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Abstract
Linear regression is a simple and widely used machine learning algorithm. It is a statistical approach for modeling the
relationship between a scalar variable and one or more variables. In this paper, a classification by principal component
regression (CbPCR) strategy is proposed. This strategy depends on performing regression of each data class in terms of its
principal components. This CbPCR formulation leads to a new formulation of the Linear Regression Classification (LRC)
problem that preserves the key information of the data classes while providing more compact closed-form solutions. For the
sake of image classification, this strategy is also extended to the 4D hypercomplex domains to take into account the color
information of the image. Quaternion and reduced biquaternion CbPCR strategies are proposed by representing each channel
of the color image as one of the imaginary parts of a quaternion or reduced biquaternion number. Experiments on two color
face recognition benchmark databases show that the proposed methods achieve better accuracies by a margin of about 3%
over the original LRC and like methods.

Keywords Linear regression classification · Principal component analysis · Hypercomplex numbers · Face recognition

1 Introduction

Linear regression is a simple and widely used machine learn-
ing algorithm that has received a lot of attention in many
fields. In the image recognition area, Naseem et al. [1] pro-
posed a Linear Regression Classification (LRC) algorithm
that represents each class’s training images independently
assuming a linear regression relationship. The algorithm
depends on applying the least squares method to find the
regression coefficient then decides the class label that gives
the smallest reconstruction error. To enhance its perfor-
mance, Huang and Yang [2] and Zhu et al. [3] proposed to
apply principal component analysis (PCA) [4] to extract the
vital information from images and reduce the feature vec-
tor dimensions. Then, the original data are transformed into
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a low-dimensional subspace. Finally, LRC is performed on
the projected data.

This paper contributes to this literature by proposing a
new strategy for classification by performing regression of
data in terms of its principal components. A novel formula-
tion of the LRC problem, called Classification by Principal
Component Regression (CbPCR), is presented. Moreover,
a novel closed-form solution based on this formulation is
derived. This classification strategy preserves key data class
information and removes redundant and correlated details,
yet yielding a more compact solution. Several experiments
on public face recognition benchmark databases are reported
to provide evidence that the proposed strategy outperforms
the original LRC method [1] and its recent variants [2, 3].

The proposed strategy is also extended to color images.
PCA techniques [4–6] and the existing methods [1–3] work
in principle on grayscale, single-channel images. They may
operate on color images after converting them to grayscale
images, thus losing the important color information. Some
methods (e.g., [7]) apply LRC to every color channel
separately, then select the class having the smallest total pre-
diction error over all color channels. Unlike those methods,
inspired by several studies [8–14], the current paper proposes
to use 4D hypercomplex numbers to represent color images.
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This allows treating the color components of each imagepixel
as one entity thus considering the correlation between color
components.Among the studies [8–14], two address theLRC
problem. Zou et al. [11] proposes a quaternion LRC (QLRC)
method that extends the classical LRC algorithm to quater-
nion space. QLRC converts the quaternion quantities to real
ones to circumvent using quaternion derivatives. The recent
paper [14] develops closed-form solutions for QLRC from
the principles of quaternion calculus. In addition, the current
paper proposes novel solutions based on reduced biquater-
nions (RBs), another hypercomplex space consisting of one
real component and 3 imaginary ones. In addition to having
commutative algebra—in contrast to quaternions—RBsmay
be represented using the so-called e1-e2 form [15] that can
lead to more time-efficient computation.

The proposed CbPCR formulation is extended to both the
quaternion and RB domains to process color images. To that
end, the current paper exploits an efficient algorithm derived
by the authors in [10] for computing the principal compo-
nents (eigenvectors) of an RB matrix by casting it as an x
+ y selection problem [16, 17]. The experimental results
on public benchmark databases for color face recognition
demonstrate the better performances of the new quaternion
andRB-basedCbPCRalgorithms over competing algorithms
[7, 11, 14].

The rest of this paper is organized as follows: Sect. 2 gives
a brief history of using 4D hypercomplex domains, namely
quaternion and reduced biquaternions, in color image pro-
cessing, with focus on color face recognition. Section 3 gives
some notations and formally defines the problem of our con-
cern here. Section 4 briefly reviews the quaternion and RB
domains. Section 5 describes the proposed CbPCR method
and its extension to the quaternion and the RB domains. The
classification results on two benchmark color face databases
are reported in Sect. 6. Section 7 concludes the paper.

