore, this study focuses on a unimodal ECG-based ERS. The ECG-based ERS has the potential
to become the next mass-adopted consumer application due to the wide availability of wearable and mobile ECG devices
in the market. Currently, ECG-inclusive affective datasets are limited, and many of the existing datasets have small sample
sizes. Hence, ECG-based ERS studies are stunted by the lack of quality data. A novel multi-filtering augmentation technique
is proposed here to increase the sample size of the ECG data. This technique augments the ECG signals by cleaning the
data in different ways. Three small ECG datasets labelled according to emotion state are used in this study. The benefit of
the proposed augmentation techniques is measured using the classification accuracy of five machine learning algorithms;
k-nearest neighbours (KNN), support vector machine, decision tree, random forest and multilayer perceptron. The results
show that with the proposed technique, there is a significant improvement in performance for all the datasets and classifiers.
KNN classifier improved the most with the augmented data and the reported classification accuracies of over 90%.

Keywords Emotion recognition · Electrocardiogram · Affective computing · Augmentation · Filter · Machine learning

1 Introduction

Emotion recognition system (ERS) has been popularised by
the rising interest in artificial intelligence, especially towards
instilling emotion in computer programs and robotics
machinery [1]. This interest contributed to the growth of emo-
tional artificial intelligence. Emotional artificial intelligence
or affective computing is a field of study proposed by Ros-
alindPicard [2] that integrates computer science, psychology,
cognition, and physiology to enable ERS [3].

A system that can recognize the emotional state of the user
has huge potential in various fields. The industry that benefits
from ERS includes healthcare, marketing, e-learning, enter-
tainment, automotive, robotics, and security. In [4], ERS is
used for driver’s emotion detection to promote safe driving.
Meanwhile, the application of facial-based ERS for smart
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home automation can be found in [5]. For healthcare, var-
ious ERS applications had been proposed such as assisting
in curing substance addictions [6], monitoring the emotional
well-being of elderlies [7], and stress reduction therapy [8].
The ERS healthcare applications have been summarised in
[9]. In [10], amultimodal ERSusing facial and voice recogni-
tion is proposed to improve human–robot communication by
recognizing the human’s emotion and generating an appro-
priate affect response.

ERS can be categorized into two approaches which are
multimodal and unimodal. Meanwhile, ERS that takes bio-
signals as the modality for emotion recognition is known as
a physiological-based ERS. The physiological-based mul-
timodal approach combines different biosensors while the
unimodal approach only utilises a single biosensor to detect
emotions. The advantages of the unimodal over multimodal
approach are that the data collection procedure is simpler,
and the processing time and power required are significantly
lower [11].

The heart signal collected using ECG is among the bio-
signal used for ERS purposes. Nowadays, ECGdevice comes
in mobile and wearable form with reliable signal quality.
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However, the availableECGdata collected forERSare scarce
and come in a small sample size [9]. This is due to the expen-
sive procedures, and it is time-consuming. The COVID-19
pandemic makes it more challenging, as people are advised
against physical interaction and contact. The lack of data
hinders research and development of ECG-based ERS.

Hence, this work is focused on tackling the small affective
ECG data challenge using a novel augmentation method
of digital filters. A data augmentation increases a dataset
size artificially. Although data augmentation is not common
in ECG-based ERS, it is popular in cardiac pathological
studies such as detecting arrhythmia [11, 12]. Here, the
ECG signals are augmented by filtering the data using six
filters; Neurokit, BioSPPy, Pan & Tompkins, Hamilton,
Elgendi and EngZeeMod. The filters cleaned the data and
removed noise using different mechanisms resulting in
cleaned signals of dissimilar characteristics. The selected
filters are commonly adopted for ECG filtering processes.
Combining these filtered signals with un-augmented data
increased the size of data by sixfold. The proposed method
is then validated using our own collected data, A2ES, as
well as datasets from other researchers namely AMIGOS
[13] and DREAMER [14]. The data from these datasets are
sourced from mobile devices namely Kardia and Shimmer.
Both devices are reliable medical diagnostic tools available
for consumers. All three datasets are considered small
in size where the smallest is DREAMER with only 414
data. Five machine learning classifiers namely, k-nearest
neighbours (KNN), support vector machine (SVM), decision
tree (DT), random forest (RF) and multilayer perceptron
(MLP) algorithms are used to classify the augmented and
un-augmented data according to binary emotional model
(BEM), affective dimensional model (ADM) of arousal and
valence as well as discrete emotional model (DEM). The
findings show that the proposed multi-filters augmentation
offers an improvement of accuracy for all classifiers between
4 and 49%. KNN benefitted the most from the augmentation
with the best accuracy obtained being 99%.

The next section is literature reviews relevant to the ECG-
based ERS and data augmentation. Section 3 describes in
detail the methodology of the study. The experimental set-
tings are provided in Sect. 4. Section 5 contains the results
and discussion, while Sect. 6 concludes the paper with sug-
gestions for future works.

2 Literature Review

Due to the advantages of unimodal ERS and advantages
of physiological based modalities which offer genuineness
and hard to mask signals, several studies on unimodal ECG-
based ERS had been reported. These works are carried either
using open-sourced datasets or own datasets. For example,

Zong and Chetouani [15] utilized an open-source dataset,
the AuBT dataset, in their study. The AuBT’s ECG signal is
filtered using an adaptive low-pass filter before the features
are extracted using the fission and fusion of Hilbert Huang
Transform (HHT). The data are then classified according
to DEM classes using SVM, where 56% classification
accuracy is achieved using fusion features and 69% using
fission features.

Meanwhile, Bong, Murugappan, and Yaacob [16]
designed an ECG-based ERS with their own collected
dataset. The ECG signals are filtered using an elliptic band-
pass filter and a discrete wavelet transform (DWT). Three-
time domain features are being extracted and one of them is
heart rate (HR). The results show that KNN performed bet-
ter than SVMwith around 10% differences between different
training and testing splits. Xiefeng et al. [17] also use their
own dataset. The pre-processing is done using Butterworth
low-pass filter. The author extracted unspecified HRV fea-
tures from the heart sound. A genetic algorithm is utilised to
select the best feature combination, where 89.6% and 82.3%
accuracy are achieved for valence and arousal, respectively.
The accuracy for the combination of both scales using SVM
is 72.9%. In other ERS work [18], ECG signals are collected
for the study. The ECG signals are pre-processed using a
bandpass filter with a removed 1–60 Hz baseline drift. The
second filtration is done using a band-stop Butterworth fil-
ter at 49–51 Hz cut-off frequency. The features extracted
are HR, HR stability and HR power and the classification
is done using SVM. HR stability performed the best with
84.2% accuracy followed by HR power and HR.

Katsigiannis and Ramzan [14] proposed an ECG based
ERS as part of their study. The raw ECG signals collected
are directly extracted to get the PQRST statistical features
and heart rate variability (HRV) features. The extracted fea-
tures are classified using SVM and the accuracies achieved
are around 62%. The dataset from this study is named as
DREAMER and made available for other researchers. The
ECG data from this dataset are adopted in this study.

