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Abstract
Ant colony algorithm can better deal with combinatorial optimization problems, but it is still difficult to balance the solution
accuracy and convergence speed facing large-scale TSP. Nowadays, most scholars focus on the route information of better
ants for improvement, while ignoring the route information of general ants with a large base. So, this study proposes the
multiple ant colony algorithm combining community relationship network (CACO) by collecting route information of all ants
and constructing a route relationship network to improve the accuracy of the solution. The network is divided into a number
of small communities that reflect the affinity of multiple colony ants to different cities through community detection with
modularity. Within the communities, CACO use the excellent roue exploration ability of the ant colony algorithm to identify
high-quality route segments, integrating the pheromones of high-quality segments in the communities to provide pheromone
feedback to the multiple colony ants for better route exploration. The three parts of route information collection, community
detection and pheromone feedback form a feedback loop, which keeps cycling when multiple populations ants explore, and
each cycle will drive the result closer to the optimal solution. Meanwhile, CACO proposes a mutual assistance strategy to
improve the exploration ability of multiple colony ants by complementing each other according to the different states of
superior and inferior populations. To test the performance of CACO, 28 TSP instances are compared with the well-known
improved algorithms are compared and results show CACO outperforms other improved algorithms significantly, especially
in large-scale TSP.
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1 Introduction

Traveling Salesman Problem (TSP) [1] is one of the most
fascinating classes of combinatorial optimization problems.
It is difficult to solve by a single mathematical formula-
tion and is often used as an acknowledged criterion to test
the performance of algorithms. The TSP problem can be
described as a shortest route problem in which a traveler
does not repeatedly pass through all the specified cities and
finally returns to the initial city. Although for small-scale
cities, some mathematical methods can be used to find the
route such as cutting planes algorithm [2], branch and cut
scheme [3]. However, as the number of cities increases,
the amount of computation when using mathematical meth-
ods increases exponentially. Especially for large-scale cities,
such an approach spent huge amounts of time but did not
work well, so the meta-heuristic algorithm was born. Meta-
heuristic algorithms, also known as intelligent optimization
algorithms, differ from optimization algorithms in that they
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can construct a feature model based on a specific problem
and find a feasible solution under specified constraints.Many
scholars have studied meta-heuristic algorithms in order to
solve different complex problems, such as genetic algorithm
[4], particle swarm optimization [5], grey wolf optimization
algorithm [6], whale optimization algorithm [7]. As a typi-
cal swarm intelligence algorithm, the ant colony algorithm
has excellent ability to find the optimal solution in solving
NP-hard problems, which has profound research value and
significance.

The ant colony algorithm originated from the doctoral dis-
sertation of M. Dorigo. He simulated the behavior of ants
foraging, constructed a route and pheromone update model,
and proposed the ant colony optimization algorithm (ACO)
[12, 13], which achieved better results in the TSP problem.
Later scholars according to their research fields applied ACO
to the scheduling problem [8, 9], location routing problem
[10, 11], community detection [12, 13], etc., which verify the
great performance of ACO.

However, because of the positive feedback of pheromones
in the ACO, pheromones will accumulate rapidly on individ-
ual routes, resulting in local optima. To alleviate the problem,
M. Dorigo further proposed the ant colony system (ACS)
[14]. Global and local pheromone update methods were pro-
posed in ACS as well as a local search algorithm was added
to improve the performance. Then T. Stutzle proposed the
max–min ant system (MMAS) [15], which avoids excessive
pheromone accumulation by setting a maximum-minimum
threshold of pheromone to control the pheromone concen-
tration within a certain range.

Although these above methods have good performance,
they still face problems such as easy to fall into local opti-
mum and slow convergence speed. For these problems, many
scholars have proposed their improvement strategies.

The performance improvement of ant colony algorithm
is mainly based on the convergence speed and solution
accuracy. Zhang, Q. et al. [16] accelerated convergence by
reinforcing dynamic pheromone edges. Zhao, D. et al. [17]
enhanced convergence speed by cross-searching horizontally
and allowing two kinds of ants to exchange information. Li,
S. et al. [18] defined a collective action strategy where each
ant decides whether to participate in the collective action
based on threshold to increase the diversity of the algorithm.
Wu, Y. et al. [19] introduced a differential evolution opera-
tor to increase the global search capability by modifying the
update of the mutation operator.

Besides, some scholars have modified the characteristic
model of ACO algorithm. Tam, J.H. et al. [20, 21] opti-
mized the parameters of ACO algorithm by PSO algorithm
to improve the solution quality. Abdelbar, A.M. et al. [22, 23]
changed the fixed parameters into adjustable parameters to
better adapt to different stages of the ant colony algorithm for
increasing the accuracy of the solution. Wang, M. et al. [24,

25] added a specified function to the pheromone to improve
the solution of the optimal problem. Deng, W. et al. [26]
proposed a collaborative strategy based on the crossover vari-
ation of genetic algorithm to improve the poor local search
ability. Dai, X. et al. [27] combined ACO algorithm with the
evaluation function of A* algorithm to enhance the heuris-
tic role of ACO to speed up the convergence. Mohsen, A.M.
et al. [28] incorporated the variation factor of the simulated
annealing algorithm to increase the diversity of ACO algo-
rithm for more efficient route exploration.

With the increase in city nodes, some scholars found
that multiple ant colony [29–32] have better performance
than single colony. Gong, Y. et al. [30] performed a single-
objective search with improved pheromone update rules for
two colonies and used a heuristic strategy to balance multi-
objective optimization to improve algorithm performance.
Xu, M. et al. [32] let two populations be, respectively,
responsible for solution diversity and convergence speed,
and exchange information during exploration to ensure the
balance between diversity and convergence speed. Although
these improved multiple ant colony algorithms above have
good optimization effect, they mostly exchange high-quality
information between populations to optimize the algorithms,
and the route information of general ants is less studied. But
is the route information of a huge number of general ants
really worthless? To answer the question, we conducted the
present study.

