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Abstract
Al-50wt%Si alloy is considered as a difficult-to-machinematerial and is lack of precisionmachining research. In this paper, the
response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) are coupled to determine
the optimum cutting conditions leading to theminimum surface roughnessRa and feed forceF t in Al-50wt%Si alloy precision
milling. The purpose is to address the problem ofmachining parameters optimization in precisionmilling high Si-Al alloy. The
Ra and F t were considered as two process responses and cutting speed (vc), feed per tooth (f z), radial cutting depth (ae) and
axial cutting depth (ap) were the process parameters. Using the rotatable orthogonal central composite design, 31 experiments
were conducted. Based on RSM and analysis of variance (ANOVA), the influence of milling parameters on Ra and F t was
studied. The ANN was also employed for developing Ra and F t predictive models, and its predictive capability was more
accurate compared with RSM. Parameter optimizations were performed for minimizing Ra and F t in single-objective and
multi-objective cases using GA. In multi-objective optimization, the entropy weight method (EWM) was also implemented.
Finally, the optimal parameter combination for precision milling Al-50wt% Si alloy was obtained as vc � 105 m/min, f z
� 0.013 mm/z, ae � 3.909 mm and ap � 0.14 mm. The prediction errors were found as 3.27% and 4.65% for Ra and F t,
respectively. The results showed the effectiveness of the predictive model and the optimization method.

Keywords Al-50wt%Si alloy ·Response surfacemethodology ·Artificial neural network ·Genetic algorithm ·Multi-objective
optimization

1 Introduction

With the increase in requirements in aerospace, automotive,
electronic packaging and other fields for material properties,
particle reinforced metal matrix composites (PMMC) have
attracted more and more attention [1]. This is due to their
excellent and attractive comprehensive properties, such as
high specific strength and specific stiffness, corrosion resis-
tance, wear resistance, low density and good dimensional
stability [2, 3].

Silicon aluminum (Si-Al) alloy is a kind of PMMC. From
the microstructure of Si-Al alloy, the reinforced Si particles
are dispersed in the soft pure Al matrix [4]. Al-50wt% Si
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alloy is a typical difficult-to-machine material due to its high
Si weight fraction of up to 50%. The machinability of high
Si-Al alloy (Si content ≥ 30wt%) is much worse than that of
other aluminum alloys [5]. It is easy to produce both sticky
chips and scratches on the processed workpiece [6]. During
machining, plastic deformation occurs in theAlmatrix,while
elastic deformation, brittle failure or falling off occur in the
Si particles [7]. The two-phase material with opposite prop-
erties directly leads to the formation of microcracks, pits,
edge breakage and other defects on the machined surface
[8, 9]. These defects destroy the Si-Al alloy surface accu-
racy and increase the surface roughness (Ra), which limit its
application in industrial production [10].

Ra is an important factor in controlling machining perfor-
mance [11]. If the Ra of parts is not ideal, it will accelerate
the wear of the mating surface, increase the corrosion and
reduce the fatigue strength of parts [12]. Thus, optimiza-
tion techniques must be applied for reducing Ra. Surface
roughness is influenced by various factors, including cutting
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parameters, cutting environments, tool variables, workpiece
variables, etc. [13, 14]. For a specific manufacturing process,
it is very challenging to consider all the factors affecting Ra.
Among them, the proper setting of cutting parameters is the
most crucial [15].

Recently, various process parameter optimization meth-
ods and prediction models have been developed. For exam-
ple, using response surfacemethodology (RSM) and artificial
neural network (ANN), Kumar and Chauhan [16] revealed
that the feed rate is determined as the most influential
parameter on Ra in turning MMC. Chandrasekaran and
Devarasiddappa [17] conducted end milling SiCp/Al studies
using fuzzy logic. They believed that Ra value has a linear
relationship with the feed rate and an inverse relationship
with the spindle speed. Meanwhile, the increase of SiC par-
ticles directly led to linear increase of Ra. Research [18] also
showed that the larger the volume and size of reinforcement,
the higher the Ra and burr height in machining.

In other researches, Pare et al. [19] used Al2O3 + SiC
MMCasworkmaterial and applied gravitational search algo-
rithms (GSA) to optimize milling parameters. The results
showed that GSA has better prediction effect on Ra than
genetic algorithm (GA). Zhu et al. [20] established the
theoretical model of Ra for Al alloy and SiC based on
the expectation theory. Through the exponential composi-
tion function, the Ra prediction model of SiCp/Al MMC
was obtained. Finally, the rapid non-dominated sequencing
genetic algorithm (NSGA-II) was utilized to optimize grind-
ing parameters.

During machining, various multi-objective optimization
problems have also been successfully solved [21–23].
Tamang and Chandrasekaran [24] used RSM and ANN to
establish Ra and tool wear VB prediction models for turning
SiCp/Al. The GA and desirability function analysis (DFA)
were employed for developing the optimal parameter combi-
nation of multi-objective optimization. The minimum values
of Ra and VB reached 3.24 µm and 0.327 mm, respectively.
Muguthu et al. [25] used feed rate, cutting speed, cutting
depth and tools as input parameters in turning SiCp/Al com-
posites. Tool wear, Ra and specific power consumption were
output responses. The results indicated that forRa, the signif-
icant factor is tool insert, followed by cutting speed. For the
specific power consumption, the crucial factor is tool insert,
followed by feed rate.