2 RelatedWork

This section briefly reviews the use of 4D hypercomplex
domains, namely quaternion, and reduced biquaternions, in
representing color image, with focus on their application to
color face recognition.

In 1996, Sangwine [18] introduced the idea of using 4D
hypercomplexnumbers (Quaternionnumbers) in color image
processing by encoding the pixel’s color components into
the three imaginary parts of a quaternion number. Bihan
and Sangwine [8] and Pei et al. [19] proposed a Quaternion
PCA method, which extracts more informative and robust
features from the color image than conventional PCA. In
2011, Sun et al. [20] proposed 2DPCA and bi-dimensional
PCA (BDPCA) based on quaternion representation. Also,

Javier et al. [21] proposed an independent component analy-
sis algorithm based on quaternions. Years later, Jia et al. [22]
presented a 2DPCA based on a quaternionmodel (2DQPCA)
that depends on reducing feature dimension in a row direc-
tion. In addition, Liu et al. [23] proposed a quaternion-based
maximummargin criterion algorithm.Themethods proposed
in [20, 22, 23] mainly targeted color face recognition and
showed an enhancement in the recognition rate over their
grayscale-based counterpart methods.

Using the other 4D domain of reduced biquaternions for
the same purpose started rather late. A reduced biquater-
nion PCA based on reduced biquaternion representation was
proposed [10] to represent color images in the typical PCA
framework, which takes full advantage of the color char-
acteristics of the image. Recently, a color occlusion face
recognitionmethod [24] based on the quaternion non-convex
sparse constraint mechanism was proposed.

On the other hand, LRC was originally designed for
grayscale images. Zou et al. [11] proposed an LRC model
based on quaternion representation to consider the color
image information. In [14], an LRC model was developed
based on a reduced biquaternion representation. Both works
[11, 14] were also applied to the face recognition problem
and achieved better performances than the original LRC.

3 Notations and Problem Statement

Let us first give some notations to distinguish between real,
quaternion, and reduced biquaternion. Scalars and vectors
were denoted using italic and bold lowercase letters, respec-
tively, while matrices are indicated by bold uppercase letters.
The number of dots on top of a symbol indicates its intended
domain: real (R), complex (C), quaternion (Q), or reduced
biquaternion (B). Symbols without any dots on top indicate
real or complex quantities, where the intended domain is dis-
ambiguated from the context. A quaternion is represented by
a symbol with one dot above, while an RB quantity has two
dots.

In the context of image classification, the problem of our
concern canbedefined as follows. Suppose there areL classes
in a training set of images, where the l-th class consists of
nl images. Each image is of size m × n. The typical goal of
LRC is to find the label of a new probe image Y from the
given training samples and their labels. Assuming grayscale
images, each image X ∈ R

m×n is represented as a 1D vector
x ∈ R

mn by stacking the rows, one after another. As such,
one can form a matrixAl = [xl1, xl2, . . . , xlnl ] ∈ R

mn×nl that
represents samples from the l-th class. For our work here, a
color image is represented as a 1D pure quaternion vector
ẋ ∈ Q

mn . Analogously, the color image can be represented
as a 1D pure reduced biquaternion vector ẍ ∈ B

mn .
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4 Hypercomplex Domains

4.1 Quaternions

Aquaternion number [25] consists of one real and three imag-
inary parts: q̇ = qr + qi i + q j j + qkk (a quaternion number
with no real part is called a pure quaternion). The three imag-
inary parts satisfy:

i2 = j2 = k2 = −1, i j = − j i = k,

jk = −k j = i , ki = −ik = j .
(1)

The quaternion conjugate is q̇ = qr −qi i−q j j−qkk, and

the quaternion norm is |q̇| =
√
q̇q̇ . The Hermitian (conju-

gate transpose) satisfies
(
ṖQ̇

)H = Q̇H ṖH , see [26] for more
details.