Next, Correa et al. [13] proposed a dataset called AMI-
GOS, which is another dataset that is opened for other
researchers. The dataset has ECG, electroencephalogram
(EEG) and galvanic skin response (GSR) data. In AMIGOS’
original work, a unimodal ERS is built from the ECG signals,
where HR and HRV features are extracted. The classification
is done using SVM. Since the data collected using short and
long video scenarios, the accuracy presented is divided into
three parts. Short video scenarios managed to get 53% and
55% accuracy for valence and arousal. The long video sce-
nario gives out 55%and 54%accuracywhile the combination
of both scenarios results are 54% and 55%. AMIGOS is also
adopted in this study.

123



Arabian Journal for Science and Engineering (2023) 48:10313–10334 10315

Sarkar and Etemad [19] performed an ECG-specific study
on AMIGOS and DREAMER datasets. The raw ECG sig-
nals are filtered using a high-pass infinite impulse response
(IIR) filter with a bandpass of 0.8 Hz. The filtered signal is
then normalised using Z-score normalisation. Rather unspec-
ified spatiotemporal features are extracted and classified. The
self-supervised convolutional neural network (CNN) results
show a slightly better performance than the previous lit-
erature with around 85–89% accuracies on both datasets.
Siddharth, Jung, and Sejnowski [20] also adopted AMIGOS
and DREAMER in their study. Additionally, they also used
the data from MANHOB-HCI [21]. Raw ECG signals from
the datasets are pre-processed using a moving average filter
with 0.25 s of window length. Then, HRV and spectrogram
features are extracted. An extreme learning machine is used
to classify themodels. For AMIGOS, the individual accuracy
for the ECG classification is approximately 82% for both
valence and arousal, while for DREAMER, the results are
around 80%. For MANHOB-HCI, the accuracies achieved
are around 78%. The accuracy reported for both AMIGOS
and DREAMER is better than the original work.

In [22], the authors adopted the AMIGOS dataset. The
raw ECG signal is pre-processed using Pan-Tompkins QRS
detection and filtered with 0.5–15 Hz cut-off frequency. Var-
ious features from time, frequency and nonlinear domain are
extracted. The classifier used is a deep convolutional neural
network (DCNN) and the accuracy reported for valence is
71% and for arousal, 81%.

Subramanian et al. [23] extracted ECG’s HR and HRV
features including other statistical features from their dataset
ASCERTAIN. The classification results of the features using
Naïve Bayes are better compared to SVM with 60% to 56%
for valence and 59% to 57% for arousal. The ASCERTAIN
dataset is opened to other researchers.

Chen et al. [24] use one of the largest affective dataset,
the DECAF dataset [25]. The pre-processing steps are done
by applying the Butterworth filter and extracting some fea-
tures inclusive of HR. To the best of our knowledge, this
study is the only ECG-based ERS study that has adopted
data augmentation. A generative adversarial network (GAN)
is applied to increase the number of ECG signals. GAN is the
most popular data augmentation technique available [26] and
some of the ordinary ways of doing it are through noise intro-
duction, signal flipping, sine/cosine shifting, etc. [27]. The
GAN generator creates fake but high-quality ECG signals
while the discriminator validates them with the real signals.
If the discriminator can no longer tell which signal is fake,
then the generator has successfully created a string of ECG
signals that is almost identical and close to the original one.
The ERS performance shows an increase in accuracy when a
higher ratio of augmented data is added alongside the original
data in assisting the classification. Before augmentation, the
study reported an accuracy of approximately 58%. The more

the synthetic ECG is introduced, the higher the accuracy is
achieved. The average results for SVMandRFare above 63%
respective to the combination of valence and arousal scale.
The drawbacks of GAN are that reliability is questionable as
well as the technique requires complex and high computing
power due to its dependency on deep neural networks [28].

Table 1 summarises the reviewed works of ECG-based
ERS. The sample size of the datasets reviewed is relatively
small. This is one of the main challenges in the field. A learn-
ing algorithm triumphs on a large dataset allowing better
pattern recognition during the training phase. Additionally, it
is seen that by filtering the ECG signals, the ERS can achieve
a better result. For example, [19] and [22] applied the filtering
method and reported improvements in accuracy compared to
the original work of AMIGOS and DREAMER. But exist-
ing works only used one type of filtering technique for data
pre-processing or noise elimination, none of the work used
multiple filters for data augmentation.Augmentation is a data
manipulation technique that synthetically increases the data
count by modifying the original data [29]. Even though data
augmentation is popular for amplifying data size [16–18] it
is not popularly adopted in ECG-based ERS. Among all the
research reviewed here only one which is from [24] incorpo-
rates data augmentation, however, the accuracy reported is
below 70%.

There are several non-ECG-based ERS research that
adopted data augmentation. Luo [30] applied conditional
Wasserstein GAN (CWGAN) framework to EEG data as an
augmentation process to enhance the ERS. The technique
generates realistic EEG data in differential entropy form
raw EEG data. The generated data are classified into lev-
els of data quality and only high-quality data are appended
to the training models. After augmentation, the accuracy
increases by 2.97%, 9.15% and 20.13%, respectively. Since
CWGAN is just another variation of GAN, the drawbacks
are as previously discussed. Chatziagapi et al. [31] imple-
mented augmentation to rebalance the class labels of speech
audio data. The GAN technique is used to generate synthetic
spectrograms to increase the counts of the minority emo-
tional classes. The magnitude of augmentation is recorded
from 0.4, 0.6 and 0.8 to a fully balanced dataset. At fully bal-
anced class labels, the accuracy improves by 5% and 10%.
Data augmentation is popular with images. In a work on
facial expression-based ERS [32], “Augmenter” an open-
source library is used to augment the images by rotating,
flipping, blurring, sharpening, embossing, and skewing them.
The augmentation enlarges the data size to fit deep learning
training. Meanwhile, image augmentation is used in [33] to
increase the size of data 10 times and avoid overfitting.

Data augmentation is commonly used in medical applica-
tions. For example, a novel ECG augmentation technique is
proposed in [34] where the study tries to solve the problems
of an imbalanced dataset for atrial fibrillation (AF) detection.
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In a clinical setting, it is challenging to get ECGsignalswhich
containAF traits fromadiverse patient background.Thus, the
majority of the ECG signals are from healthy patients, while
the pathological signals suffer from data deficiency. First,
the ECG signals are duplicated and concatenated. Then, the
extrapolated ECG signals are resampled through a randomly
selected augmented sequence. As a precautionary measure,
the resampling permutations are ruled to not produce an
exactly similar sample. The results claimed that after balanc-
ing the dataset with data augmentation, the training accuracy
and the f1-scores increased significantly. This technique is
similar to augmentation through a geometric transformation
in image-based data. The repeatability issues in this tech-
niquemay cause low variance and high bias to the augmented
sample data. Therefore, careful attention is needed as this
technique is not applicable everywhere [29].