The change trends of cutting force influence heat gen-
eration, surface accuracy, machine vibration and power
consumption, which play a significant role in the cutting pro-
cess [26, 27]. Therefore, Daniel et al. [28] took the cutting
force and surface roughness as multi-objective optimiza-
tion indices. It was concluded that the Ra decreases with
increase in cutting speed and TiB2 ratio in AA7075/TiB2

compositesmachining.The increase in feed and cutting depth
caused an increase in cutting force. From the ANOVA, the

highest contributor to both indicators was the TiB2 reinforce-
ment.Karabulut [29] performedmillingAA7039/Al2O3 tests
based on the Taguchi design and ANN. It was found that the
material structure is the most important factor affecting Ra

and feed rate is the dominant factor affecting cutting force.
Tsao and Hocheng [30] carried out an experiment in drilling
composites. Through multi-variable regression analysis and
radial basis function network (RBFN), the correlations of
feed rate, spindle speed and drill diameter with thrust force
and Ra were obtained. Utilizing RSM, Premnath et al. [31]
optimized cutting force and surface roughness in milling
AA6061/Al2O3. They observed that the feed rate and Al2O3

weight fraction are the two dominant factors affecting the
above indicators.

From the literature review, most research mainly focuses
on the optimization of cutting parameters in SiCp/Al com-
posites and other metal alloy matrix composites, few studies
have focused on Si-Al alloys, especially Si-Al alloys with
high weight fraction. Furthermore, there is also a lack of
research on the precision machining of high Si-Al alloy.

To fill the research gap, the multi-objective optimization
of four milling parameters (i.e., cutting speed, feed per tooth,
radial cutting depth and axial cutting depth) was carried out
in this paper to minimize the surface roughness and cutting
force during Al-50wt% Si alloy precision milling. Firstly,
the significance of regression models and cutting parame-
ters is analyzed by ANOVA, and the influence of cutting
parameters on response values is explored. Secondly, pre-
dictive modeling was developed and compared by RSM
and ANN techniques. Finally, the GA and entropy weight
method (EWM) were implemented to optimize machining
parameters in single-objective andmulti-objective cases. The
flowchart for experimentation and analysis is schematically
represented in Fig. 1.

This paper solves the problem of machining parameters
optimization in precision milling high Si-Al alloy and forms
the effective prediction method based on various algorithms.
It provides a useful reference for the selection of high Si-Al
alloy milling parameters.

2 Experimental

2.1 Workpiece and equipment setup

The workpiece used was the Al-50wt% Si alloy block with
a shape of 30 × 25 × 20 mm, and its mechanical properties
is listed in Table 1. Figure 2 shows the microstructure of
Al-50wt% Si alloy prepared by spray deposition technique.
Spray deposition is a material preparation method in which
molten metal is centrifugally atomized, then the atomized
liquid particles are sprayed on a rotating deposition carrier
to form the deposition billet, and the billet is directly rolled
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Fig. 1 Block diagram showing
the procedure for
experimentation and analysis

Table 1 Mechanical properties of Al-50wt% Si alloy

Density
(g/cm3)

Yield strength
(MPa)

Coefficient of thermal
expansion (ppm/°C)

Thermal conductivity
(W/mK) at 25 °C

Strength of extension
(MPa)

Young’s modulus
(GPa)

2.5 210 11.5 140 220 108

Fig. 2 Microstructure of Al-50wt% Si alloy

[32]. It can be observed from Fig. 2 that the polyhedral Si
particles with many sharp corners are surrounded by pure
aluminummatrix, and the average size of Si particles is about
10 µm.

Four-edged cemented carbide end milling tools with a
diameter of 6 mm (JHP780060E2R030.0Z4-M64) were uti-
lized. The tool tip zone was covered with TiAlN coating.

The tool nose radius was 0.3 mm, the rake angle was 10°, the
clearance angle was 12°, and the helix angle was 44°.

The experiments of milling Al-50wt% Si alloy were con-
ducted on the KVC800/1 vertical machining center. Figure 3
shows the experimental system. After experimentation, the
surface roughnesswasmeasured by the instrument JITAI820.
Repeat the measurement of workpiece surface roughness
under each group of cutting parameters for 6 times, and
then take the average value. The cutting force was acted
on the three-way piezoelectric sensor Kistler 9253B23. The
scanning electron microscope was applied to observe the
machined surface morphology, whose type was SU3500.

2.2 Experimental Design

The rotatable orthogonal central composite design was used
to conduct Al-50wt% Si alloy milling experiments. This
method can ensure that the design provides equal accuracy
estimation in all directions, which depicted in Fig. 4. In this
paper, the number of factor points (estimate the linear and
interactive terms) is 16; the number of axial points (estimate
the quadratic term) is 8. The repetitions of the center point
to ensure uniformity and precision are 7. They make up 31
sets of experiments.

The four cutting parameters of the (Av) cutting speed, (Bf)
feed per tooth, (Ce) radial cutting depth and (Dp) axial cutting
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Fig. 3 Schematic illustration of the Al-50wt% Si alloy milling experimental setup: a schematic diagram, b experimental site map

Table 2 Process parameters with
their values at five levels Control parameters Code symbol Unit Levels

−2 −1 0 1 2

Cutting speed, vc Av m/min 25 45 65 85 105

Feed per tooth, f z Bf mm/z 0.01 0.02 0.03 0.04 0.05

Radial cutting depth, ae Ce mm 2 3 4 5 6

Axial cutting depth, ap Dp mm 0.1 0.2 0.3 0.4 0.5

Fig. 4 Rotatable center composite design

depth were the input factors. According to themilling experi-
ence and the recommendation given by the toolmanufacturer,
the factor levels were selected in the range of obtaining pre-
cision surface quality of Al-50wt%Si alloy [33]. The process
parameters and their values at five levels are given in Table
2. The experimental data of 31 groups are shown in Table 3.