Due to the noncommutativity of quaternion multiplica-
tion, a quaternion matrix has left and right eigenvalues that
may be different [15, 27]. Any quaternion matrix Q̇ ∈ Q

n×n

can be expressed as: Q̇ = Q1 +Q2 j , whereQ1 = Qr + iQi

andQ2 = Q j + iQk , withQr , Qi , Q j , andQk being the real
and the three imaginary parts of the quaternion matrix Q̇.
The eigenvalues (and eigenvectors) can be calculated from
the equivalent complex matrix [27]:

H(
Q̇

) :=
[

Q1 Q2

−Q2 Q1

]
∈ C

2n×2n , (2)

where the mappingH(.) transforms a quaternion matrix into
an equivalent complexmatrix. Thus, there are 2n eigenvalues
(eigenvectors) for any n × n quaternion matrix.

4.2 Reduced Biquaternions

A reduced biquaternion number also has one real and three
imaginary parts: p̈ = pr + pi i + p j j + pkk, where:

j2 = 1, i2 = k2 = −1, k j = jk = i ,

j i = i j = k, ki = ik = − j .
(3)

In contrast to quaternions, multiplication on the RB
domain is commutative. There are two special numbers e1
and e2 [15] such that any RB number can be represented as:
p̈ = p1e1 + p2e2, where e1 = (1 + j)/2, e2 = (1 − j)/2
and p1 = (

pr + p j
) + i(pi + pk), p2 = (

pr − p j
) +

i(pi − pk).
Expressing many operations in terms of the e1-e2 forms

reduces their complexity. For example, direct RB multipli-
cation requires 16 real multiplications while applying the
e1-e2 form requires only 8. The RB norm and Hermitian can
be defined in a similar way as quaternion numbers. The RB

conjugate [28] is defined as:

p̈ = pr − pi i + p j j − pkk. (4)

There are other definitions of conjugate [28–31] while (4)
is the only definition satisfying p̈ = p1e1 + p2e2.

For any n × n RB matrix there are n2 eigenvalues
(eigenvectors) (see [10, 15] for proof). The computation
of n2 eigenvalues and their corresponding eigenvectors
would increase the computational cost required to find these
eigenvalues. The time complexity of finding the t largest
eigenvalues will be O(n2t). A more efficient algorithm for
this purpose was derived in our paper [10] based on the well-
known computer science problem x + y selection [16, 17]
with time complexity of O(nt + nlogn).

For an m × n RB matrixP̈, the Frobenius norm ‖P̈‖ =
1√
2
‖M(

P̈
)‖ [14] where M(.) maps any RB matrix to its

complex equivalent matrix:

M(
P̈
) :=

[
P1 0
0 P2

]
∈ C

2m×2n , (5)

where P1 and P2 ∈ C
m×n and are defined as P1 =(

Pr + P j
) + i(Pi + Pk), P2 = (

Pr − P j
) + i(Pi − Pk).

5 ProposedMethods

In this section, we review LRC [1], derive the CbPCR for
grayscale images and then extend it for color images using
the theory of quaternions and RBs.

5.1 Linear Regression Classification (LRC)

The goal of LRC is to infer the correct label of any new probe
image y ∈ R

mn . LRC [1] seeks to represent y as a linear
combination of the training images of each class by setting
up the following real-valued linear regression problem:

min
cl∈Rnl

‖y − Alcl‖2, l = 1, 2, . . . , L , (6)

for which a closed-form solution is found via

ĉl = (AT
l Al)

−1
AT
l y. (7)

Then, the predicted vector ŷl is given by:

ŷl = Al̂cl , l = 1, 2, . . . , L. (8)

The test sample y is eventually assigned to the class with
the minimal distance

min
l

‖y − ŷl‖, l = 1, 2, . . . , L. (9)
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5.2 Classification by Principal Component
Regression

The idea in our proposed methods is based on the fact that
an image (column) in Al can be represented as [4]

x̃lg = µl +
t∑

b=1

wb
gU

b
l , (10)

whereµl is the mean vector of the l-th class, andUl∈ R
mn×t

represents the t largest principal components of the class

scatter matrix AlA
T
l with Al = [

(xl1 − µl
)
, (xl2 − µl), . . . ,

(xlnl −µl)] ∈ R
mn×nl . That is, an image can be represented as

a linear combination of the Eigen-components of the class-
specific scatter matrix. The real weights {wb

g}tb=1 represent
the projections of the g-th image along these components.
Huang and Yang [2] and Zhu et al. [3] apply the standard
LRC on these weights. Nevertheless, our CbPCR model is
defined as:

min
cl∈Rt

‖y − µl − Ulcl‖2, l = 1, 2, . . . , L. (11)