Nonaka and Seita [35] tackle the issues of insufficient AF
data with RandECG, a mixture of random ECG augmenta-
tion techniques. Various signal transformation methods are
explored to introduce variations in the ECG signals. The
transformation includes scaling, flipping, dropping, shifting,
cut-out, and other noise additions such as square pulse, Gaus-
siannoise, etc. Theobservation shows a relative improvement
in detection accuracy by up to 3.51%. While the disadvan-
tage of the transformation is the noise addition technique
is considered a non-ideal in increasing the data count. This
technique relies on a traditional signal-based augmentation
process by addingmore noise to an already noisyECGsignal.
When too much noise is added to the raw signal, it pollutes
the data and renders the affective information obsolete [36].

The works that used data augmentation for ERS and ECG
are tabulated in Table 2.

3 Methodology

This work proposed a new application of filters which are for
data augmentation. As discussed in the previous section, data
augmentation improves system performance. Meanwhile, in
the existing studies filtering ECG signals before classifica-
tion contributed to better performance. However, the works
implemented one filter only and the purpose is solely for
data pre-processing. Given X number of signals, their fil-
tering generated X number of filtered signals. In this study,
multiple filters are applied to the signals and the output of
all the filters is combined to increase the number of signals
for classification training. Specifically, the ingested data are
pre-processed with six different ECG filtration techniques
and the filtered outputs are combined. To study the effective-
ness of the proposed augmentation technique, ERS is built
using several machine learning algorithms.

Figure 1 shows the flowchart of the processes. In the
proposed ERS, there are four main phases namely pre-
processing and data augmentation, feature extraction, data
cleaning, as well as classification and performance assess-
ment. During the pre-processing and data augmentation, the
ECG’s noises are cleaned using the six chosen filters. Besides
cleaning the ECG signals, it also acts as the proposed data
augmentation technique. The stream of raw ECG signals and
the filtered ones are then combined, and the features are
extracted. The extracted features include heart wave detec-
tion such as PQST detection and R-Peaks detection, HR
statistical features, and HRV feature derivations.

Next, the data are cleaned and separated into two parts.
The first part consists ofHR andHRV features extracted from
raw ECG signals only, while the second part is where the
workflow combined the raw and filtered ECG features. The
purpose of segmenting the pipeline is to compare the perfor-
mance between before and after data augmentation. Cleaned
data features are scaled and standardised before being split
into training and testing in both pipelines.

The last process is the classification and performance
assessment. An exhaustive classification using grid search
upon five machine learning techniques is implemented on
the training set. The assessment is done based on testing
accuracy comparison and statistical analysis.

3.1 Phase 1: Pre-processing and the Proposed Data
Augmentation

Instead of noise addition or falsification, this study proposed
a novel data augmentation technique through multiple ECG
filtrations. Six types of ECG filters are chosen, and each of
themcleans the raw and noisy signals in certain distinctways.

The first filter is an inbuilt Neurokit’s standard filter pro-
posed by Makowski et al. [37]. The ECG signal and its
sampling rate are the two parameters passed to the filtering
algorithm. The Neurokit filtering method removes slow drift
and DC offset using the 5th-order high-pass Butterworth fil-
ter. The Butterworth highpass filtering method is as shown in
Eq. (1)wheren � 5.The lowcut frequency, fc is set to 0.5Hz.
The input frequency that is being filtered is represented by
f . Neurokit method also filters out 50 Hz powerline noise
by smoothing the signal with a moving average kernel with
a width of one period of 50 Hz.

H( f ) � 1√
1 + ( f c

f )
2n

(1)

The second filtering method is BioSPPy, proposed by
Carreiras et al. [38]. The filter removes the ECG signal fre-
quencies which are below 3 Hz and above 45 Hz through a
finite impulse response (FIR) bandpass filter. The technique
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Table 2 Data augmentation for ERS and ECG

Papers Application Data Source Augmentation
Technique

Advantage Disadvantage

[24] ERS ECG GAN Average accuracy increases
by 5%

Reliability is questionable
when implemented in
signal-based data as no
ground truth verification
can be made
Complex
Requires high computing
power

[30] ERS EEG CWGAN 2.97%, 9.15%, 20.13%
increase in accuracy

Reliability is questionable
when implemented in
signal-based data as no
ground truth verification
can be made
Complex
Requires high computing
power

[31] ERS Audio GAN Balancing imbalance dataset Reliability is questionable
when implemented in
signal-based data as no
ground truth verification
can be made
Complex
Requires high computing
power

[32] ERS Image Augmenter Increase data size for deep
learning

Expensive

[33] ERS Image Patches & reflection Avoid overfitting Applicable for image data

[34] Medical – AF
detection

ECG Duplication,
concatenation, &
resampling

Balancing imbalance dataset Repeatability issue which
renders low variance &
high bias augmentation
set

[35] Medical – AF
detection

ECG RandECG Increase classification
accuracy by 3.51%

Repeatability issue which
renders low variance &
high bias augmentation
set
Pollutes the raw data
Might render the data to
obsolescence

applies a linear digital filter twice, once forward and once
backwards. The combined filter has zero phases and a filter
order that of the original [39]. The order, N is decided based
on 0.3 multiplied by the sampling rate with an addition of
one, if the result is an even number. This is to enforce the
order to be an odd number. Before getting the coefficient for
the FIR filter, the frequency is normalised to Nyquist fre-
quency. Then, the FIR filter is calculated based on Eq. (2).
The x(n − i) is the input signals on each taps according to
the order of the filter. The coefficient of the filter is repre-
sented by bi where the range satisfy 0 ≤ i ≤ N . The filtered
output signal is represented by y(n).

y(n) �
∑N

I�0
bi x(n − i) (2)

Pan and Tompkins [40] filtering method for ECG signal
has been around for quite some time and it is famous for
accurate pre-processing of QRS detection. In the first order
(n � 1), Butterworth bandpass filter is applied with a cut-off
frequency of 5 Hz for low-pass, fcl and 15 Hz for the high-
pass, fch fromEq. (3). Thismethod applies another derivative
filter to highlight the frequency content and removes back-
ground noises. The “lfilter” from the SciPy library has the
option of FIR or IIR filtration methods. The mathematical
representation for the IIR filter is shown in Eq. (4). The feed-
forward and feedback filter order is represented by P and Q.
The x(n − i) and x(n − j) are the input signals on each taps
according to the order of the filter. The bi and a j are the
feedforward and feedback filter coefficient while the filtered
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Fig. 1 Overview of the methodology
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Fig. 2 Augmented ECG using various filters

Table 3 List of chosen ECG filters for ECG augmentation

No. Filter name Details Justification

1 Neurokit 5th order highpass Butterworth filter with 0.5 Hz lowcut
frequency, 50 Hz Powerline noise removal

The fastest and most accurate ECG filtering
method

2 BioSPPy FIR Bandpass filter (3 > x > 45 Hz) with order �
0.3*sampling rate

Open-sourced API for various bio-signals
processing including ECG

3 Pan &
Tompkins

1st order Butterworth Bandpass filter (5 > x > 15 Hz),
IIR/FIR filter

Highly cited and widely adopted ECG
processing technique

4 Hamilton 1st order Butterworth Bandpass filter (8 > x > 16 Hz),
IIR/FIR filter

Improved version of Pan & Tompkins

5 Elgendi 2nd order Butterworth Bandpass filter (8 > x > 20 Hz),
IIR/FIR filter

Improved version of Pan & Tompkins

6 EngZeeMod 4th order Butterworth Bandstop filter (x < 48 Hz, 52 < x
Hz), IIR/FIR filter

A modified version of the widely adopted ECG
processing technique

output signal is represented by y(n).