2.3 Experimental Results

Due to the addition of reinforced Si particles, the removal
behavior of Si-Al alloy is different from that of ordinary elas-
tic–plastic materials. During processing, brittle Si particles
are wrapped by plastic aluminum matrix, and they produce
dislocation movement together. Figure 5a illustrates the for-
mation mechanism of Si-Al alloy machined surface caused
by particle removal. It can be seen that the cutting process is
accompanied by particle breakage, shearing, spalling, crack-
ing, pressing, etc. The Al-50wt% Si alloy machined surface
morphology is shown in Fig. 5b. There are large holes, pits,
microcracks, Al matrix covering, matrix tearing and other
defects on the machined surface.

These machining defects directly impact the surface
roughness profile of Si-Al alloy. As exhibited in Fig. 5c,
the surface roughness profile curve mainly consists of mixed
fracture of Si particles and Almatrix, as well as pits or bulges
caused by Si particles. For some specific high Si-Al alloy
parts in aerospace, the surface roughness is required to be
very high, which reaches 0.4 µm. This paper is intended to
solve this problem.

Figure 5d depicts the milling force with time. The milling
force mainly includes radial force (Fx), feed force (Fy) and
axial force (Fz). The mechanical energy consumed by feed
force is the largest due to the large load on the tool in the
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Table 3 Cutting parameters and experimental data

Run Coded factors Actual factors Response variable

Av Bf Ce Dp vc f z ae ap Ra (µm) F t (N)

1 −1 −1 −1 −1 45 0.02 3 0.2 0.318 25.81

2 1 −1 −1 −1 85 0.02 3 0.2 0.341 23.12

3 −1 1 −1 −1 45 0.04 3 0.2 0.362 26.32

4 1 1 −1 −1 85 0.04 3 0.2 0.540 24.17

5 −1 −1 1 −1 45 0.02 5 0.2 0.396 26.87

6 1 −1 1 −1 85 0.02 5 0.2 0.401 23.64

7 −1 1 1 −1 45 0.04 5 0.2 0.501 28.16

8 1 1 1 −1 85 0.04 5 0.2 0.550 24.06

9 −1 −1 −1 1 45 0.02 3 0.4 0.301 26.63

10 1 −1 −1 1 85 0.02 3 0.4 0.314 28.12

11 −1 1 −1 1 45 0.04 3 0.4 0.387 31.99

12 1 1 −1 1 85 0.04 3 0.4 0.476 31.06

13 −1 −1 1 1 45 0.02 5 0.4 0.410 23.01

14 1 −1 1 1 85 0.02 5 0.4 0.448 26.63

15 −1 1 1 1 45 0.04 5 0.4 0.448 32.38

16 1 1 1 1 85 0.04 5 0.4 0.582 31.84

17 −2 0 0 0 25 0.03 4 0.3 0.314 19.07

18 2 0 0 0 105 0.03 4 0.3 0.424 23.86

19 0 −2 0 0 65 0.01 4 0.3 0.279 22.40

20 0 2 0 0 65 0.05 4 0.3 0.614 33.94

21 0 0 −2 0 65 0.03 2 0.3 0.320 28.94

22 0 0 2 0 65 0.03 6 0.3 0.519 27.49

23 0 0 0 −2 65 0.03 4 0.1 0.428 25.63

24 0 0 0 2 65 0.03 4 0.5 0.597 34.11

25 0 0 0 0 65 0.03 4 0.3 0.403 27.62

26 0 0 0 0 65 0.03 4 0.3 0.478 26.67

27 0 0 0 0 65 0.03 4 0.3 0.406 29.00

28 0 0 0 0 65 0.03 4 0.3 0.417 26.12

29 0 0 0 0 65 0.03 4 0.3 0.382 27.45

30 0 0 0 0 65 0.03 4 0.3 0.397 28.75

31 0 0 0 0 65 0.03 4 0.3 0.433 27.30

feed direction. The special structure of Si-Al alloy makes the
milling force unstable, which is easy to cause edge collapse
or brittle fracture. Smaller cutting force is helpful to improve
the material surface quality and reduce the subsurface dam-
age [34]. Therefore, the main cutting force Fy and surface
roughnessRa are selected as the response values in this paper.

3 Response Surface MethodologyModel

Response surface methodology (RSM) is a method that com-
bines the principles of mathematics and statistics. RSM uses
empirical formula model to approximate the relationship

between an output parameter and several input parameters,
reconstruct the characteristic function [35]. Furthermore,
interactions, the relationship between prediction and actual
results, and the 3D response surfaces corresponding to each
analysis of variance are constructed.

In this work, RSM is used to study the mathematical
relationship between the responses (Ra and F t) and the inde-
pendent variables (vc, f z, ae, ap) in milling Al-50wt% Si
alloy. For a response surface model, the quantitative form
of relationship between response variables and independent
variables can be represented as:

y � f (x1, x2, x3 . . . xn) + ε (1)
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Fig. 5 a Schematic diagram of Si-Al alloy machined surface formation caused by particle removal, b Al-50wt% Si alloy machined surface mor-
phology, c surface roughness profile curve, d milling force with time

where y is the output variable, x1, x2, x3 … xn are input
variables, and ε is the error term.