Forcing the gradient of the objective function (11) with
respect to cl to vanish, the closed form is found as:

ĉl = (UT
l Ul)

−1
UT
l ( y − µl). (12)

Since Ul is orthonormal,

ĉl = UT
l (y − µl). (13)

The response vector ŷl is predicted as:

ŷl = Ul̂cl + µl , l = 1, 2, . . . , L. (14)

The distance between y and the predicted response vector
ŷl is computed as:

dl( y) = ‖y − ŷl‖, l = 1, 2, . . . , L, (15)

The test image y is decided to belong to the class mini-
mizing (15).

In order to reduce the computation burden of finding the
largest principal components of the class scatter matrix, the
common practice [4] was followed by finding first the eigen-

vectors Vl ∈ R
nl×t of the matrix A

T
l Al , and then the target

eigenvectors are computed as:

Ul = AlVl .l = 1, 2, . . . , L. (16)

5.3 Quaternion-based CbPCR

Q-CbPCR is based on the algebra and calculus of quaternion
matrices [32] to identify the class to which a new color image
belongs. Here a m × n training color image is portrayed
as a 1D pure quaternion vector ẋ ∈ Q

mn . The columns of
matrix Ȧl ∈ Q

mn×nl represent samples from the l-th class
where each column represents the difference between the
training image and the classmean µ̇l .A test image ẏ ∈ Q

mn is
represented by setting up the following quaternion regression
problem:

min
ċl∈Qt

‖ ẏ − µ̇l − U̇l ċl‖2, l = 1, 2, . . . , L , (17)

where U̇l encompasses the key eigenvectors of the quaternion
scatter matrix ȦlȦH

l corresponding to the t largest eigenval-
ues in terms of the quaternion norm as computed by a QPCA
technique [8].

Proposition 1: The closed-form solution of (17) is ̂̇cl =
U̇

H
l ( ẏl − µ̇l).

Proof: See Appendix 1.

The reconstructed query color image ẏl is computed by:

̂̇yl = U̇l̂ ċl + µ̇l . (18)

Eventually, ẏ is given the label of the class with the mini-
mal quaternion norm

min
l

‖ ẏ −̂̇yl‖, l = 1, 2, . . . , L. (19)

The proposed quaternion-based representation is depicted
in Fig. 1, where a color face image is represented as a linear
combination of the mean image and the best t eigenvectors
of its class.

5.4 Reduced Biquaternion-based CbPCR

Analogously, RB-CbPCR relies on color image representa-
tion using RBs in place of quaternions. Our goal here is to
find the correct label of a query color image ÿ ∈ B

mn from
the given training data matrices Äl ∈ B

mn×nl and their true
labels. The proposed RB-CbPCR model is set up as:

min
c̈l∈Bt

‖ ÿ − µ̈l − Ül c̈l‖2, l = 1, 2, . . . , L. (20)

where µ̈l is the mean of the l-th class, and Ül represents the
eigenvectors of theRB scattermatrix Äl ÄH

l corresponding to
the t largest eigenvalues in terms of the RB norm as obtained
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Fig. 1 Quaternion-based color
representation: Column
(a) shows original color image.
Column (b) gives the
closed-form solution of (17) with
t=3. Column (c) depicts the real
parts of the principal components
in U̇l as grayscale images.
Column (d) depicts the
imaginary parts of the principal
components as color images.
First row depicts the real (zero)
and imaginary parts of the mean
of the training images. Column
(e) represents the reconstructed
image from (18)

via our efficient RB-based PCA algorithm [10]. By Lemma
2 in [14], it can be proved that (20) is equivalent to:

min‖M(ÿ) − M(
µ̈l

) − M(
Ül

)M(c̈l)‖2, (21)

where a closed-form solution is derived in proposition 2.

Proposition 2: The closed-form solution of (20) is ̂̈cl =
ÜH
l

(
ÿ − µ̈l

)
.