B( f ) � 1√
1 +

(
f
f cl

)2n .
1√

1 +
(

f ch
f

)2n (3)

y(n) �
P∑

i�0

bi x(n − i) −
Q∑
j�1

a j y(n − j) (4)

Hamilton [41] proposed a similar ECG filtering config-
uration with a slight variation in the cut-off frequency. In
the first order (n � 1), Butterworth bandpass filter is set at
8 Hz on the low-pass, fcl and 16 Hz on the high-pass, fch
threshold. The output signal becomes the coefficient for the
IIR/FIR filter.

Elgendi, Jonkman, and Deboer [42] configured a second
order (n � 2), Butterworth bandpass filter with the cut-off
frequency of 8Hz on the low-pass, fcl and 20Hz on the high-
pass, fch . Upon returning the cleaned signal, another round
of IIR/FIR filtration is done based on the output coefficients.

Engelse and C. Zeelenberg [43] as well as Lourenço et al.
[44] proposed a fourth-order (n � 4), Butterworth bandstop
filter as shown in Eq. (5). The cut-off frequency is between
48 and 52 Hz for the fcl and fch, respectively. Similarly, a
digital IIR/FIR filter is configured afterwards to removemore
background noises.

B( f ) � 1√
1 +

(
f
f ch

)2n .
1√

1 +
(

f cl
f

)2n (5)

123



10322 Arabian Journal for Science and Engineering (2023) 48:10313–10334

Table 4 Statistical features derived from HR

Statistical features References Type

Mean PP Interval

Median QQ

Standard deviation RR

Min. SS

Max. TT

Range PQ Interval

QS

ST

P amplitude Scale

R amplitude

S amplitude

Total: 66 features

Based on the technique proposed, it is observed that the
multi-filter generates smooth signals with slight variations in
ECG patterns. Table 3 shows the summary of the listed filters
used to augment the raw ECG signals for this study. Figure 2
visualized the effects of raw ECG signal when cleaned with
the listed filtering techniques. The filters removed noise,
smoothed, and amplified the signal differently.

3.2 Phase 2: Feature Extraction

Feature extraction is done using the Neurokit and AuBT
toolboxes. Before extracting the HR and HRV features, the
PQRST wave detection is done. Allocating these heart wave
points is the foundation of feature extraction in ECG anal-
ysis. The heart wave detection is performed using Neurokit
and AuBT toolboxes for R peak detection and only AuBT is
used for PQST wave detection.

TheHR ismeasured in beats perminute.Normally, a lower
HR implies a healthier heart and vice versa. The advantage
of HR is that it is easy to measure and does not need extreme
signal accuracy to acquire it. One cycle of a heartbeat can
be measured between any two peaks. Using RR peaks is the
most common way of detecting HR. The use of HR features
for affective recognition is seen in various studies [45]. In this
study, a total of 66 HR features are extracted using AuBT.
Table 4 shows the summary of the statistical features derived
from HR with a different type of reference.

HRV measures the variability or specific changes in time
between successive heartbeats or known as the RR peaks
(interval). Low HRV indicates the physiological states of
stress while high HRV indicates a recovery state of a per-
son from the condition [46]. With a proper analysis method,
HRV is considered the most precise non-invasive/intrusive

method to detect ANS activity [47] but it is difficult to mea-
surewhilemoving or during exercise [48].HRValso contains
evidence of ANS activity traits including emotional changes
within an individual [49]. HRV features are the most used
indicators for identifying emotions in a physiological-based
system [50].

There are three domains from which HRV features
are derived, namely time/temporal and geometric, fre-
quency/spectral, and nonlinear domains. Neurokit features
include all three domainswhileAuBT features are only avail-
able in the time domain. There are 52 and 14 HRV features
extracted using Neurokit and AuBT respectively. The sum-
mary of the features is recorded in Table 5.

3.3 Phase 3: Data Cleaning

3.3.1 Data Cleaning

Missing and incomplete data are common in real-world stud-
ies. However, these may handicap the statistical prediction
as well as introduce bias to the results if not handled prop-
erly [51]. So, after the features have been extracted, the data
cleaning processes that include empty column removal and
feature imputation are conducted.

The empty column removal is a straightforward cleaning
process where any feature that does not return any value is
discarded. ULF andVLF features fromHRV return an empty
column for all ECG signals. This is because both features
need a longer period of ECG recordings to literally detect the
frequency bands. Thus, these feature columns are discarded.

The second cleaning method is through feature imputa-
tion. The returned features being extracted are not always
clean. There are three possible returned feature states of the
extracted data. For the empty cells and the ‘#NAME’, the
imputation is done based on averaging the columns, and then
the cell is filled or replacedwith the value.Although this tech-
nique is vulnerable to bias, it is the most common imputation
technique practised in data science [52]. For the ‘inf’ cells,
the replacement is done using the largest value in the column.

3.3.2 Feature Scaling and Standardization

Applying feature scaling or standardization is important to
reduce inaccuracy in machine learning models. Different
scaling and standardization methods have been proven to
affect the model’s performance [53]. Scaling data does not
change the shape of the distribution, but it changes the range
of the values. Meanwhile, standardizing data changes the
values so that the distribution’s standard deviation equals
one. Machine learning algorithms such as KNN, SVM, and
multi-layer perceptron (MLP) are known to converge faster
with scaled or standardized data. In this study, two methods
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Table 5 List of HRV features extracted

Domain Neurokit features AuBT features

Time and geometric domain RMSSD Mean

MeanNN Median

SDNN Standard deviation

SDSD Min.

CVNN Max.

CVSD Ranges

MedianNN pNN50

MadNN Distribution mean

MCVNN Distribution median

IQRNN Distribution standard deviation

pNN50 Distribution Min.

pNN20 Distribution Max.

TINN Distribution range

HTI Distribution triangular index

Frequency domain ULF (≤ 0.003 Hz) LFHF

VLF (0.0033–0.04 Hz) LFn

LF (0.04–0.15 Hz) HFn

HF (0.15–0.4 Hz) LnHF

VHF (≥ 0.4 Hz)

Non-linear domain SD1 C1d

SD2 C1a

SD1SD2 SD1d

S SD1a

CSI C2d

CVI C2a

CSI MODIFIED SD2d

PIP SD2a

IALS Cd

PSS Ca

PAS SDNNd

GI SDNNa

SI ApEn

AI SampEn

PI

Total 52 features 14 features

are implemented which are Standard Scaler and Min–Max
Scaler, which are adapted from [54].