Considering the linear effects, interaction effects and
quadratic effects between input factors, quadratic mathemat-
ical regression is usually used to establish the relationship
between the output response and input parameters. It is
expressed as:

y � β0 +
k∑

i�1

βi xi +
k∑

i�1

k∑

j�1, i< j

βi j xi x j +
k∑

i�1

βi i x
2
i + ε (2)

where β0 is a constant or free term, β i, β ii and β ij reveal the
coefficients of linear, quadratic and interaction term, respec-
tively.

3.1 Regression Equation

Using Design-Expert software, the regression models for Ra

and F t in Al-50wt% Si alloy milling were obtained. Four
different types of RSMmathematical models, namely linear,
linearwith interaction, linearwith square and quadratic equa-
tions for prediction of surface roughness yRa , are as follows:

(a) Linear model:

yRa � −0.093822 + 0.00156vc + 6.6125 fz

+ 0.045625ae + 0.122917ap (3)

(b) Linear with interaction model:

yRa � 0.081459 − 0.001133vc + 2.14531 fz + 0.050391ae

− 0.078802ap + 0.115938vc fz − 0.000241vcae

+ 0.000594vcap − 0.40625 fzae − 4.8125 fzap

+ 0.076875aeap (4)

(c) Linear with square model:

yRa � −0.033133 + 0.006153vc + 3.46696 fz + 0.057685ae

− 1.18164ap − 0.000035v2c

+ 52.4256 f 2z −0.001507a2e + 2.17426a2p (5)

(d) Quadratic model:

yRa � 0.142149 + 0.00346vc − 1.00022 fz + 0.06245ae

− 1.38336ap − 0.000035v2c
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+ 52.4256 f 2z −0.001507a2e + 2.17426a2p

+ 0.115938vc fz − 0.000241vcae + 0.000594vcap

− 0.40625 fzae − 4.8125 fzap + 0.076875aeap (6)

When four types of mathematical models are used to fit
F t, it is found that only the pure error term fitted by quadratic
model is not significant. In other words, linear, linear with
interaction and linear with square equations are not suitable
for the fitting of F t. Therefore, here only lists the quadratic
equation for prediction of feed force yFt :

yFt � 26.37705 + 0.403558vc − 292.97991 fz − 1.55645ae

− 67.89799ap − 0.003732v2c + 1833.77976 f 2z

+ 0.194628a2e + 60.8378a2p − 2.15937vc fz

+ 0.000094vcae + 0.494063vcap + 40.1875 fzae

+ 1225.625 fzap − 4.53125aeap (7)

3.2 Reliability Analysis of the Model

All regression models were analyzed by analysis of variance
(ANOVA) and suitability test to judge their significance. F
value is the ratio of regression mean square to residual mean
square. P value is the probability under the corresponding
F value, indicating the significance of the model. The sig-
nificance level α takes 0.05 as the criterion of significance
and 0.001 as the criterion of extremely significance. It can be
seen from Table 4 that the values of P are less than 0.001 for
all Ra and F t regression models, indicating that these models
are very significant.

Thefitting degree of themodels can be verified by adjusted
coefficient of determination (Adj R2) and correlation coeffi-
cient (R2). Among them,R2 will increase with the increase in
independent variables number, while the influence of inde-
pendent variables number is considered inAdjR2. Therefore,
the optimal regression equation refers to the one with the
largest Adj R2. According to this, the quadratic models are
found better in predicting the Ra and F t in Al-50wt% Si alloy
milling. Quadratic models are selected among all models;
their equations are shown in Eqs. 6 and 7.

3.3 Significance Analysis of Regression Coefficient

To obtain the most significant cutting parameters that affect
the Ra and F t, Table 5 presents a significant analysis on the
regression coefficient.

In the significance analysis for Ra, it can be seen the P
value < 0.0001,whichmeans that the probability of excessive
noise of the model is only 0.5%. This model is extremely sig-
nificant. The P value of the mismatch term is 0.1878, which

greater than 0.05. Therefore, the lack of fit term is not signif-
icant. The regression equation is well fitted. It is also known
fromTable 5 that theP values of f z, ae and vc are both < 0.05,
indicating that they have significant individual effects on Ra.
The most influential cutting parameter on Ra is the feed rate
f z. The increase of f z will significantly increase the defects
such as pits, microcracks and aluminum matrix tearing on
the Si-Al alloy machined surface due to the pulling out and
crushing of Si particles. Therefore,Ra value is increasedwith
the increase of f z. The response value of Ra also contains the
significant interaction term vcf z and the significant quadratic
term ap2.

As in the above analysis, f z, ap, f zap, vcap, vc2 are signif-
icant model terms in the response value of F t. Feed rate f z
is the most significant cutting parameter on F t. The increase
of f z leads to the increment of Si-Al alloy cutting thickness
and milling force.

Significance analysis of regression coefficient about sur-
face roughness Ra:

(1) Individual effect: f z > ae > vc > ap;
(2) Interaction effect: vcf z > aeap > f zap > vcae > f zae >

vcap;
(3) Quadratic effect: ap2 > vc2 > f z2 > ae2.