We find that the reason why ants cannot find a better
solution in solving TSP is that they fall into local optimum,
especially for large-scale cities. When ants explore the solu-
tion, the routes taken by elite ants are dominated, making a
large accumulation of pheromones and thus failing to find a
better solution. To address this situation, we use the routes of
general ants as an important reference as well to try to allevi-
ate.We refer to the community detection algorithm [33, 34] to
construct the route relationship network and collect the route
information of all ants in different populations, finding that
the route information of ants in general is extremely diverse,
which can improve the situation of getting stuck in stagna-
tion. Meanwhile, the nodes are also divided by the criterion
of modularity [35], and the obtained communities balance
diversity and stability.

Although some scholars have previously combined com-
munity relationswith ant colony algorithms, they are used for
community detection rather than solving the TSP problem.
Noveiri, E. et al. [36] combined pheromones with modular-
ity to find an outer region and then implemented community
detection by fuzzy clustering. Romdhane, L. et al. [37]
defined an objective function of set purity and density based
on the community structure and used the ant colony algo-
rithm to optimize the objective function to classify quality
communities that can balance the twometrics. Although they
also combined the ant colony algorithm, they did not involve
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Fig. 1 The improved algorithms based on ACO

the study of node sparsity and node distance. In this paper,
we will improve the ant colony algorithm by incorporating
the idea of community detection to balance the relationship
between diversity and convergence speed, and propose the
multiple ant colony algorithm combining community rela-
tionship network to solve the TSP problem. The improved
algorithms based on ACO is shown in Fig. 1.

The main contributions and innovations of this study are
as follows.

Firstly, we integrate the idea of community detection
and sample the route information of all ants. The route
relationship network containing node sparsity and distance
relationship is constructed by sample processing. Then, we
divide the route relationship network into communities with
the criterion of modularity, because this approach does not
just consider the distance, so the divided communities will
increase the diversity of the ant colony algorithm.

Secondly, route exploration is performed with ant colony
algorithm in the divided small communities. Benefiting from
the structural stability of community detection, routes in
small communities have the potential to explore optimal
solutions, which can enhance the convergence speed of the
algorithm when pheromone guidance is given to multiple
swarms. Also, pheromone guidance of non-optimal routes
for multiple colonies of ants will increase the diversity and
further improve the algorithm performance.

Finally, because of the pheromone guidance of small
communities, the exchange of information among multiple
colonies during exploration is not limited to distance infor-
mation, and the sparse relationship of general ants for nodes
is also considered. Therefore, the superiority and inferiority
mutual aid strategy is used when multiple colonies exchange
information to further improve the accuracy of the solution.

The remainder of this study is as follows: Sect. 2 describes
ACS,MMASandcommunity detection algorithms. Section3
describes in detail the improvement algorithm. Section 4
presents the experimental results of the improved algorithm.

Finally, Sect. 5 concludes the work of this study and provides
an outlook on future research directions.

2 RelatedWork

2.1 Ant Colony System

The formula for route construction of ACS is as follows.

S �
⎧
⎨

⎩

arg max
j∈allowed

{
τi j · η

β
i j

}
, q ≤ q0

s, else
(1)

Pi j (t) �

⎧
⎪⎨

⎪⎩

[τi j (t)]α[ηi j ]β
∑

s∈allowed
[τis(t)]

α[ηis]
β , j ∈ allowed

0, else

(2)

where τi j (t) represents the magnitude of the pheromone
between cities i and j at moment t. The starting concentra-
tion on each edge is the same, denoted as τ0.ηi j represents
the reciprocal of the distance di j between cities i and j, and
ηi j � 1/di j . q0 is a constant value in the interval [0,1], q is a
random number in the interval [0,1], and j ∈ allowed indi-
cates that city j belongs to the set of optional cities outside
the taboo table. S denotes the next city that will be selected
when q ≤ q0 and s is the selection method of the roulette
wheel of Eq. (2).

The update mechanism of ACS is divided into two parts:
global pheromone update and local pheromone update.

• Global pheromone update: After all ants have completed
research, the algorithm only updates the pheromones on
the current optimal route. Its calculation formula is as fol-
lows.

τi j (t + 1) � (1 − ρ)τi j (t) + ρ�τi j (3)

�τi j �
{
1/Lgb, (i, j) ∈ Best Tour
0, else

(4)

where ρ is the global pheromone evaporation rate.�τi j
is the pheromone increment.Lgb is the length of current
optimal route.

• Local pheromone update: Once all ants have completed
their iterations, the algorithm performs a local pheromone
update for all routes. This shortens the pheromone dif-
ference between optimal and non-optimal routes and
increases the diversity of the algorithm. The formula is
as follows.

τi j (t + 1) � (1 − ξ)τi j (t) + ξτ0 (5)
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where τ0 is the starting concentration on each edge and ξ is
the local pheromone evaporation rate.

2.2 Max–Min Ant System

Themain idea ofMMAS is to control the pheromone range in
a certain interval such that τ ∈ [τmin, τmax].When τi j <

_
τmin,

make τi j � τmin; when τi j >
_

τmax, make τi j � τmax. Where

τmin, τmax are calculated according to Eqs. (6) and (7).

τmax � (1/ρ) ·
(
1/T gb

)
(6)

τmin � τmax/2n (7)

where Tgb is the length of global optimal route and ρ is the
pheromone evaporation rate.