3.3.3 Train/Test Split

Before feeding the machine learning models with the scaled
and standardized features, the data is split into training and
testing sets. The splitting method is done using Scikit Learn

[54] where each feature set is divided into an 80:20 ratio
of training and testing. The proportion of class labels in the
training set is identical to the samples for every dataset. This
is achieved through stratifying the train/test split. The ran-
dom state is set to an integer for reproducible output across
multiple function calls. The deterministic nature of the ran-
dom state also acts to control the shuffling applied to the data
before proceeding with the split.
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3.4 Phase 4: Classification and Performance
Assessment

The classification and performance assessment are done
using five supervised machine learning classifiers. These
classifiers are chosen to evaluate the effectiveness of the
multi-filter data augmentation proposed. The classifiers are
KNN, SVM, DT, RF and MLP.

3.4.1 K-Nearest Neighbour

KNN is a non-parametric classification algorithm that is
known as a lazy learner. KNN keeps all the training data to
make future predictions by computing the similarity between
an input sample and its training instance. The tuned hyper-
parameter values in this study are the number of neighbours,
weights and distancemetrics. There are various distancemet-
rics available for the KNN algorithm, but Manhattan and
Hamming are selected because of their ability to learn the
data well.

3.4.2 Support Vector Machine

SVM is a supervised classification algorithm that separates
data into classes using hyperplanes. It also uses kernel tricks
to transform the data and optimize the decision boundaries.
The hyperparameters tuned for SVM are the kernel function,
gamma, and C. Since the assessment involves multidimen-
sional classification, only the radial basis function (RBF)
kernel is considered. Gamma is the degree of curvature of
the hyperplanes while C is the degree of the error margin.

3.4.3 Decision Tree

DT has a flowchart-like tree structure, and it is non-
parametric. The highest node is considered the root with the
branches that represent the decision rule with an outcome
leaf node. The hyperparameters tuned for DT are the split-
ting criteria, minimum sample leaf, minimum sample split
and maximum depth. The splitting criteria considered are
Gini and Entropy.

3.4.4 Random Forest

RF creates decision trees for different samples and randomly
selects the best solution by the means of voting. The logic
behind RF is that the more trees are sampled, the more it
reduced the bias, and the better it generalized the data. Thus,
many sample decision trees make up a forest. The hyperpa-
rameter values tuned for this algorithm are the number of
estimators, the maximum number of features, the maximum
depth, and the criterion. Again, the criterion is actually the

splitting criteria, and the considered techniques are Gini and
Entropy.

3.4.5 Multi-layer Perceptron

MLP is a neural network based supervised learning algo-
rithm that trains using backpropagation.MLPalgorithm from
Scikit-Learn is considered a basic deep learning model that
propagates the error in a backward direction to update the
weights of the hidden layers. The tuned hyperparameters are
the activation function, the hidden layer size, the solver, the
alpha and the learning rate.

4 Experimental Setting

4.1 Dataset

This research uses raw ECG signals from two open-source
datasets as well as our own primary dataset. Our dataset is
named Asian Affective and Emotional State (A2ES) dataset
which comes with ECG and PPG signals along with DEM-
labelled emotions. Only ECG data are considered in this
research. The raw signals are recorded from47participants of
various Asian backgrounds with 25 samples each. The ECG
is collected using KardiaMobile by AliveCor. The stimuli
used to elicit the emotions are a collection of videos target-
ing different emotions.

AMIGOS and DREAMER are open-sourced datasets
available for research purposes. AMIGOS dataset [13] con-
sists of physiological signals inclusive of ECG, EEG and
GSR recorded from 40 participants with 16 samples each.
The ECG signals are recorded using a mobile ECG device
called Shimmer. The participants labelled their emotions
according to DEM and ADM. Around 51 to 150 s of videos
are used as stimuli for emotional elicitation.

DREAMER [14] is a popular physiological-based affec-
tive dataset. The dataset holds ECG signals, EEG signals as
well as emotion class labels in the format of ADM scales.
The size of the dataset is 23 by 18 samples, and the ECGs are
recorded using Shimmer as well. The stimuli used for emo-
tion elicitation are 65 to 393 s film clips. Table 6 summarizes
the details of the dataset used in this study.

Due to technical errors during data collection not all the
data from these datasets can be used as the ECGs recorded
suffer a loss of signal or have poor signal quality. These con-
tribute to ineffective feature extraction on some ECG signals
in theA2ES andAMIGOS dataset. The actual data used from
A2ES, AMIGOS, and DREAMER are 1163 out of 1175,
1258 out of 1280, and 828. The same goes for the augmented
samples where the feature extraction had trouble in process-
ing some of the badly augmented ECGs. After augmentation,
the size of the sample data is expanded to 8068 out of 8225
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Table 6 Dataset details

Dataset Stimuli Participants x
Samples

Physiological
modalities

ECG Device Emotional
annotation

Emotional
model

A2ES 60–300 s videos 47 × 25 ECG, PPG AliveCor,
Kardia

Happy, Sad,
Anger, Fear,
Disgust,
Surprise &
Neutral

DEM

AMIGOS [13] 51–150 s videos 40 × 16 ECG, EEG, GSR Shimmer Happy, Sad,
Anger, Fear,
Disgust,
Surprise &
Neutral.
Valence,
Arousal &
Dominance

DEM &
ADM

DREAMER [14] 65–393 s film clips 23 × 18 ECG, EEG Shimmer Valence, Arousal
& Dominance

ADM

for A2ES, 8806 out of 8960 for AMIGOS, and 5796 for
DREAMER.

The distribution of class labels after augmentation in
A2ES, AMIGOS, and DREAMER datasets is shown in
Fig. 3. For BEM, the class labels are either positive or neg-
ative whereas the negative emotions are emotions which
contribute towards stress. For ADM, scales of high, neutral,
and low are considered for both valence and arousal. The
class labels for DEM in this study are happy, sad, anger, fear,
disgust, surprise and neutral.

Out of 8086 samples, 58% are labelled positive and 42%
are labelled negative in A2ESBEM. For ADM-valence, 42%
are labelled as low, 32% as high labels the remaining as neu-
tral. For ADM-arousal, slightly above half of the samples are
labelled high while the other half are divided almost equally
between neutral (26%) and low (23%). Lastly, for DEM, the
most sampled data are neutral at 26% and followed by happy
at 20%. The least sampled data is anger with 657 signals out
of 8086 (8%).

From the AMIGOS dataset, the distribution ratio of the
class sample for BEM is 31:19 for positive and negative
respectively. ForADM-valence, 41%of the data is labelled as
high while low and neutral are divided approximately equal.
The same goes forADM-arousal, 43%of the data are labelled
high while neutral is only 19% the remaining are low. The
class distribution for DEM is the worst where the data are
not evenly distributed across the 7 classes. The majority of
2648 out of 8068 signals are labelled as neutral. The smallest
portion is sadness with only 212 sample data. The imbalance
between emotion class labels in this dataset is huge.