Proof : See Appendix 2.
The class-specific reconstructed test image is

̂̈yl = Ül̂ c̈l + µ̈l . (22)

The test image ÿ is finally labeled to the class with the
minimal RB norm

min
l

‖ ÿ −̂̈yl‖, l = 1, 2, . . . , L. (23)

6 Experiments

In this section, the proposed methods are evaluated on two
color face recognition benchmark databases: the GATech
database [33] and the FERET database [34]. The proposed
CbPCR, Q-CbPCR, and RB-CbPCR methods are compared
with LRC [1], the quaternion-based QLRC method [11, 14],
the RB-based RBLRC method [14], IPCRC [2, 3], and the
CLRCmethod [7]. Note that LRC, IPCRC, and CbPCRwork
on grayscale images, while the other methods operate on
color images.

All experiments are carried out on a pc with an Intel
i7 CPU at 2.5 GHz with 8 GB RAM using MATLAB

2015. Quaternion computations are done using the quater-
nion MATLAB toolbox [35], while RB computations are
carried out using our own MATLAB toolbox.

6.1 Experiments on GATech Database

The GATech database [33] consists of 50 (but only 38 are
available to us) subjects with 15 images per subject taken
in two or three sessions. It experiences several variations in
facial expression, pose, illumination, and scale; see Fig. 2a.
Following [36], 10 images from each subject were used for
training and the remaining 5 for testing.

Two factors were studied on the recognition performance:
the image size and the number of principal components t .
Figure 3 graphs the rank-1 recognition accuracy by all meth-
ods versus the image size ranging from 5 to 100% (size 54
× 39 pixels) in steps of 5%. We fix t=7 per class in our pro-
posed methods and use 266 principal components from the
whole training data in the IPCRC method. Expectedly, the
performances of the grayscale-based methods are generally
worse than those of color-based ones. CbPCR achieves 3%
and 4.7% improvement over LRC and IPCRC, respectively.
IPCRC is theworst among the three and achieves a peak accu-
racy of 84.2% compared with respective peak accuracies of
88.9% and 85.8% by CbPCR and LRC.

The color methods offer better performances than the
grayscale-based methods except for CLRC which has worse
accuracy than CbPCR and a close-performance to LRC with
a peak accuracy of 85.8%. The new grayscale-based CbPCR
method has a better performance than QLRC and RBLRC
till image size 50% then has almost the same performance
afterward. The new Q-CbPCR and RB-CbPCR have a close-
performance that is better than all other methods. Both have a
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Fig. 2 Sample images from GATech and FERET databases

Fig. 3 Rank-1 recognition
accuracy on the GATech database
by all methods for various image
sizes. (Better viewed in color)

peak accuracy of 88.95%yielding about 2.28% improvement
over QLRC and RBLRC.

Figure 4 shows the rank-1 recognition accuracy of all
methods against t = 1 to 9 fixing the image size at 54 ×
39 pixels. The number of principal components in IPCRC
is taken as the number of classes (38) times t . The accura-
cies of CLRC, LRC, QLRC, and RBLRC are not dependent
on t . IPCRC is the worst overall. As more principal com-
ponents are used, the proposed CbPCR, Q-CbPCR, and
RB-CbPCR offer higher accuracies. For t ≤ 4, CbPCR and
RB-CbPCR have similar performance, while Q-CbPCR tops

bothmethods.Afterward, the performances ofQ-CbPCRand
RB-CbPCR are better than that of CbPCR. Q-CbPCR tends
to offer a slightly better accuracy than RB-CbPCR, where
the former has a peak accuracy of 88.95% versus 87.37% for
the latter. CbPCR has 86.84% peak accuracy.

An additional experiment is carried out to compare the
proposed methods (Q-CbPCR and RB-CbPCR) with exist-
ing PCA-basedmethods: QPCA [8], RBPCA [10], 2DQPCA
[22], and 2DRBPCA [10]. Figure 5 graphs the rank-1 recog-
nition accuracies of all these methods versus an image size
from 5 to 100% (size 54 × 39 pixels) in steps of 5%. Seven
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Fig. 4 Rank-1 recognition accuracy on the GATech database by all
methods against number of principal components. (Better viewed in
color)

principal components per class are used in the proposed
methods, while 266 principal components are employed in
QPCA, RBPCA, 2DQPCA, and 2DRBPCA. The perfor-
mance of 1D PCAmethods is the worst. QPCA is worse than
RBPCA, with a peak accuracy of 82.63%, while RBPCA has
a peak accuracy of 85.78%. Q-CbPCR and RB-CbPCR are

the best overall methods, with a peak accuracy of 88.95%
compared to 2DQPCA and 2DRBPCA, which achieve peak
accuracies of 85.79% and 87.36%, respectively.