Based on the limitation of the pheromone range, only the
pheromones of the current or global optimal route are updated
at the end of each iteration according to Eqs. (8) and (9). This
allows the algorithm to explore the routes more efficiently
and increases the diversity of the algorithm.

τ i j (t + 1) � (1 − ρ)τ i j (t) + �τbest
i j (8)

�τbest
i j � 1/ f

(
sbest

)
(9)

where f
(
sbest

)
is the current optimal route or the global

optimal route.

2.3 Community Detection

2.3.1 Representation of Complex Networks

Complex networks are generally represented as graphs
with nodes and edges, such as G � (V , E),where V �
{1, 2, . . . , n} denotes the set of nodes and E ⊆ V×V denotes
the set of edges. The nodes and edges are usually represented
with the help of the adjacencymatrix An×n when they are pro-
cessed. Figure 2 shows the community relationship network
of 34 members of the karate club community. Equation (10)
shows the weights of nodes and edges

An×n �
⎡

⎢
⎣

a11 · · · a1n
...

. . .
...

an1 · · · ann

⎤

⎥
⎦ (10)

2.3.2 Modularity

The modularity was proposed by Newman to address the
notion that the Girvan and Newman algorithm (GN) cannot
evaluate the quality of a community. It was widely used to

Fig. 2 Karate club relationship network

Fig. 3 Relationship network after community detection

measure the strength of the community structure after net-
work segmentation, as shown in Eq. (11).

Q �
K∑

i

(
eii − a2i

)
� 1

2m

n∑

v

n∑

w

(

Avw − dvdw

2m

)

I (cv, cw)

(11)

whereK is thenumber of communities. eii is the proportionof
edges inside community i to the total number of edges. ai �
∑K

j�1 ei j is the proportion of edges connected to community

i to the total number of edges, then a2i denotes the proportion
of edges in community i to the total number of edges. m is the
total number of edges in the network. n is the total number
of nodes in the network. Avw is the value of the adjacency
matrix of node v and w. dv � ∑n

w�1 Avw is the degree of
node I. I (cv, cw) is the schematic function, I (cv, cw) � 1
when node v and node w belong to the same community,
otherwise I (cv, cw) � 0.

By dividing the karate club relationship network in Fig. 2
through modularity, we can see that the 34 members are
divided into four types of communities, which are closely
related within the community and loosely related between
the communities in Fig. 3.
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Fig. 4 Route relation network of TSP city set Eil51

3 Proposed Algorithm

3.1 ACO Combined with Community Detection

When the ant colony algorithm uses multiple populations to
solve the TSP problem, the communication and collaboration
among multiple populations is a great advantage to improve
the performance of the algorithm, but most scholars have
achieved the improvement of the algorithm performance by
exchanging the pheromones and optimal routes among dif-
ferent populations, and there is little research on the social
relationship network when all ants of different populations
explore the routes. Therefore, this study proposes a com-
munity collaboration strategy to study the route structure
relationship network among populations with the help of
community detection methods from the route relationship
networkwhendifferent populations explore routes, and apply
it to solve the TSP problem. In this section, we describe how
to construct the route relationship network for the ant colony
algorithm.

3.1.1 Route Relationship Network Model

The route network in this study, is a synthetic network that
collects the route information provided by all ants of various
colonies. As shown in Fig. 4, the route relationship network
constructed when ants explore the TSP city set Eil51, each
node represents a city and the connection between nodes is
an ant route.

3.1.2 Processing of Route Information Samples

As shown in Fig. 4, the route relationship network has a cer-
tain complex network structure. With 51 cities as nodes and
the exploration routes of all ants as edges, it can be clearly

Fig. 5 Graph of the weight share of connected edges

found that some nodes have a certain correlation structure
with a significantly dense number of connected edges, while
some nodes have few connected edges. In Fig. 4, the city with
the number 40 in the lower left corner has more connections
with other cities, which proves that this city has very diverse
route choices and is a more difficult point to classify in com-
munity detection. In contrast, the city with the number 13
has fewer connections to other nodes. Most ants will follow
these routes, which are more likely to be high quality routes
and easier to classify in community detection, with relatively
stable community structure.

Classical datasets such as the Karate dataset only have
information about nodes and edges, and connecting edges is
not considered for distance, so special treatment is needed to
solve the TSP problem. In the ant colony algorithm, ants tak-
ing the same route is a sure way to explore better routes. For
this problem, this studymodifies the adjacencymatrix reflect-
ing the route information to be more consistent with the TSP
problem by weighting the repeated routes when collecting
the route information. When the route sample information is
collected and transformed into the adjacencymatrix, the adja-
cency matrix is changed into a weighting matrix by Eq. (12).
When node i is not connected to node j, make ai j � 0; when
there is a connection, then make ai j increment.

ai j �
{
0, if i and j are not connected
ai j + 1, if i and j are connected

(12)

As shown in Fig. 5, this study used 40 ants for 20 inde-
pendent sample collections on the city set Eil51, and found
that the proportion of connected edges with a weight of 1 was
more than 50%, and a total of nearly 70% on the proportion
of weights with low weights 1 to 5, which shows that the
route network has a more complex relational structure. Also,
due to the positive feedback of pheromones, it is not the case
that the proportion decreases with higher weights, but starts
to increase with higher weights. This reflects that some ants
are following the quality ants when exploring.
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In order to avoid affecting the quality of community divi-
sion by large differences between the upper and lower limits
of weights, we use Eqs. (13) and (14) to set an upper weight-
ing limit for the connected edges, which makes the internal
differences of the adjacency matrix narrow and increases the
diversity of the algorithm.