Finally, from the DREAMER dataset, the distribution
class sample for BEM is 61:39 for positive and negative
respectively. For ADM-valence, the distribution between
high and low are equal with 39% each while the rest of

the 22% are neutral. For ADM-arousal, 44% of the sam-
ples are labelled as high, 29% neutral, and 27% low. Since
the DREAMER dataset does not come with DEM labels, no
pie chart is presented for the DEM.

4.2 Hyperparameters

Since the performance of machine learning models is
dependent on their hyperparameter settings, tuning them
is necessary for the best results. Table 7 summarizes the
hyperparameters settingswith the number of variations being
explored for every classifier.

4.3 EvaluationMetrics

The most common evaluation metric to assess an ERS per-
formance is using accuracy. It can be defined as the ratio of
accurately classified data items to the total number of obser-
vations. Equation (6) shows the accuracy is calculated by
dividing the summation of predicted true for positive (TP)
and negative (TN) labelled data with the total data. The total
data is calculated by summing up the TP, TN, false positive
(FP), and false negative (FN).

Accuracy � T P + TN
T P + TN + FP + FN

(6)
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Fig. 3 Distribution of the datasets’ emotional class labels

5 Results and Discussion

5.1 A2ES Dataset

The results obtained for BEM, ADM andDEM are presented
in Table 8. For all emotional models, the testing accuracy of
which augmentation takes place shows a significant improve-
ment especially the one with the KNN classifier.

Based on the observation, the best classifier before data
augmentation for BEM are RFwith standard scaler andMLP
withminmax scaler at 61%.The testing accuracy of the rest of
the classifiers is not as good with the range of 48–56%. After

data augmentation, a huge leap in percentage accuracy is seen
across all classifiers. The best one is KNN using standard
scalar with 94% testing accuracy. Using the minmax scaler,
KNN achieved 1% lesser in comparison to the previous one.
More than a 40% increment in testing accuracy is observed
for KNN with the introduction of augmented features. The
second-best performing classifier is SVM with 81% testing
accuracy, followed byMLP, RF, and DT. The later classifiers
only manage to get around 64–79%.

Next, the testing accuracy recorded based on ADM-
valence before augmentation is in the range of 38–45%.KNN
and SVM using standard scaler performed the best with 45%
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Table 7 Classifiers with the hyperparameter’s value for grid search

Classifier Hyperparameter Values Number of variations

KNN n_neighbors 3,5,7, sqrt(y), sqrt(y)/2 5

Weights Distance 1

Metric Hamming, Manhattan 2

Number of possible combinations 10

SVM Kernel RBF 1

C 1, 10, 100 3

Gamma 0.01, 0.1, 1 3

Number of possible combinations 9

DT Criterion gini, entropy 2

max_depth range (8,10) 2

min_samples_split range (5,7) 2

min_samples_leaf range (1,3) 2

Number of possible combinations 16

RF n_estimator 200, 500 2

max_features auto 1

max_depth 8 1

criterion gini, entropy 2

Number of possible combinations 4

MLP hidden_layer_size (200,200,200,) 1

Activation relu, tanh 2

Solver adam, lbfgs 2

Alpha 0.05 1

Learning_rate constant 1

Number of possible combinations 4

testing accuracy. The worst performing algorithms are DT
and MLP with standard scaler which recorded merely 38%
testing accuracy.With the introduction of data augmentation,
the accuracy of KNN increases by twofold. In classifying the
high, neutral, and low classes of valence, KNN manages to
achieve 91% and 90% testing accuracy using minmax and
standard scaler respectively. For SVM and MLP, the algo-
rithms did not perform as well as KNN but still manage to
obtain 73% and 72% followed byRF andDT.However,MLP
using the minmax scaler performed the worst of all as only
a 9% increment is observed in the testing accuracy.

The next part shows the performance comparison recorded
for classifying the ADM-arousal scale. Before augmenta-
tion, the testing accuracy achieved for all classifiers is within
the range of 42–54%. The best classifier is RF for both the
standard scaler andminmax scaler while the underperformed
algorithm isDTwith the standard scaler. After augmentation,
KNN manage to get 91% of testing accuracy in classifying
the features that are scaled with the standard and minmax
scaler. The rest of the classifiers did manage to show some
improvements with the introduction of augmentation which
SVM, MLP, RF, and DT in orderly decreasing performance.

Finally, the performance of classifying DEM before data
augmentation is very poor. Since the class labels are imbal-
anced, themachine learning algorithms suffered to recognize
and generalize each distinctive emotion. Additionally, DEM
has 7 classes which increases the complexity of the classifi-
cation process. The testing accuracies are ranging within ~
20% only which is considered very poor. At 27%, SVM and
MLP with standard scaler reported the highest achievable
accuracy. After data augmentation, the DT algorithm shows
the slightest increase in performance. However, KNN, SVM,
RF, and MLP manage to achieve more than twofold per-
formance improvement. The best is KNN with 88% testing
accuracy when paired with standard and minmax scalers. In
this case, KNN has the largest gap in terms of performance
gain compared to other classifiers. Around 65% increment
is observed. Here, it shows that data augmentation is nec-
essary to increase the count of small class samples and help
themachine learning algorithm to improve the overall perfor-
mance. SVMusingminmax scalermanage to get 64% testing
accuracywhich is the second-best performance reported. The
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Table 8 Results from A2ES
Dataset for BEM, ADM, and
DEM

Testing accuracy (%)

Before augmentation After augmentation

Standard scaler MinMax scaler Standard scaler MinMax scaler

BEM KNN 51 48 94 93

SVM 55 53 81 81

DT 55 55 66 67

RF 61 55 74 74

MLP 56 61 79 64

ADM-V KNN 45 42 90 91

SVM 45 43 73 73

DT 38 40 58 58

RF 43 43 65 65

MLP 38 40 72 49

ADM-A KNN 51 51 91 91

SVM 51 49 74 73

DT 42 44 60 61

RF 54 54 66 66

MLP 52 51 71 58

DEM KNN 24 22 88 88

SVM 27 24 52 64

DT 24 22 38 38

RF 25 24 52 52

MLP 27 20 62 51

worst classifier reported is DTwhere for both scalers the out-
comes are around 38%. For MLP and RF, the observation
reported ranged between KNN and DT.

Based on the results from BEM, ADM and DEM, the
implementation of data augmentation that increases data size
improves classifiers’ performance and changes the rank of
the classifier with KNN reported as the best for all emotional
models.

5.2 AMIGOS Dataset

In the AMIGOS dataset, the results obtained for BEM, ADM
and DEM are presented in Table 9. Same as the previous
dataset, testing accuracy is presented. Overall, the effects of
augmentation are significant, and the best-performing classi-
fier after augmentation is also KNN. As a comparison, result
from AMIGOS’ original work [13] is also presented. How-
ever, only results of ADM are available.