Finally, the recognition time (in seconds) was studied by
taking the average of running each algorithm 10 times on
image size 54 × 39, with t = 7 in the proposed methods
and 266 principal components in IPCRC, QPCA, RBPCA,
2DQPCA, and 2DRBPCA. As shown in Table 1, QPCA
and RBPCA are the slowest while the grayscale-based LRC
and IPCRC are the fastest due to their simpler computation.
2DQPCA and 2DRBPCA are faster than Q-CbPCR and RB-
CbPCR since the size of the scatter matrix in 2D methods is
less than the size of the scatter matrix in the 1Dmethods. RB-
CbPCR is around 1.8 × faster than Q-CbPCR. This is due to
the faster computations of RB operations taking advantage of
the e1-e2 form and to the faster computation of the RB prin-
cipal components by our efficient RB-based PCA algorithm
[10].

6.2 Experiments on FERET database

The FERET database [34] contains more than 14,000 face
images having pose and light variations. In this study, we
consider a subset consisting of 115 subjects with 4 images
from each subject captured in 3 poses, see Fig. 2b. Two faces
are captured at 0°while the other two faces are captured at 15°
and − 15°. One frontal image and one with the head rotated

Fig. 5 Rank-1 recognition
accuracy on the GATech database
by PCA color methods and the
proposed color methods for
various image sizes. (Better
viewed in color)

Table 1 Average recognition CPU time (in seconds) over 10 runs of different methods on the GATech database

LRC CLRC IPCRC CbPCR QLRC RBLRC Q-CbPCR RB-CbPCR QPCA RBPCA 2DQPCA 2DRBPCA

0.018 2.860 0.083 0.105 1.631 1.182 2.011 1.121 18.455 6.653 0.475 0.821
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Fig. 6 Rank-1 recognition
accuracy on the FERET database
by all methods for various image
sizes. (Better viewed in color)

Table 2 Average recognition
CPU time (in seconds) over 10
runs of different methods on the
FERET database

LRC CLRC CbPCR QLRC Q-CbPCR RBLRC RB-CbPCR IPCRC

0.038 2.642 0.145 1.910 1.782 1.494 1.224 0.06

15° were chosen for training, while testing is performed on
the other 2 images.

Figure 6 shows the rank-1 recognition accuracy for various
image sizes varying from 5 to 100% (48× 32 pixels) in a step
of 5% using t = 1 in our proposed methods and 115 princi-
pal components in IPCRC. Expectedly, the grayscale-based
methods have lower accuracy. IPCRC and LRC are close
to each other with respective peak accuracies of 79.6% and
80.9%. CbPCR achieves 1.79% and 1.18% improvements
over LRC and IPCRC, respectively. QLRC and RBLRC
exhibit nearly the same performance with a top accuracy
of 81.74%. CLRC performs better than QLRC and RBLRC
with a peak of 82.1%. Both Q-CbPCR and RB-CbPCR offer
the best overall accuracy of 82.61% at 20% image size. Q-
CbPCR shows a slightly better performance thanRB-CbPCR
for larger image sizes.

Moreover, the average recognition time (in seconds) was
assessed by running each algorithm 10 times on image size
48 × 32 using t = 1 in the proposed methods and 115 prin-
cipal components in IPCRC. As shown in Table 2, LRC and
IPCRC are the fastest while CLRC is the slowest. Q-CbPCR
and RB-CbPCR take less time than QLRC and RBLRC.
Moreover, RB-CbPCR is about 1.5 × faster than Q-CbPCR.