(1 − v) ∗ SUM → Amax (13)

Ai j �
{
Ai j , i f Ai j < [Amax]
[Amax], i f Ai j ≥ [Amax]

(14)

where SUM is the number of connected edges in the adja-
cency matrix. v is the filtering rate to set the upper limit of
the weights. From Fig. 5 we can see that the value of 10%
is more appropriate. [Amax] meets the number of weights
corresponding to the filtering rate, as the upper limit of the
weights, and [x] denotes the largest integer no more than x.

3.2 Community Collaboration Strategy

Classical community detection algorithms deal with the rela-
tionship between nodes and edges, while the TSP problem
is an optimization problem involving distance. This section
details how to take advantage of the community structure for
better guiding ants to find routes.

Combining Figs. 4 and 5, it can be found that dividing the
community is not done just by considering the distance. For
city nodes with multiple connected edges, it has a rich diver-
sity of choosing other cities. While for city nodes with fewer
connected edges, it indicates that this is the high-quality route
that most ants will choose, which can speed up the conver-
gence speed. Therefore, the divided communities satisfy the
requirements of the ant colony algorithm for diversity and
convergence speed.

As shown in Figs. 6 and 7, firstly, different ant colonies
explore the TSP city set according to their own charac-
teristics. When the route information is mature, the route
information of each population is collected as samples to
construct a route relationship network model. Then the route
relationship network is divided into several structurally sta-
ble small communities according to the modularity, and in
the small communities we use ACS for route exploration to
find the shortest closed-loop routes and pheromones.

Then, we use high-quality pheromones from small com-
munities to guide the inferior populations in multiple pop-
ulations for improving the search quality of inferior ants.
Meanwhile, the superior and inferior populations exchange
information to get out of their respective dilemmaswhen they
fall into local optimum.

The three components of collecting route information,
community detection, and pheromone guidance are cycled
several times to further explore better solutions. In this study,

samples were collected once every 500 iterations. In Fig. 6,
An×n is the adjacency matrix of the route relationship net-
work model, and Pn×n is the pheromone matrix of each
community after merging.

3.2.1 Advantageous Route Guidance

When processing the route samples, an upper weight limit is
set for the edges to ensure the quality of community detection.
However, the routewith the highestweight is the route chosen
by most ants and is likely to find the best solution.

Therefore, we enhanced the guidance of high-quality
routeswhen collecting pheromones of optimal routes in small
communities to highlight the difference betweenhigh-quality
routes and common routes. After the sample collection was
completed, the weights of the routes were sorted in descend-
ing order. In the global pheromone update, the pheromones
of the top three edges with the highest weights are guided
by Eq. (15) to improve the efficiency of the ants in exploring
better solutions.

τi j (t + 1) � (1 − ρ)τi j (t) + ρ
(
1/Lgb +W/(n · dmax)

)
(15)

where ρ is the global pheromone evaporation rate. Lgb is the
length of current optimal route. W is the edge weight. dmax

is the maximum city distance, and n is the number of cities.

3.2.2 Pheromone Guidance

In dealing with how to solve TSP problems using small
divided communities, we use a pheromone guided strat-
egy to complete. We chose to exploit the properties of
ACSwithin small communities to find high-quality solutions
faster. Although not all routes explored within each small
community are optimal solutions, there exist some routes
that are high-quality pieces of optimal solutions.

In summary, this study integrates the pheromones of each
small community to integrate a set of high-quality route
pheromones, and provides pheromone guidance for multiple
groups of ants according to Eqs. (16–18) to guide multiple
groups to explore better routes, and also provides samples
with better information for the next sample collection of com-
munity detection.

Pheromonei � (1 − σ) · Pheromonei + σ · K · Pheromone
(16)

K �
{

1, if inferior population is ACS
r , if inferior population isMMAS

(17)

r �
(
τMMAS
max − τMMAS

min

)

(
τACSmax − τACSmin

) (18)
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Fig. 7 Steps of community collaboration strategy
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where Pheromonei is the pheromone of inferior
population.Pheromonec is the combined pheromone col-
lected in the small communities. σ is the guidance weight,
for the inferior population, the current optimal route is less
effective and should be guided by a slightly larger weight,
so σ � 0.6. K is the conversion coefficient. The transformed
pheromone will be more reasonable because the MMAS
population has a pheromone range limit, the upper and lower
limits of which are different from those of the pheromone
of ACS. τMMAS

max and τMMAS
min are the upper and lower limits

of the pheromone of MMAS. τ ACS
max and τ ACS

min are the upper
and lower limits of the pheromone of ACS.

3.2.3 Superior and Inferior Mutual Assistance Strategies

When multiple populations consisting of ACS and MMAS
exchanged information, the superior population explored the
routes with higher precision, but got stuck in stagnationmore
severely. At this time, although the routes of the inferior
population are not very good, their pheromones have better
diversity compared with the dominant population. Feeding
the pheromones of the inferior population to the superior pop-
ulation, which would increase the possibility of the superior
population jumping out of stagnation.

Based on the above principles, we propose superior and
inferior mutual assistance strategies, according to Eqs. (19)
and (20) to exchange information of multiple populations.
The route information of the superior population is transmit-
ted to the inferior population, while the inferior population
feeds back the corresponding pheromones to help the supe-
rior population explore a better solution.

L inferior
best �

{
Lsuperior
best , if algorithm is stuck

L inferior
best , if algorithm is not stuck

(19)

τ superior �
{

ω · τ superior + (1 − ω)r · τ inferior, if inferior is ACS
ω · τ superior + (1 − ω) 1r · τ inferior, else

(20)

where L inferior
best is the shortest route of the inferior popula-

tion. Lsuperior
best is the shortest route of the superior population.