Firstly, the results for positive andnegative emotional clas-
sification are observed. Before data augmentation, the RF
classifier performed the best with over 70% testing accu-
racy for both standard scalar and minmax scalar. Besides, the
classification using SVM with standard scalar also manage
to gain more than 70%. But the SVM with minmax scaler

only manage to achieve 69%. For the other three classi-
fiers, the classification performance is within the 60% range.
After data augmentation, the performance accuracy for all
classifiers increased. Same as the A2ES dataset, the KNN
algorithm performed best by attaining around 95% testing
accuracy for both scalers.MLP andSVMwithminmax scaler
also show quite a significant leap with more than 80% test-
ing accuracy after augmentation. The rest of the classifiers
manage to recognize BEM with lesser accuracy but no less
than 70%.

The part is the results achieved when the model is trained
and tested using the ADM valence scale. For all five classi-
fiers, the testing accuracy does not exceed 60% before data
augmentation. RF on both scalers reported 55% testing accu-
racy. SVMalsomanage to get 55% testing accuracy using the
standard scaler, but not for the minmax scaler. This accuracy
is simillar to the original study in [13]. The maximum accu-
racy reported is through KNNwith a standard scaler which is
56%. MLP scores the lowest with only 52% on both scalers.
After augmentation, the accuracy of all classifiers improved.
The results for DT improved the least where the accuracy
for both the standard scalar and the minmax scalar is still
below 60%. The accuracy for SVM, RF and MLP is in the
range of 60–80%.Meanwhile, the best classifier is KNNwith
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Table 9 Results from AMIGOS
Dataset for BEM, ADM, and
DEM

Testing Accuracy (%)

Before augmentation After augmentation

Standard scaler MinMax scaler standard scaler MinMax scaler

BEM KNN 67 66 95 95

SVM 71 69 78 84

DT 67 61 74 73

RF 72 71 77 76

MLP 69 65 86 83

ADM-V KNN 56 53 93 94

SVM 55 53 65 73

DT 54 52 58 58

RF 55 55 73 74

MLP 52 52 80 76

[13] SVM 55

ADM-A KNN 56 57 93 93

SVM 54 53 68 74

DT 52 52 73 74

RF 60 60 82 82

MLP 52 53 79 77

[13] SVM 55

DEM KNN 52 53 92 92

SVM 44 44 55 68

DT 33 33 66 67

RF 46 47 77 77

MLP 39 40 75 70

93% and 94% accuracy with respect to standard scalar and
minmax scalar.

The performance of ADM arousal classification is dis-
cussed next. Before augmentation, the testing accuracy for
KNN, SVM, DT, and MLP is within the range of 50% while
for RF, the testing accuracy is 60% using both standard scalar
and minmax scalar. The accuracy obtained in [13] is also
within this range. A significant accuracy improvement is
observed when the multi-filter augmentation is utilised to
increase the data size. For SVM, DT, and MLP, the results
are improved to between 68 and 79% for testingwhile for RF,
the accuracy is over 80% on both scalers. The leading algo-
rithm is KNN with 93% accuracy on standard and minmax
scalers.

The last part is the results for DEM where seven basic
emotions are classified together. Here, the overall recognition
performance before augmentation is comparably better than
A2ES. The worst testing accuracy achieved is 33% by DT.
The highest reported testing accuracy is by KNN with above
50% accuracy using both scalers. Augmentation helps to
improve classifiers’ performance in classifying unbalanced
and multiclass datasets. This is also observed before in the

A2ES dataset. The least improved classifier is SVM which
reported only 55% and 68% accuracy. For DT, the testing
accuracy reported is 66% and 67%. For RF andMLP, around
70–77% accuracy is reported. Alas, KNN is once again the
best-performing classifier with 92% accuracy for standard
scalar and minmax scaler.

5.3 DREAMER Dataset

In the DREAMER dataset, only BEM and ADM results are
available. Therefore, no classification performance for DEM
is reported for this dataset. The testing accuracies for each
classifier for BEM and ADM are shown in Table 10. As a
comparison, ADM result from [14] is also presented.

For BEM before augmentation, DT is the worst classifier
with 65% and 69% testing accuracy for the standard scaler
andminmax scaler.MLPwith a standard scaler also gives out
low accuracy at 67%while with a minmax scaler the result is
better at 70% which is similar to KNNwith a standard scaler
and SVM with a minmax scaler. The highest classification
accuracy is achieved through RF where the recorded results
show an accuracy of 75% for the standard scaler andminmax
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Table 10 Results from
DREAMER Dataset for BEM
and ADM

Testing accuracy (%)

Before augmentation After augmentation

Standard scaler MinMax scaler Standard scaler MinMax scaler

BEM KNN 70 72 99 99

SVM 72 70 84 93

DT 65 69 86 86

RF 75 75 92 92

MLP 67 70 94 92

ADM-V KNN 67 64 98 98

SVM 70 64 82 90

DT 61 61 71 71

RF 69 69 90 90

MLP 67 67 91 92

[14] SVM 62

ADM-A KNN 76 77 99 99

SVM 67 68 76 90

DT 52 53 72 72

RF 71 74 94 94

MLP 67 60 87 89

[14] SVM 62

scaler. After applying the proposed augmentation method, a
staggering 99% testing accuracy is recorded by KNN. MLP
and RF also passed the 90% accuracy for both scalers. For
SVM with a minmax scaler, the accuracy is reported to be
93% while the one with a standard scaler is 84% which is
the lowest among all. Both scalers for DT reported 86% for
testing accuracy.

The results for the classification of valence show that
before augmentation the highest testing accuracy achieved
is 70%. This is achieved using SVM with a standard scaler.
The lowest accuracy reported is 61% by DT with standard
scaler and minmax scaler. Using the minmax scaler, KNN
and SVM achieved 64%, while the rest are reported above
that, but no more than 70% including the original study from
[14]. With a 10% increase, DT is the least-performing clas-
sifier after data augmentation. Next, is SVM with a standard
scaler that managed to gain a 12% increase in accuracy while
the rest of the classifiers manage to achieve 90% and above
for testing accuracy. SVM with minmax scaler and RF with
both scalers achieved 90%. MLP on the other hand, manage
to achieve 91% and 92%. Ultimately, KNN reported 98% for
both standard and minmax scaler.

Lastly, the observation results for the three-scale arousal
are discussed. Before augmentation, the best testing accura-
cies are 77% and 76% fromKNN. The second-best algorithm
is RF with 74% and 71%. For SVM and MLP, the testing
accuracy observed is within 60–70%, including the results

from [14]. The lowest accuracy achieved is 52% and 53%
by DT. Post augmentation, the best classifier for classify-
ing arousal is KNN. Both scalers give 99% testing accuracy,
which is an almost perfect performance. With slightly lower
accuracy, RF using both scaler and SVM for minmax scaler
reported 94% and 90% testing accuracy respectively. How-
ever, SVM with a standard scaler did not perform as well,
where the reported accuracy is 76%. MLP with a minmax
scaler shows a 2% higher accuracy compared to the one
with a standard scaler. Although DT only achieved 72% test-
ing accuracy, the improvement gained from augmentation is
more than 20%.