Significance analysis of regression coefficient about feed
force F t:

(1) Individual effect: f z > ap > ae > vc;
(2) Interaction effect: f zap > vcap > aeap > vcf z > f zae >

vcae;
(3) Quadratic effect: vc2 > ap2 > ae2 > f z2.

3.4 Response Surface Plots and Contour Maps

Figure 6 indicates the pairwise interactive influence between
vc, f z, ae and ap on Ra, which are sorted according to the
influence degree. In each figure, the other two default milling
parameters take the 0 level in Table 2.

As shown in Fig. 6a, when the vc is constant, the Ra

increases with the increase of f z. However, the influence of
vc on Ra is not uniform when the f z is fixed. This is due to
the fact that when the vc and f z are small, the cutting force
and heat generated are small. The holding force of Al matrix
on Si particles reduces the probability of Si particles being
pulled out. When the vc is high, the main removal form of Si
particles changes to shear removal, which effectively reduces
the defects such as pits or holes. Therefore, when f z is small
and vc is the lowest (25 m/min) or highest (105 m/min), the
minimum Ra can be obtained. However, the influence of vc is
strengthened with the increase of f z. When the f z and vc are
both higher, Si particles are easy to be pulled out and pressed
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Table 4 Test of significance of RSM models

Run RSM model P value F value R2 (%) Adj R2 (%)

Ra F t Ra F t Ra F t Ra F t

1 Linear < 0.0001 − 19.87 − 75.35 − 71.56 −
2 Linear with interaction < 0.0001 − 7.87 − 79.73 − 69.59 −
3 Linear with square < 0.0001 − 15.01 − 84.52 − 78.89 −
4 Quadratic < 0.0001 < 0.0001 9.15 9.55 88.90 89.31 79.19 79.96

Table 5 Significance analysis of
regression coefficient Source Sum of squares DOF Mean square F value P value Remarks

Surface roughness

Model 0.2146 14 0.0153 9.14 < 0.0001 Significant

vc 0.0234 1 0.0234 13.93 0.0018

f z 0.1049 1 0.1049 62.56 < 0.0001

ae 0.0500 1 0.0500 29.78 < 0.0001

ap 0.0036 1 0.0036 2.16 0.1609

vc2 0.0057 1 0.0057 3.39 0.0843

f z2 0.0008 1 0.0008 0.4749 0.5006

ae2 0.0001 1 0.0001 0.0369 0.8500

ap2 0.0136 1 0.0136 8.09 0.0117

vcf z 0.0086 1 0.0086 5.13 0.0378

vcae 0.0004 1 0.0004 0.2209 0.6447

vcap 0.0000 1 0.0000 0.0135 0.9091

f zae 0.0003 1 0.0003 0.1574 0.6968

f zap 0.0004 1 0.0004 0.2209 0.6447

aeap 0.0009 1 0.0009 0.5637 0.4637

Residual 0.0268 16 0.0017

Lack of fit 0.0209 10 0.0021 2.1 0.1878 Not
significant

Pure error 0.0060 6 0.0010

Col Total 0.2415 30

Feed force

Model 324.82 14 23.20 9.55 < 0.0001 Significant

vc 0.0459 1 0.0459 0.0189 0.8924

f z 100.98 1 100.98 41.56 < 0.0001

ae 0.5192 1 0.5192 0.2137 0.6501

ap 89.98 1 89.98 37.03 < 0.0001

vc2 63.73 1 63.73 26.23 0.0001

f z2 0.9616 1 0.9616 0.3957 0.5382

ae2 1.08 1 1.08 0.4458 0.5139

ap2 10.58 1 10.58 4.36 0.0532

vcf z 2.98 1 2.98 1.23 0.2842

vcae 0.0001 1 0.0001 0.0000 0.9962

vcap 15.62 1 15.62 6.43 0.0220

f zae 2.58 1 2.58 1.06 0.3178

f zap 24.03 1 24.03 9.89 0.0063
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Table 5 (continued)
Source Sum of squares DOF Mean square F value P value Remarks

aeap 3.29 1 3.29 1.35 0.2620

Residual 38.88 16 2.43

Lack of fit 32.44 10 3.24 3.02 0.0943 Not
significant

Pure error 6.44 6 1.07

Col total 363.70 30

in, worsen the Ra. This is due to the dual action of f z and vc,
which increases the heat in the cutting zone and softens the
Al matrix.

It is worth mentioning that with the increase of ap, the Ra

of the workpiece decreases first and then increases, which
can be observed in Fig. 6c, e, f. This is because the actual
main deflection angle increases with the increase of ap [36].
It effectively buffers the instantaneous impact force of tool
cutting into Si-Al alloy, and makes the cutting heat distribu-
tion more uniform. When the ap exceeds the tool nose radius
(0.3 mm), the spiral tool cutting edge also participates in
milling. Increased forces and vibrations result in a decline in
machining accuracy.

In Fig. 6, the small graphs with the contour line density
basically unchanged show that the interaction between the
paired factors and Ra is not significant.

Figure 7 shows the two groups of interactions that have
the greatest effect on F t. From Fig. 7a, it can be seen that
increasing both f z and ap can increase the F t. The increased
cutting force will aggravate the crack propagation between
Si particles and Al substrate. The periodic crack damage on
themachined surface reduces theworkpiece surface integrity.
Therefore, Fig. 7a is consistent with Fig. 6d. Figure 7b shows
that lower or higher vc combined with lower ap results in
lower F t.