τ superior is the pheromone of the superior population. τ inferior

is the pheromone of the inferior population.ω is the feedback
ratio, and the good route information of the dominant popu-
lation is also taken into account in the feedback, so ω � 0.7.

3.3 Algorithm Framework

The algorithm framework is shown in Fig. 8, and the
orange part is the improvement that differs from the clas-
sical algorithm. First, ACS and MMAS jointly explore

Start

Initialization 
parameters

N ≤ Nc

Construction routes and 
update pheromones in the 

respective populations

The shortest distance is 
constant over time

N = sampling 
frequency

collect route samples 
and construct 

adjacency matrix

divide the community 
and route finding with 

ACS

Combine pheromones 
and guide multiple 

swarms
 Information exchange

N = N+1 

End

Y

N

Y

Y

N

N

Fig. 8 Algorithm framework

the optimal routes, and when the sampling frequency is
reached, we collect mature route samples to construct a
route relationship network with multiple populations. Then
we use community detection to delineate small communi-
ties with potential quality routes and use ACS for route
search.

Afterward, the pheromones of each small population are
integrated and pheromone guidance is applied to multi-
ple populations to form a closed loop of feedback which
adjusts the meritocracy of the inferior populations. If the
shortest distance is constant over time, the algorithm is
judged to be in stagnation, at which point the superior and
inferior mutual assistance strategies is used to exchange
information and increase the chance of jumping out of
stagnation.

123



Arabian Journal for Science and Engineering (2022) 47:10531–10546 10539

9.        collect route samples and strengthen the pheromone 
of advantage route by equation (15)
10.       construct adjacency matrix by equation (10) and
(12) to (14)  
11.         divide the community by equation (11)
12.         guiding multi population with community 
pheromone by equation (16) to (18)
13.       end if
14.      if the shortest distance of multiple swarms remains 
constant over time
15.           Information exchange between superior and 
inferior populations by equation (19) and (20)
16.       end if
17.  N=N+1
18.  end while       
19.  return the best solution   

Algorithm CACO for TSP.
1.  Initialize the pheromone and the parameters
2.  calculate the distance between cities
3.  calculate the initial pheromone matrix
4.  Initialize iteration N=0, Nc=2000
5.  while N<Nc do

  6.    construct ant solutions for ACS, MMAS by equation
(1) and (2)

7.  update the pheromone matrix for ACS, MMAS by 
equation (3) to (9)
8.     if N satisfies the sampling frequency

4 Experiment and Simulation

To test the performance of the CACO algorithm, this study
uses a simulation environment of Windows 10 system,
matlab2016a version, and selects multiple data sets of inter-
national standard TSP database for simulation experiments.
The number of ants per population is 20, and the maximum
number of iterations is 2000 iterations.

4.1 Parameters Setting

4.1.1 ACS andMMAS Parameter Setting

For the ACS algorithm, we conduct the orthogonal experi-
ments with five factors and four levels on the city set Eil51.
To ensure the stability of the parameters, data were collected
20 times for each set of parameters and the average solution
was taken. Finally, the optimal parameters of the ACS algo-
rithm were determined to be: α � 1, β � 4, ρ � 0.1, ξ �
0.3, q0 � 0.8.

Similarly, for the MMAS algorithm, the optimal parame-
ters are: α � 1, β � 5, ρ � 0.1.

4.1.2 Parameter Setting for Sample Size

The construction of the route relationship network depends
on the collected route information samples, and the number
of samples will have a large impact on the modularization
performance [38]. In the ant colony algorithm, the number
of samples that can be collected in one iteration is a fixed
value. For larger cities, it is possible to collect a sparse net-
work of route relationships, making most of the nodes have
thin or even no relationships with each other, which results
in the inability to form a complete network of relationships.
Therefore, we use the minimum route length, the average
route length and the average module degree as criteria to
determine the parameters by increasing the number of itera-
tions.

The experiments were conducted with 20 ants each from
ACS and MMAS, and samples were collected in Pr76 city
set for iteration numbers from 1 to 10. To ensure the accuracy
of the experiments, 20 independent experiments were con-
ducted. The experimental results are shown in Table 1 and
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Table 1 Pr76 sample collection statistics

iterc Lbest Lave Qave

1 108,159 109,669.15 0.721

2 108,304 109,592.35 0.718

3 108,159 109,715.30 0.715

4 108,274 109,661.80 0.717

5 108,159 109,531.80 0.713

6 108,304 109,732.05 0.707

7 108,304 109,807.75 0.713

8 108,159 109,708.25 0.708

9 108,234 109,641.40 0.712

10 108,234 109,418.75 0.713

0.6
0.65
0.7
0.75
0.8

105000
106000
107000
108000
109000
110000

1 2 3 4 5 6 7 8 9 10

Lbest Lave Qave

Fig. 9 Comparison of Pr76 sample collection

Fig. 7, where i terc is the number of sample collection itera-
tions, Lbest is the minimum route length, Lave is the average
of the route length, and Qave is the average of modularity.

FromFig. 9, themodularity from one to ten iterations does
not vary much and is stable at about 0.71, because the ant
routes are different in each iteration instead of repeating only
one route, so the structure of the route relationship network
is relatively stable even for multiple iterations.

Observing the minimum route lengths in Table 1, we can
find that the optimal solution for the city set Pr76 is found at
iteration numbers 1,3,5,8, when the exploration performance
is better. From the average length, the number of iterations is
in the local minimum position at 5. Although there is also a
tendency to reduce after 10 iterations, it will lead to collecting
too many samples and make the route relationship network
structuremore complicated. The above analysis finally deter-
mines the number of sample collection iteration i terc is 5.

