Skip to main content
Log in

A Mathematical Modeling Approach to Characterize the Growth of the Electrical Tree in XLPE Insulation Under Lightning Impulse Overvoltage

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Cross-linked polyethylene (XLPE), the most commonly used insulation system in underground cables, and gas-insulated substations are often subjected to high-voltage stresses of time-varying nature. Lightning overvoltages, fast transients, very fast transients, and AC voltages are the most common overvoltages striking the insulation. These stresses cause degradation of insulation, which is called treeing, and are considered as the major cause of the reduction in life of the insulation. The purpose of our work is the development of a stochastic model to inspect the spread of electrical trees under lightning impulse voltage. A numerical solution of Poisson’s equation in the material is obtained first. The electric field distributions obtained on the surface of the material are used to compute the path of tree propagation by developing a program based on a probabilistic approach. The key parameters of the damage are evaluated by plotting histograms of the results obtained from many iterations. A statistical analysis of the obtained results has also been done, and the model has been found efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sarathi, R.; Oza, K.H.; Pavan Kumar, C.L.G.; Tanaka, T.: Electrical treeing in XLPE cable insulation under harmonic AC voltages. IEEE Trans. Dielectr. Electr. Insul. 22(6), 3177–3185 (2015)

    Article  Google Scholar 

  2. Schurch, R.; Ardila-Rey, J.; Montana, J.; Angulo, A.; Rowland, S.M.; Iddrissu, I.; Bradley, R.S.: 3D characterization of electrical tree structures. IEEE Trans. Dielectr. Electr. Insul. 26(1), 220–228 (2019)

    Article  Google Scholar 

  3. Ying, L.; Xiaolong, C.: A novel method for the insulation thickness design of HV XLPE cable based on electrical treeing tests. IEEE Trans. Dielectr. Electr. Insul. 21(4), 1540–1546 (2014). https://doi.org/10.1109/TDEI.2014X.004250

    Article  Google Scholar 

  4. Chen, G.; Tham, C.H.: Electrical treeing characteristics in XLPE power cable insulation in frequency range between 20 and 500 Hz. IEEE Trans. Dielectr. Electr. Insul. 16(1), 179–188 (2009). https://doi.org/10.1109/TDEI.2009.4784566

    Article  Google Scholar 

  5. Du, B.X.; Zhu, L.W.: Electrical tree characteristics of XLPE under repetitive pulse voltage in low temperature. IEEE Trans. Dielectr. Electr. Insul. 22(4), 1801–1808 (2015). https://doi.org/10.1109/TDEI.2015.005183

    Article  Google Scholar 

  6. Liu, H.; Liu, Y.; Li, Y.; Zheng, P.; Rui, H.: Growth and partial discharge characteristics of electrical tree in XLPE under AC-DC composite voltage. IEEE Trans. Dielectr. Electr. Insul. 24(4), 2282–2290 (2017). https://doi.org/10.1109/TDEI.2017.006537

    Article  Google Scholar 

  7. Vidya, M.S.; Sunitha, K.; Ashok, S.; Mishra, D.; Chandra, V.: A model based on bag of visual words to predict the category of damage in XLPE insulation under the application of combined AC and repeated lightning impulses of both polarities. Electr. Eng. 103, 2825–2836 (2021)

    Article  Google Scholar 

  8. Su, J.; Du, B.; Li, J.; Li, Z.: Electrical tree degradation in high-voltage cable insulation: progress and challenges. High Voltage 5(4), 353–364 (2020)

    Article  Google Scholar 

  9. Niemeyer, L.; Pietronero, L.; Wiesmann, H.J.: Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52(12), 1033–1036 (1984). https://doi.org/10.1103/PhysRevLett.52.1033

    Article  MathSciNet  Google Scholar 

  10. Wiesmann, H.J.; Zeller, H.R.: A fractal model of dielectric breakdown and prebreakdown in solid dielectrics. J. Appl. Phys. 60(5), 1770–1773 (1986). https://doi.org/10.1063/1.337219

    Article  Google Scholar 

  11. Sarathi, R.; Ramu, T.S.: Stochastic simulation of tree propagation in XLPE under different voltage profiles. Solid State Commun. 87(5), 401–404 (1993). https://doi.org/10.1016/0038-1098(93)90785-L

    Article  Google Scholar 

  12. Schwab, A.J.; Sack, M.; Malinovski, A.S.; Noskov, M.D.: Self-consistent modeling of electrical tree propagation and PD activity. IEEE Trans. Dielectr. Electr. Insul. 7(6), 725–733 (2000). https://doi.org/10.1109/94.891982

    Article  Google Scholar 

  13. Barclay, A.L.; Sweeney, P.J.; Dissado, L.A.; Stevens, G.C.: Stochastic modelling of electrical treeing: fractal and statistical characteristics. J. Phys. D. Appl. Phys. 23(12), 1536–1545 (1990). https://doi.org/10.1088/0022-3727/23/12/009

    Article  Google Scholar 

  14. Parpal, J.L.; Crine, J.P.; Dang, C.: Electrical aging of extruded dielectric cables: a physical model. IEEE Trans. Dielectr. Electr. Insul. 4(2), 197–209 (1997). https://doi.org/10.1109/94.595247

    Article  Google Scholar 

  15. Kupershtokh, A.L.; Charalambakos, V.; Agoris, D.; Karpov, D.I.: Simulation of breakdown in air using cellular automata with streamer to leader transition. J. Phys. D. Appl. Phys. 34(6), 936–946 (2001). https://doi.org/10.1088/0022-3727/34/6/315