4 Artificial Neural NetworkModeling

In the previous part, the quantitative laws between the
response values (Ra and F t) and the input factors (vc, f z,
ae, ap) were obtained by RSM, and the input parameters that
affect the response values and the interactions among them
were evaluated. However, the established quadratic regres-
sion equations based on RSM do not consider the high-order
interaction between the impact factors, which may lead to
the decline of model accuracy. Fortunately, artificial neural
network (ANN) can make up for the shortage of RSM. ANN
has the characteristics of high adaptability and strong fitting
ability. The three-layer back propagation neural network can
fit any function with a certain precision.

ANN is a mathematical or computational model that imi-
tates the structure and function of biological neural network.
Neural network is composed of many neurons. There is
no connection between the neurons in the same layer, but
the adjacent layers are connected by full interconnection.
Each neuron input has multiple connection channels, and
each connection channel corresponds to a connection weight
coefficient [37]. ANN can summarize quantitative laws from
complex data. However, so far there are few clear rules that
can serve as a basis for obtaining the precision machined sur-
face of Al-50wt% Si alloy. The output of neuron is abstracted
into a specific mathematical model as:

T � f (P × ω + b) (8)

where P is the input signal of neuron, ω is the associated
weight and is responsible for network adjustment, b is the
threshold value of triggering neuron activity, and f is the
transfer function.

Back propagation (BP) neural network algorithm takes the
square of network error as the objective function and uses the
gradient descent method to calculate the minimum value of
the objective function [38]. A standard BP network consists
of input layer, hidden layer and output layer. In Al-50wt%
Si alloy milling, it is applied to predict surface roughness
and feed force (Ra, F t) as functions of four input parameters
namely, cutting speed, feed per tooth, radial cutting depth and
axial cutting depth (vc, f z, ae, ap). The BP neural network
architecture is shown in Fig. 8. The network is modeled in
MATLAB. In this paper, the number of hidden layer neurons
is set to 10. Tansig is the transfer function of hidden layer
neurons, purelin is the linear transfer function of output layer
neurons, and trainlm is the default training function.
From the 31 datasets obtained frommilling Si-Al alloy exper-
iments, 21 datasets are selected to train the ANNmodel, and
10 datasets are used to test the ANN model. In the aspect of
network training, the performance of ANN model is evalu-
ated by the mean squared error (MSE) between the predicted
and experimental outputs of Ra and F t. Aiming for MSE
with 0.001, successful training can be achieved. The R2 val-
ues of Ra and F t models during training are 0.969 and 0.980,
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Fig. 6 Surface plots and contour plots for surface roughness against a speed and feed, b speed and radial cutting depth, c speed and axial cutting
depth, d feed and radial cutting depth, e feed and axial cutting depth, f radial cutting depth and axial cutting depth
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Fig. 7 Surface plots and contour plots for feed force against a feed and axial cutting depth, b speed and axial cutting depth

Fig. 8 BP neural network
architecture

respectively, indicating that the ANN models have great fit-
ting ability.

4.1 Comparison of ANN and RSM Predictive Model

The first 10 groups of experimental data are selected as the
prediction accuracy (PA) verification samples of ANN and
RSM models. The comparison of prediction performance in
RSM and ANN models is illustrated in Table 6. Equation 9
is used to calculate the prediction accuracy ε of each dataset.

ε � 1 − δ � 1 −
∣∣Expt. valuei − Model predi

∣∣
Expt. valuei

× 100%

(9)

where δ represents the relative error between predictive
and measured values.

The average accuracy μ can be obtained by the following
formula:

μ � 1

h

h∑

i�1

(εi ) × 100% (10)

where h is the number of datasets contained in model.
Based onTable 6, the sample PAofRSMandANNmodels

is 94.58%and 97.66% forRa, 97.17%and 99.51% forF t. The
comparison of 31 groups of experimental data and predicted
data in RSM, ANN models is given in Fig. 9. For the Ra

response, the PA of RSM reaches 94.43% with a maximum
of 99.78%; the PA of ANN reaches 95.83%with a maximum
of 100%. For the F t response, the PA of RSM is found to be
96.68%with amaximum of 99.81%; the PA of ANN is found
to be 98.06% with a maximum of 100%. It can be concluded
by comparison that the developed RSM and ANN models
both have good prediction ability, while the ANN predictive

123



3220 Arabian Journal for Science and Engineering (2023) 48:3209–3225

Table 6 Comparison of prediction performance in RSM and ANN models

Run Surface roughness, Ra Feed force, F t

Expt.
(µm)

RSM ANN Expt.
(N)

RSM ANN

Pred.
(µm)

Pred. acc.
(%)

Pred.
(µm)

Pred. acc.
(%)

Pred.
(N)

Pred. acc.
(%)

Pred.
(N)

Pred. acc.
(%)

1 0.318 0.292 91.73 0.353 88.96 25.81 24.90 96.48 25.80 99.96

2 0.341 0.316 92.87 0.341 100 23.12 23.87 96.74 23.14 99.91

3 0.362 0.395 90.81 0.362 100 26.32 26.61 98.89 26.32 100

4 0.540 0.513 95.00 0.540 100 24.17 23.86 98.70 23.12 95.66

5 0.396 0.385 97.30 0.396 100 26.87 24.71 91.94 26.88 99.96

6 0.401 0.391 97.51 0.401 100 23.64 23.69 99.81 23.64 100

7 0.501 0.473 94.35 0.501 100 28.16 28.02 99.52 28.18 99.93

8 0.550 0.571 96.16 0.618 87.66 24.06 25.28 94.94 24.11 99.79

9 0.301 0.308 97.64 0.301 100 26.63 25.25 94.83 26.67 99.85

10 0.314 0.338 92.39 0.314 100 28.12 28.18 99.80 28.12 100

Sample accuracy 94.58 97.66 97.17 99.51

Fig. 9 Comparison between
experimental, RSM and ANN
data for a surface roughness,
b feed force
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model is more accurate than RSM model in predicting Ra

and F t.
In practical applications, the advantages ofRSMandANN

can be combined to obtain more accurate and reliable results.