4.2 Comparison with Traditional Ant Colony
Algorithm

To demonstrate the performance of the improved algorithm,
we used the TSP, which is recognized to measure the perfor-
mance of discrete optimization algorithms, as the standard for
our experiments. In this section, the performance of the algo-
rithm is analyzed by applying the ACS, MMAS and CACO
algorithms to the TSP examples of 28 city sets and compar-

ing the optimal solution Lbest, the average solution Lave, the
minimum error rate Emin and the standard deviation ST D
through 20 independent experiments.

The error rate is calculated by Eq. (21) and the average
modularity is calculated by Eq. (22). Where Lopt is the stan-
dard optimal solution of the city set. Lbest is the optimal
solution of the algorithm. Li is the final distance of 20 exper-
iments, and Lave is the average of the final distance of 20
experiments. These experimental results are shown in Table
2 and Fig. 10.

Emin(%) �
(
Lbest − Lopt

Lopt

)

× 100% (21)

STD �
√
√
√
√ 1

N

N∑

i�1

(Li − Lave)
2 (22)

As shown in Table 2 and Fig. 10, all three algorithms find
optimal solutions in the small-scale city sets Eil51, St70, and
KroA100. In the medium-scale city sets with the number of
cities between 100 and 200, the improved algorithm can find
better or optimal solutions for the city setwith higher solution
accuracy compared with the traditional algorithm, in which
the optimal solutions are found for the Ch130 and KroA200
city sets. In the large-scale city sets withmore than 200 cities,
the improved algorithm can clearly show that the accuracy
of the solution is better than the traditional algorithm, and it
can keep the minimum error rate within 1%, so it has a better
ability of finding the optimal solution.

From (b), (d), (f) and (h) in Fig. 10, we can see the con-
vergence speed and minimum error of CACO. It can find
higher precision solutions in a shorter number of iterations
and converge quickly in a shorter number of iterations with
the pheromone guidance strategy of community detection in
the early stage. Later, through the information exchange and
mutual assistance of multiple communities, it can realize to
jump out of stagnation and further improve the solution accu-
racy, which better balances the relationship between solution
accuracy and convergence speed in the ant colony algorithm.

4.3 Comparison with the Latest Improved Algorithm

To verify the performance of the CACO algorithm, 20 inde-
pendent experiments were conducted in different size city
sets and compared with the latest improved particle swarm
optimization algorithm MPSO [39] and wolf swarm opti-
mization algorithm D-GWO [40] so far, and the results are
shown in Tables 3 and 4.

As shown in Table 3, both CACO and MPSO can find the
optimal solution in the small-scale city sets with the number
of cities around 100, but the quality of the optimal solution
gradually decreases with the expansion of the city size, start-
ing fromKroB150 forMPSO, and the error rate of the optimal
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Table 2 Performance
comparison of cities data sets of
different sizes

TSP Lopt Algorithm Lbest Lave Emin% STD

Eil51 426 ACS 426 428.15 0.00 2.10

MMAS 426 428.05 0.00 2.09

CACO 426 427.10 0.00 0.86

Berlin52 7542 ACS 7542 7543.50 0.00 0.51

MMAS 7542 75,423.00 0.00 0.51

CACO 7542 7542.00 0.00 0

St70 675 ACS 675 679.10 0.00 3.49

MMAS 675 677.60 0.00 2.71

CACO 675 677.15 0.00 2.56

KroA100 21,282 ACS 21,282 21,433.60 0.00 191.87

MMAS 21,282 21,396.30 0.00 166.58

CACO 21,282 21,337.20 0.00 45.44

KroB100 22,141 ACS 22,246 22,311.05 0.47 29.98

MMAS 22,220 22,320.45 0.36 91.42

CACO 22,141 22,235.00 0.00 31.69

Ch130 6110 ACS 6146 6220.45 0.59 65.11

MMAS 6121 6188.60 0.18 37.54

CACO 6110 6139.15 0.00 8.36

Ch150 6528 ACS 6554 6591.55 0.40 42.32

MMAS 6548 6578.65 0.31 29.55

CACO 6532 6548.70 0.06 6.33

KroA150 26,524 ACS 26,664 27,108.95 0.53 222.60

MMAS 26,665 27,010.80 0.53 177.04

CACO 26,583 26,708.85 0.22 54.90

KroA200 29,368 ACS 29,440 29,646.62 0.25 242.34

MMAS 29,460 29,645.45 0.31 185.09

CACO 29,368 29,501.55 0.00 45.15

KroB200 29,437 ACS 29,819 30,194 1.30 261.93

MMAS 29,766 30,197.95 1.12 401.22

CACO 29,524 29,834.05 0.30 137.41

Tsp225 3916 ACS 3933 3997.55 0.43 39.42

MMAS 3939 3984.15 0.59 31.63

CACO 3923 3978.30 0.18 15.51

Pr226 80,369 ACS 80,867 59,563.90 0.62 544.26

MMAS 80,819 59,353.45 0.56 513.30

CACO 80,373 80,940.90 0.01 442.81

A280 2579 ACS 2605 2642.60 1.01 36.48

MMAS 2597 2629.75 0.70 27.75

CACO 2583 2607.65 0.16 13.56

Lin318 42,029 ACS 43,203 43,626.20 2.79 221.68

MMAS 43,046 43,615.45 2.42 447.74

CACO 42,365 42,878.45 0.80 194.83
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Table 2 continued
TSP Lopt Algorithm Lbest Lave Emin% STD