    Article  Google Scholar 

  16. Rodríguez-Serna, J.M.; Albarracín-Sánchez, R.; Carrillo, I.: An improved physical-stochastic model for simulating electrical tree propagation in solid polymeric dielectrics. Polymers (Basel) (2020). https://doi.org/10.3390/polym12081768

    Article  Google Scholar 

  17. Jörgens, C.; Clemens, M.: “Modeling the electric field at interfaces and surfaces in high-voltage cable systems.” COMPEL – Int. J. Comput. Math. Electr. Electron. Eng. (2020). https://doi.org/10.1108/COMPEL-01-2020-0041

    Article  Google Scholar 

  18. Satrazanis, C.; Mavrikakis, N.C.; Siderakis, K.G.; Danikas, M.G.: A short review and a comparison of simulation models of electrical treeing development in solid insulation. J. Eng. Sci. Technol. Rev. 13(4), 69–75 (2020)

    Article  Google Scholar 

  19. Cai, Z.; Wang, X.; Li, L.; Hong, W.: Electrical treeing: a phase-field model. Extrem. Mech. Lett. 28, 87–95 (2019). https://doi.org/10.1016/j.eml.2019.02.006

    Article  Google Scholar 

  20. Jayakrishnan, A.; Kavitha, D.; Arthi, A.; Nagarajan, N.; Balachandran, M.: Simulation of electric field distribution in nanodielectrics based on XLPE. Mater. Today Proc. 3(6), 2381–2386 (2016). https://doi.org/10.1016/j.matpr.2016.04.151

    Article  Google Scholar 

  21. Velasco, J.; Frascella, R.; Albarracín, R.; Burgos, J.; Dong, M.; Ren, M.; Yang, L.: Comparison of positive streamers in liquid dielectrics with and without nanoparticles simulated with finite-element software. Energies 11(2), 361 (2018)

    Article  Google Scholar 

  22. Isa, M.A.M., et al.: Investigation on partial discharge activities in cross-linked polyethene power cable using finite element analysis. J. Phys. Conf. Ser. 1432, 012024 (2020). https://doi.org/10.1088/1742-6596/1432/1/012024

    Article  Google Scholar 

  23. Sadiku, M.N.: Elements of Electromagnetics. Oxford University Press, New York (2007)

    Google Scholar 

  24. Kawai, T.; Muto, H.; Hirotsu, K.; Nakatsuka, T.: A study of treeing phenomena in the development of insulation for 500 kV XLPE cables. IEEE Trans. Dielectr. Electr. Insul. 5(5), 695–706 (1998)

    Article  Google Scholar 

  25. Murata, Y.; Katakai, S.; Kanaoka, M.: Impulse breakdown superposed on ac voltage in XLPE cable insulation. IEEE Trans. Dielectr. Electr. Insul. 3(3), 361–365 (1996). https://doi.org/10.1109/94.506207

    Article  Google Scholar 

  26. Ying, L.; Xiaolong, C.: Electrical tree initiation in XLPE cable insulation by application of DC and impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 20(5), 1691–1698 (2013). https://doi.org/10.1109/TDEI.2013.6633699

    Article  Google Scholar 

  27. Karafyllidis, I.; Danikas, M.G.; Thanailakis, A.; Bruning, A.M.: Simulation of electrical tree growth in solid insulating materials. Electr. Eng. 81(3), 183–192 (1998). https://doi.org/10.1007/BF01236238

    Article  Google Scholar 

  28. Vardakis, G.; Danikas, M.: Simulation of electrical tree propagation in a solid insulating material containing spherical insulating particle of a different permittivity with the aid of cellular automata. Facta Univ. - Ser. Electron. Energ. 17(3), 377–389 (2011). https://doi.org/10.2298/fuee0403377v

    Article  Google Scholar 

  29. El-Zein, A.; Talaat, M.; El Bahy, M.: A numerical model of electrical tree growth in solid insulation. IEEE Trans. Dielectr. Electr. Insul. 16(6), 1724–1734 (2009). https://doi.org/10.1109/TDEI.2009.5361596

    Article  Google Scholar 

  30. Schurch, R.; González, C.; Aguirre, P.; Zuniga, M.; Rowland, S. M.; Iddrissu, I.: “Calculating the Fractal Dimension From 3D Images of Electrical Trees,” In: The 20th International Symposium on High Voltage Engineering, Buenos Aires, Argentina, August 27 – September 01, pp. 4–9, (2017)

  31. Schurch, R.; Rowland, S.; Bradley, R.; Withers, P.: Imaging and analysis techniques for electrical trees using X-ray computed tomography. IEEE Trans. Dielectr. Electr. Insul. 21(1), 53–63 (2014). https://doi.org/10.1109/TDEI.2013.003911

    Article  Google Scholar 

  32. Kudo, K.: Fractal analysis of electrical trees. IEEE Trans. Dielectr. Electr. Insul. 5(5), 713–727 (1998). https://doi.org/10.1109/94.729694

    Article  Google Scholar 

  33. Drissi-Habti, M.; Raj-Jiyoti, D.; Vijayaraghavan, S.; Fouad, E.C.: Numerical simulation for void coalescence (water treeing) in XLPE insulation of submarine composite power cables. Energies 13(20), 5472 (2020). https://doi.org/10.3390/en13205472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Vidya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidya, M.S., Sunitha, K., Ashok, S. et al. A Mathematical Modeling Approach to Characterize the Growth of the Electrical Tree in XLPE Insulation Under Lightning Impulse Overvoltage. Arab J Sci Eng 47, 14293–14304 (2022). https://doi.org/10.1007/s13369-022-06739-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06739-z

Keywords

Navigation