5 Optimization of Milling Parameters
by Genetic Algorithm

Genetic algorithm (GA) is a search algorithm formed by sim-
ulating the genetic and evolutionary principles of organisms
in nature [39]. GA is composed of three modules: encod-
ing and decoding, individual fitness evaluation and genetic
operation. Among them, the genetic operation includes chro-
mosome replication, crossover and variation. The flowchart
of GA operation is given in Fig. 10. In this part, Al-50wt% Si
alloy milling parameters optimization for single and multi-
ple objectives is implemented, using the global optimization
method: GA.

5.1 Single-Objective OptimizationWith GA

The quadratic regression mathematical models of surface
roughness and feed force in Eqs. 6 and 7 are taken as the
objective/fitness functions. The single-objective optimiza-
tion theoretical formula of Ra and F t are described below:

MinimizeRa � f1
(
vc, fz , ae, ap

)

� Min(0.142149 + 0.00346vc − 1.00022 fz

+ 0.06245ae − 1.38336ap − 0.000035v2c

+ 52.4256 f 2z −0.001507a2e

+ 2.17426a2p + 0.115938vc fz

− 0.000241vcae + 0.000594vcap − 0.40625 fzae

−4.8125 fzap + 0.076875aeap
)

(11)

Minimize Ft � f2
(
vc, fz , ae, ap

)

� Min(26.37705 + 0.403558vc

− 292.97991 fz − 1.55645ae − 67.89799ap

− 0.003732v2c + 1833.77976 f 2z

+ 0.194628a2e + 60.8378a2p

− 2.15937vc fz + 0.000094vcae + 0.494063vcap

+ 40.1875 fzae + 1225.625 fzap

−4.53125aeap
)

(12)

The constraints of milling parameters in GA optimization
process are: 25 m/min ≤ vc ≤ 105 m/min, 0.01 mm/z ≤ f z
≤ 0.05 mm/z, 2 mm ≤ ae ≤ 6 mm, 0.1 mm ≤ ap ≤ 0.5 mm.
The population size, crossover rate, mutation rate, iteration
times and so on are the critical parameters in GA, which are
shown in Table 7.

The optimization process of GA is carried out in MAT-
LAB. For surface roughness, the optimal milling parameters
obtainedbyGAperforming10 times are listed inTable 8.Due
to the randomness of the initial production function, the Ra

prediction results after each optimization are different. For-
tunately, the overall difference is small with the maximum
difference of 0.043 µm. Therefore, using GA to optimize
Al-50wt% Si alloy milling parameters can fully meet the
requirement of Ra less than 0.4 µm in this paper.

As seen in Table 8, the Ra obtained in the fourth GA run
is the smallest, which reaches 0.128 µm. The corresponding
vc is 104.781 m/min, f z is 0.01 mm/z, ae is 2 mm, and ap is
0.271 mm. The fitness change in the fourth GA optimization
process is shown in Fig. 11. It can be seen that when the
number of iterations reaches 132 generations, the optimal
and average fitness values are stable, indicating that the initial
parameter setting is appropriate.

It can also be found from Table 8 that when the vc is the
lowest (25 m/min) or the highest (105 m/min), and the ap is
about 0.3 mm, Ra is easy to reach the lowest value. When
the f z and ae are the lowest, the Ra is the smallest. This is
consistent with the response surface analysis in the above
section.

For the single-objective optimization of feed force using
GA, the process is consistent with the Ra optimization
mentioned above. The minimum F t value achieved by GA
is 13.137 N. The corresponding vc is 105 m/min, f z is
0.05 mm/z, ae is 2 mm, and ap is 0.1 mm.

5.2 Multi-Objective OptimizationWith GA

The unified objective method can be used to solve multi-
objective optimization problems. The operation principle of
this method is to integrate each single objective function into
a total objective function F(x), as depicted in Eq. 13. Consid-
ering the different importance of each sub-objective function
value, it is necessary to allocate their weights.

F(x) �
n∑

i�1

wi · fi (x) (13)

where wi is the weighting factor of each sub-goal, and fi (x)
is the sub-objective function.