Fl417 11,861 ACS 12,192 12,185.25 2.80 100.58

MMAS 12,142 12,174.20 2.37 94.02

CACO 11,950 12,018.20 0.75 25.90

Pr439 107,217 ACS 109,151 110,906.25 1.80 2402.69

MMAS 108,935 110,826.45 1.60 1682.36

CACO 107,883 108,683.20 0.62 345.02

P654 34,643 ACS 35,551 35,476.70 2.62 535.75

MMAS 36,048 35,996.85 4.06 518.65

CACO 34,932 35,662.90 0.83 483.66

(a)  Length of Lin318   (b) Error rate of Lin318  (c)  Length of Fl417 (d)  Error rate of Fl417

(e) Length of Pr439          (f)  Error rate of Pr439     (g)  Length of P654               (h)  Error rate of P654

Fig. 10 Convergence comparison of MMAS, ACS and CACO

solution is greater than 4% starting from the large-scale city
set Lin318. In contrast, CACO uses pheromone guidance for
multiple populations, which makes the algorithm perform
consistently on large-scale city sets andwithin 1%of themin-
imum error in the Pr439 city set, indicating that the accuracy
of the solution in large-scale city sets is significantly better
than MPSO.

The data in Table 4 aremore comprehensive, comparing in
terms of optimal solution, average solution, minimum error
rate, and average error rate. It can be clearly seen that the
performance of D-GWO is less stable in the small-scale city
sets, and although it can find the approximate optimal solu-
tion, it still has some error.While CACO can find the optimal
solution in the city sets compared with the number of cities
within 150, and the average error rate is within 1%, so the
performance is more stable. In larger city sets such as Pr226,
although the minimum error rate and average error rate of
D-GWO are small with better results, the error rate of the

optimal solution of CACO is only 0.004%, which is very
close to the optimal solution. In the Pr439 city set, the per-
formance of the D-GWO algorithm decreases significantly,
but CACO is able to explore a better optimal route stably due
to the guidance of pheromones after community detection,
so the global search capability and stability are significantly
better than D-GWO.

Overall, CACOhas the ability to consistently explore opti-
mal solutions for small sets of cities thanks to the small
communities with high quality routes delineated by the route
relationship network, allowing the algorithm to quickly find
the optimum among high quality routes. At the same time,
the pheromones of other routes in the small communities
increase the chances that ants will choose other cities when
guiding multiple populations, increasing the diversity of the
algorithm.

For larger city sets, the exploration accuracy of CACO is
high, with the error rate within an acceptable range, and the
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Table 3 Comparison of the
CACO with MPSO TSP Optimal CACO MPSO

Instance Best Emin(%) Best Emin(%)

Eil51 426 426 0.00 426 0.00

Pr76 108,159 108,159 0.00 108,159 0.00

Rat99 1211 1211 0.00 1211 0.00

KroA100 21,282 21,282 0.00 21,282 0.00

KroB100 22,141 22,141 0.00 22,141 0.00

Lin105 14,379 14,379 0.00 14,379 0.00

Pr107 44,303 44,303 0.00 44,303 0.00

Pr124 59,030 59,030 0.00 59,030 0.00

Ch130 6110 6110 0.00 6110 0.00

Pr144 58,537 58,537 0.00 58,537 0.00

Ch150 6528 6532 0.06 6528 0.00

KroA150 26,524 26,524 0.00 26,524 0.00

KroB150 26,130 26,130 0.00 26,254 0.47

KroA200 29,368 39,368 0.00 29,533 0.56

KroB200 29,437 29,524 0.30 29,501 0.22

A280 2579 2583 0.16 2598 0.74

Lin318 42,029 42,365 0.80 43,710 4.00

Pr439 107,217 107,883 0.62 111,875 4.34

Table 4 Comparison of the CACO with D-GWO

TSP Optimal CACO D-GWO

Instance Best Avg Emin(%) Eavg(%) Best Avg Emin(%) Eavg(%)

Att48 33,522 33,522 33,548.35 0.00 0.08 33,523 33,600 0.003 0.23

Pr76 108,159 108,159 108,357.60 0.00 0.18 108,159 108,900 0.00 0.68

KroB100 22,141 22,141 22,235.00 0.00 0.42 22,159 22,444.6 0.08 1.37

KroC100 20,749 20,749 20,812.05 0.00 0.30 20,749 21,078 0.00 1.58

KroE100 22,068 22,068 22,190.05 0.00 0.55 22,131 22,410 0.29 1.54

Lin105 14,379 14,379 14,383.95 0.00 0.03 14,382 14,520 0.02 0.98

Pr107 44,303 44,303 44,566.70 0.00 0.60 44,303 44,685.1 0.00 0.86

Pr124 59,030 59,030 59,213.55 0.00 0.31 59,030 59,390.9 0.00 0.61

Pr144 58,537 58,537 58,600.00 0.00 0.11 58,537 58,600.5 0.00 0.11

KroB150 26,130 26,130 26,354.35 0.00 0.86 26,320 26,756.2 0.73 2.39

Pr226 80,369 80,373 80,940.90 0.004 0.71 80,648 81,135.7 0.35 0.95

Pr439 107,217 107,883 108,983.20 0.62 1.65 110,415 112,850.3 2.98 5.25

stability of the solution is strong without much fluctuation,
which is mainly due to the great contribution of using com-
munity detection and pheromone guidance in the algorithm.
The samples of community detection come from the route
information of multiple population ants in different periods,
so with the increase in iterations, the routes explored by ants
are getting closer to the optimal solutions, and the community
detection on this basis is beneficial to explore better routes.