5.4 Statistical Analysis

Non-parametric statistical analysis is applied to examine the
significant difference in the overall results recorded. The
Wilcoxon signed ranks test [55] and Friedman test [56] with
Holm’s post hoc test [57] were conducted as suggested by
[58, 59]. The Wilcoxon signed ranks test is done to find the
significant difference in the results before and after augmen-
tation as well as between the Standard scaler and MinMax
scaler. Next, the Friedman statistical test is applied to find
the best classifier before augmentation and the best classifier
after augmentation. Lastly, the Holm post hoc test is done if
the Friedman test found a significant difference between the
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Table 11 Average ranking of Friedman test for classifiers comparison
before and after augmentation

Algorithm Ranking of classifiers
before augmentation

Ranking of classifiers
after augmentation

KNN 2.7045 1

SVM 2.6818 3.2045

DT 4.5909 4.7045

RF 1.5455 3.0227

MLP 3.4773 3.0682

classifiers. The analysis is done using Knowledge Extraction
based on Evolutionary Learning (KEEL) software [60].

5.4.1 Comparison of Before and After Augmentation

A Wilcoxon Signed-Rank test is applied to find the correla-
tion between the results collected before and after augmen-
tation regardless of the classifier or the scaler used.

The value ofWobtained is 0 and the distribution is approx-
imately normal. The z-value is -9.1035 and the p-value is p <
0.00001. The null hypothesis is rejected as the result is sig-
nificantly different with a significant level of 5%. Thus, the
augmentation technique proposed has significantly improved
the performance of the ERS.

5.4.2 Comparison of Classifiers Before Augmentation

A multiple classifiers comparison using the Friedman test is
conducted to find the significant difference and the ranking of
the best classifier before data augmentation is implemented.
Table 11 shows the average ranking of the algorithms where
the best-ranked classifier is RF. SVM, KNN, and MLP are
ranked second, third, and fourth while DT is the last one.
Friedman’s statistic considering reduction performance (dis-
tributed according to chi-square with 4 degrees of freedom)
is 44.5545. The p-value computed by the Friedman test is
p < 0.00001. Therefore, the null hypothesis that stated that
all the classifiers are on par with each other is rejected. The
result is significantly different at p < 0.05.

Table 12 shows the algorithms compared using Holm’s
post hoc test. The z-value, p-value, and Holm value are tab-
ulated. Holm’s procedure rejects those hypotheses that have
an unadjusted p-value ≤ 0.008333. This means that for i1-i6
the pairs are statistically on par with each other while for i7-
i10 there is a significant difference between the classifiers’
performance.

5.4.3 Comparison of Classifiers After Augmentation

Multiple comparisons using the Friedman test are conducted
to find the significant difference and the ranking of the best
classifier after data augmentation implementation. Table 11
shows the average ranking of the algorithms where the best-
reported classifier is KNN. Followed by RF, MLP and SVM
while DT is the last one. Friedman’s statistic considering
reduction performance (distributed according to chi-square
with 4 degrees of freedom) is 61.1818. The p-value computed
by the Friedman test is < 0.00001. Thus, the null hypothesis
is rejected as the result is significantly different at p < 0.05.

Table 12 shows the algorithms compared using Holm’s
post hoc test. The z-value, p-value, and Holm value are tab-
ulated. Holm’s procedure rejects those hypotheses that have
an unadjusted p-value ≤ 0.016667. This means that from
i1-i3 there is no significant difference between the classifier
being compared while from i4-i10 there is a significant dif-
ference. This shows that SVM, RF, and MLP are statistically
on par with each other. Most importantly classification of
augmented data using KNN is significantly better than other
classifiers.

5.4.4 Comparison of Scalers

A Wilcoxon Signed-Rank test is applied to find the correla-
tion between the results collected using a standard scaler and
minmax scaler regardless of the classifier and augmentation.

The value of W is 1597 and the distribution is approxi-
mately normal. The z-value is − 0.8384 and the p-value is
0.4009. Thus, the null hypothesis is retained as the result is
not significantly different at p < 0.05. Thus, the performance
of ERS is not determined by the type of scaler used in this
study.

6 Conclusion and FutureWorks

This study is dedicated to tackling the problem of insuf-
ficient sample data in designing an ECG-based ERS that
causes low accuracy. The application of multiple filters for
data augmentation is proposed here. The augmentation tech-
nique proposed can increase the number of ECG data and
increases the training samples available for the classifiers to
learn on. This method is simple, and the selected filters had
been proven to be good for ECG signal filtering. ERSmodels
are built to evaluate the effectiveness of the proposed aug-
mentation method. The results from three selected datasets,
A2ES, AMIGOS, and DREAMER show that the classifica-
tion accuracy increase after data augmentation is introduced.
This is validated by theWilcoxon-Signed statistical test. The
KNN classifier benefits the most from the introduced aug-
mentation as observed from the statistical test conducted.
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Table 12 Holm post hoc test
p-values table for classifiers
comparison before and
after augmentation

i Algorithms z � (R0 − Ri)/SE p Holm

Before augmentation

10 DT vs. RF 6.388199 0 0.005

9 RF vs. MLP 4.052216 0.000051 0.005556

8 SVM vs. DT 4.004543 0.000062 0.00625

7 KNN vs. DT 3.95687 0.000076 0.007143

6 KNN vs. RF 2.43133 0.015044 0.008333

5 SVM vs. RF 2.383656 0.017142 0.01

4 DT vs. MLP 2.335983 0.019492 0.0125

3 SVM vs. MLP 1.66856 0.095205 0.016667

2 KNN vs. MLP 1.620886 0.105042 0.025

1 KNN vs. SVM 0.047673 0.961977 0.05

After augmentation

10 KNN vs. DT 7.77072 0 0.005

9 KNN vs. SVM 4.624294 0.000004 0.005556

8 KNN vs. MLP 4.338255 0.000014 0.00625

7 KNN vs. RF 4.242909 0.000022 0.007143

6 DT vs. RF 3.527812 0.000419 0.008333

5 DT vs. MLP 3.432465 0.000598 0.01

4 SVM vs. DT 3.146427 0.001653 0.0125

3 SVM vs. RF 0.381385 0.702918 0.016667

2 SVM vs. MLP 0.286039 0.774848 0.025

1 RF vs. MLP 0.095346 0.92404 0.05

For the scaler used, the study shows that either standard or
minmax can be used without any significant effect on the
accuracy performance of the ECG-based ERS.

The suggestions for future works include the use of the
same augmentation method to balance the class labels in the
dataset. This is to ensure that the classification bias is reduced
minimally due to the imbalance class. Furthermore, extend-
ing the data augmentation via a multi-filtering method to
othermodalities such as EEG, PPG, etc. This is to observe the
effectiveness of multi-filtering augmentation. Finally, inves-
tigate the number of filters concerning the original data size
and the best filter combination for augmentation.
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