In order to obtain the weight of each sub-goal, perfor-
mance indicators should first be standardized (i.e., data nor-
malization). Different evaluation indexes often have different
dimensions and dimensional units, which will affect the data
analysis results. Therefore, during data pre-processing, the
original data must be normalized and converted into values
within the range of [0,1]. Since lower Ra and F t are desired
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Fig. 10 Flowchart of GA
operation

Table 7 Genetic algorithm
parameters GA parameter Population

size
Selection
function

Elite
count

Crossover
fraction

Mutation
fraction

Maximum
genetic
iterations

Description 40 Roulette 2 70% 2% 200

Table 8 Milling parameters
optimized for minimizing surface
roughness

Run times of
GA

Cutting
speed

Feed per
tooth

Radial
cutting
depth

Axial
cutting
depth

Iteration
times

Minimum
value

1 25 0.01 2.006 0.302 84 0.147

2 29.143 0.014 2.144 0.291 146 0.171

3 25.051 0.011 2.111 0.293 64 0.155

4 104.781 0.01 2 0.271 132 0.128

5 25.2 0.013 2.019 0.296 119 0.150

6 25.122 0.011 2.129 0.291 190 0.156

7 100.987 0.01 2 0.276 168 0.139

8 104.873 0.011 2.106 0.278 176 0.146

9 103.088 0.01 2 0.28 106 0.133

10 102.5 0.01 2.19 0.276 59 0.145

during Al-50wt% alloy milling, Eq. 14 is used for data stan-
dardization [40]:

yi � max(x − xi )

max(x) − min(x)
(14)

where xi denotes the original data sequence and yi is the
dimensionless standardized value.

After this, entropy weight method (EWM) is applied for
weight distribution. EWM can reduce the influence of sub-
jective will and improve the objectivity of index weight dis-
tribution [41]. The original evaluation matrix R � (ri j )m×n
has m items to be evaluated and n evaluation indicators. The
entropy value Hi of index i is defined in Eqs. 15 and 16. The

Fig. 11 Fitness change in the
fourth GA optimization process
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Table 9 Comparison of various optimization techniques

Method Optimization method Optimal parameter combination Iteration times Optimal responses

Single-objective optimization GA Minimizing Ra:
vc (104.781 m/min), f z (0.01 mm/z),
ae (2 mm), ap (0.271 mm)

132 Ra � 0.127 µm

Minimizing F t:
vc (105 m/min), f z (0.05 mm/z), ae
(2 mm), ap (0.1 mm)

151 F t � 13.137 N

Multi-objective optimization GA with EWM Minimizing Ra and F t:
vc (105 m/min), f z (0.013 mm/z), ae
(3.909 mm), ap (0.14 mm)

90 Ra � 0.266 µm
F t � 18.84 N

entropy weight wi is presented in Eq. 17.

pi j � ri j∑m
i�1 ri j

(15)

Hi � − 1

lnm

m∑

i�1

pi j · ln pi j (16)

wi � 1 − Hi∑
(1 − Hi )

(17)

The weight of surface roughness and feed force W �
[0.4995, 0.5005] is obtained. Therefore, the transformed
multi-objective optimization equation can be expressed as:

MinimizeF(x) � 0.4995 f1(x) + 0.5005 f2(x)

x � [
vc, fz , ae, ap

] (18)

Through GA, the optimal combination of milling param-
eters is vc � 105 m/min, f z � 0.013 mm/z, ae � 3.909 mm,
ap � 0.14 mm. As shown in Table 9, the surface roughness
and feed force predicted by GA under optimal parameters is
0.266µm and 18.84 N, respectively. The verification milling
experiment shows that the Ra is 0.275 µm and F t is 19.76 N.
Namely, the prediction errors of Ra and F t are 3.27% and
4.65%, respectively. This shows that although there is slight
noise and vibration in the multi-response optimization pro-
cess, the prediction is acceptable. It can be concluded that
in order to obtain the minimum Ra and F t simultaneously,
the set of parameters can be used as the optimal value for
precision milling Al-50wt% Si alloy.

6 Conclusion

This paper aims to optimize the precision milling parameters
of high Si-Al alloy. RSM andANOVAwere used to study the
influence of four cutting parameters on surface roughness Ra

and feed force F t in milling Al-50wt% Si alloy. Then, the
predictive modeling was developed and compared utilizing
RSM and ANN. Employing GA and EWM techniques, the

single-objective andmulti-objective parameter optimizations
were carried out. Through experiments, the accuracy of the
prediction model and method can be verified. The conclu-
sions are as follows:

(1) Among different RSM models, the quadratic models
are found better in fitting degree and predicting perfor-
mance. Feed per tooth provides a primary contribution
to Ra. Axial cutting depth has the most significant effect
on F t.

(2) When f z is small, vc is the lowest (25 m/min) or highest
(105 m/min), the minimum Ra will be produced. How-
ever, simultaneously increasing f z and vc will worsen
the Ra.

(3) In the response value of F t, f zap and vcap are signif-
icant interaction items. Increasing both f z and ap can
increase theF t. Lower or higher vc combinedwith lower
ap results in lower F t.

(4) ANN predictive model is more accurate than RSM
model for milling Al-50wt% Si alloy. The ANN average
prediction accuracy for Ra and F t reaches 95.83% and
98.06%, respectively.

(5) Single-objective parameter optimization using GA
obtains minimum Ra and F t as 0.127 µm and 13.137 N,
respectively.

(6) Based onGAandEWMinmulti-objective optimization,
the optimal parameter combination as vc � 105 m/min,
f z � 0.013 mm/z, ae � 3.909 mm, ap � 0.14 mm
is obtained. The response values under this set of
parameters for Ra and F t are 0.275 µm and 19.76 N.
Confirmation test shows the prediction error of Ra and
F t is 3.27% and 4.65%, respectively, which illustrates
the method has great effectiveness.

The above research conclusions will provide theoretical
and technical support for improving the surface quality and
cutting parameters of precision milling Al-50wt% Si alloy.
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