4.4 Comparison with Other Improved Algorithms

To further verify the excellent performance of the CACO
algorithm, the comparison results of CACO with Hybrid
Max–Min ant system (HMMA) [41], Ant colony algo-
rithm based on generalized Jaccard similarity(JCACO) [42],
Spider Monkey Optimization(DSMO) [43], parallel cooper-
ative hybrid ant colony optimization(PACO-3Opt) [44] and
Heterogenous Adaptive Ant Colony Optimization(HAACO)
[45] are added, as shown in Table 5.
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Table 5 Comparison of the CACO with other improved algorithms

TSP Eil51 Eil76 Rat99 KroA100 KroA200 Tsp225 Lin318 Fl417 Pr439

OPT 426 538 1211 21,282 29,368 3916 42,029 11,861 107,217

CACO Best 426 538 1211 21,282 29,368 3923 42,365 11,950 107,883

Average 427.1 539.75 1213.5 21,337.2 29,501.55 3978.3 42,878.45 12,018.2 108,683.2

Emin(%) 0.00 0.00 0.00 0.00 0.00 0.18 0.80 0.75 0.62

HMMA Best 438.95 549.9 1255.39 21,371.36 29,999.54 4073.85 45,349.62 12,542.84 114,094.97

Average 450.07 558.05 1303.78 21,425.9 31,405.69 4203.89 46,548.57 12,897.84 116,885.91

Emin(%) 3.04 2.21 3.67 0.42 2.15 4.03 7.90 5.75 6.41

JCACO Best 426 538 1211 21,282 29,406 3935 42,399 11,969 108,375

Average 427 539 1214 21,322 29,542 4007 43,168 12,216 110,700

Emin(%) 0.00 0.00 0.00 0.00 0.13 0.49 0.88 0.91 1.08

DSMO Best 428.86 558.68 1225.56 21,298.21 30,481.35 4013.68 44,118.66 12,218.98 112,105.2

Average 436.96 572.7 1291.93 22,024.27 31,828.64 4162.79 45,460.25 12,950.77 116,379.2

Emin(%) 0.67 3.84 1.20 0.08 3.79 2.49 4.97 3.02 4.56

PACO-3Opt Best 426 538 1213 21,282 29,533 – – 11,958 108,482

Average 426.35 539.5 1217.1 21,326.8 29,646.05 – – 11,991.9 108,702

Emin(%) 0.00 0.00 0.17 0.00 0.56 – – 0.82 1.18

HAACO Best 426 538 1211 21,282 29,483 – – – –

Average 427.5 542 1214.1 21,364.2 29,633.2 – – – –

Emin(%) 0.00 0.00 0.00 0.00 0.39 – – – –

From the number of optimal solutions obtained in different
city sets, CACO is significantly better than the other.

algorithms. CACO, JCACOandHAACOcan all find opti-
mal solutions in city sets with less than 200 cities with good
exploration ability. In the large-scale city set, CACO finds
better solutions than other algorithms, and theminimumerror
rate is less than 1% even in Pr439. Comparing with the aver-
age solution, CACO generally has smaller average solutions
than other algorithms in large-scale cities, and the stability
of the algorithm is better when dealing with more cities.

4.5 Application of the Proposed Algorithm

The above experiments demonstrate the excellent perfor-
mance of CACO in solving TSP problems, and we will
play the advantages of CACO in combination with actual
problems in the following. Those red points in Fig. 11 are
the general hospitals in Songjiang District, Shanghai, China,
located through ArcGIS and Google API.

In the context of COVID-19 affecting the world, assuming
that here the medical resources need to be transported to all
hospitals at once without interruption, this requirement can
be modeled as a TSP problem, and Fig. 12 shows its com-
munity detection results and solution routes, with the total
route length of 122.653 km and the distance of 40.762 km
between A and B.

However, the relationship between community nodes in
reality changes from time to time. When the situation of hos-

Fig. 11 Hospital location map

Fig. 12 The optimal results without considering A and B

pitals A and B is very urgent, priority should be given to
transport resources to hospitals A and B, which cannot be
carried out by the ordinary ant colony algorithm. Figure 13
shows the community detection results and solution routes
after considering the situation of hospitals A and B. The total
route length is 123.873 km, and the distance between A and
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Fig. 13 The optimal results considering A and B

B is 11.897 km. Although the total length increases by 1%,
the distance between A and B is shortened by 71%, which is
an obvious improvement.

5 Conclusion and Future Direction

This study proposes the multiple ant colony algorithm com-
bining community relationship network (CACO), which is
different from most scholars who have improved around the
route information of better ants. By incorporating the idea
of community detection, this study sampled all the route
information of different populations of ants to construct a
route relationship network model belonging to multiple pop-
ulations. In this model, community division is performed by
modularity, and the small communities are combinedwith ant
colony algorithm for solving the TSP problem. Through the
processing of samples and community detection, the divided
small communities are structurally stable and have the poten-
tial for optimal solutions. At this time, the pheromone of the
small community is used to guide themultiple clusters,which
speeds up the convergence speed. Also, the pheromones of
non-optimal edges increase the diversity of multiple commu-
nities, balancing the speed of convergence and diversity.

CACO is compared with the traditional ant colony algo-
rithm and the latest algorithms to date through 28 TSP city
sets, and the simulation results show that CACO outper-
forms other algorithms, as well as better balance between
convergence speed and diversity when dealing with large-
scale problems.

For future research, we will perform more interdis-
ciplinary combinations. Although ant colony algorithms
incorporating community relationship networks can corre-
late distance with node sparsity, the literature that can be
studied is relatively few and limited in thinking. So, there are
more optimization studies in theorywhile relatively simple in
application. In the future, more attention will be paid to the
combination of complex network structures and intelligent
algorithms to solve realistic and more complex problems.
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