7 Conclusions

In this paper, a novel formulation of LRC based on principal
component regression has been proposed. This formulation
keeps the key information of the data classes while provid-
ing more compact closed-form solutions. This formulation is
also extended to the quaternion and RB domains to take into
account the color information. The specific contributions of
this paper are:

• CbPCR strategy is proposed by performing regression of
each data class in terms of its principal components.

• This CbPCR strategy is extended to the hypercomplex
domains of quaternions and RBs to consider color images.

• The CbPCR closed-form solutions are developed from the
principles of real, quaternion and RB domains.

• Experiments on two color face recognition benchmark
databases have showed that the proposed Q-CbPCR and
RB-CbPCR have the highest overall accuracy among eight
different methods including very recent ones [7, 11, 14].
Moreover, RB-CbPCR is about 1.8 × faster than Q-
CbPCR. The grayscale-based CbPCR algorithm has even
outperformed some color-based algorithms in the litera-
ture in addition to the original grayscale LRC method [1]
and its recent variants [2, 3].
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Appendix 1

Proof of Proposition 1

The gradient of (17) with respect to ċl is:

∂

∂ ċl
‖ ẏ − µ̇l − U̇l ċl‖2

= ∂

∂ ċl
tr
((

ẏ − µ̇l − U̇l ċl
)H (

ẏ − µ̇l − U̇l ċl
))

= ∂

∂ ċl
tr

(
( ẏ − µ̇l)

H ( ẏ − µ̇l) − ċHl U̇H
l ( ẏ − µ̇l)

− ( ẏ − µ̇l)
H U̇l ċl + ċHl U̇H

l U̇l ċl

)

According to quaternion derivatives [32]:

∂

∂ ċl
‖ ẏ − µ̇l − U̇l ċl‖2 = −1

2

(
U̇H
l ( ẏ − µ̇l)

)
+ 1

2

(
U̇H
l U̇l ċl

)

Nulling the gradient with respect to ċl at the target solution̂̇cl leads to:

U̇H
l ( ẏ − µ̇l) = U̇H

l U̇l̂ ċl

̂̇cl =
(
U̇H
l U̇l

)−1
U̇H
l ( ẏ − µ̇l)

Since U̇l is orthonormal.

⇒ ̂̇cl = U̇H
l ( ẏ − µ̇l) �

Appendix 2

Proof of Proposition 2

For notation brevity, let’s first drop the class specific index l.
Assume ÿ = y1e1 + y2e2, µ̈ = µ1e1 + µ2e2, Ü = U1e1 +
U2e2, andc̈ = c1e1 + c2e2. By Lemma 1 and Lemma 2 in
[14],

‖( ÿ − µ̈) − Üc̈‖2 = 1

2

∣∣M(ÿ − µ̈) − M(
Ü

)M(c̈)
∣∣2.

According to the properties of calculus on complex
domain,

∂

∂c1
‖M(ÿ − µ̈) − M(

Ü
)M(c̈)‖2

= ∂

∂c1
tr
((M(ÿ − µ̈) − M(

Ü
)M(c̈)

)H (M(ÿ − µ̈) − M(
Ü

)M(c̈)
))

= 2
(
UH
1 U1c1 − UH

1 (y1 − µ1)
)

Similarly,

∂

∂c2
‖M(ÿ − µ̈) − M(

Ü
)M(c̈)‖2

= 2
(
UH
2 U2c2 − UH

2 (y2 − µ2)
)

The solution ĉ1 is found by setting the gradient of the
objective function with respect to c1 to zero

ĉ1 =
(
UH
1 U1

)−1
UH
1 (y1 − µ1)

Similarly, the solution ĉ2 is:

ĉ2 =
(
UH
2 U2

)−1
UH
2 (y2 − µ2).

According to (5),

M(̂
c̈
) =

[ (
UH
1 U1

)−1
UH
1 (y1 − µ1) 0

0
(
UH
2 U2

)−1
UH
2 (y2 − µ2)

]
.

which is simplified to

=
[
UH
1 U1 0
0 UH

2 U2

]−1[
UH
1 0
0 UH

2

][
(y1 − µ1) 0

0 (y2 − µ2)

]
,

∴ ̂̈c =
(
ÜH Ü

)−1
ÜH ( ÿ − µ̈)

Since Ü is orthonormal.

∴ ̂̈c = ÜH ( ÿ − µ̈) �
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