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Abstract
The concurrence of state-of-the-art Industrial 5G, Cyber-Physical Systems, Smart-Systems, Industrial Internet of Things,
and Additive Manufacturing paves the next-level digital remodeling. However, the transfiguration unwittingly tailpiece an
operational onus on the smart-environment operators. The multiplicity and classes of IoT devices operating in the intelligent
environment aremyriad. The characterization of ingress network traffic and the accurate classification of devices is necessary to
efficientlymanage the devices and offer cutting-edge security solutions and quality of Service (QoS). The paper addresses these
challenges by offering a novel intelligent framework for traffic classification leveraging behavioral attributes of IoT traffic. The
paper’s contributions to the research community are fourfold. Firstly, the paper proposes a novel IoT classification framework
based on Stack-Ensemble for real-time high-volume IoT traffic. The experimental results indicate that the proposed novel
Stack Ensemble model can extract the best out of base models and demonstrate an accuracy of 99.94%. The intelligent models
are evaluated over multiple dimensions to project the isometric view of the model performance and the experimental results.
To achieve that goal, all the performance metrics that most researchers most often miss have been elucidated. Secondly, the
paper comprehends the flow-level statistical characteristics of IoT devices. Third, the paper offers the distributed, scalable, and
portable framework architecture. The architecture is horizontally scalable, distributing the computational load. The framework
offers an end-to-end industry-grade machine-learning pipeline and triumphs the vulnerabilities of existing solutions. Finally,
the paper discusses the statistical insights into the intelligent model and the results of the experimentation study. The proposed
work paves the opportunities for researchers, smart-environment operators, and developers to unfold the architecture and
supplement the security solutions against cyber-attacks.

Keywords Classification · Deep learning · Docker · Distributed computing · H2O · Internet of Things · IoT · Machine
learning · Stack ensemble

1 Introduction

The digital wave has acclaimed the Internet of Things
(IoT) as the next unprecedented technology in a global
space. The cyber-physical systems, smart eco-systems (smart
homes, cities, healthcare, power grids, smart-bins), digital
technologies, and enterprises are continually overhauling
and embracing the IoT devices. The forecasted number of
connected IoT devices is more than 25.4 billion in 2030
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worldwide [16,18]. The isometry of connected IoT devices is
shown inFig. 1. The spectacular growthof IoTdevices is their
use inmost industry verticals like electricity, gas, waste man-
agement, water supply, transportation, healthcare, storage,
and government. The fastest-growing connections are M2M
(Machine-to-machine), growing at the rate of 19% CAGR
and are expected to grow to 14.7 billion devices by 2023. The
COVID-19 pandemic has a significant impact on the growth
of IoT devices due to their influence in multiple realms. The
most touched areas in the IoT domain are remote patient
monitoring, work from home, adoption of intelligent pay-
ment technologies, increased demand for wearable devices,
crewless aerial vehicles [9,35].

The IoT devices are critical paths of the intelligent Internet
of Things ecosystems and cyber-physical systems deployed
at the network’s edge. The consortium of the IoT devices and
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Fig. 1 Connected IoT devices forecast (2020–2030)

cyber-physical systems in themanufacturing domain has laid
the Industry 4.0 and Industry 5G [26] concepts. The Industrial
Revolution transformed conventionally used IoT devices into
the Industrial Internet of Things (IIoT) [41]. Furthermore,
IoT devices’ applicability into nearly all realms has paved
the way to enable efficient and sustainable systems. The sub-
stantial elevation in volume of IoT devices has compelled the
instrumentation of intelligent devices into homes, hospitals,
industries, cities, consumer Internet of Things, and enter-
prises. The accelerated multi-dimensional growth in scale
creates operational, management, security, and privacy chal-
lenges [45]. The prevailing devices autonomously interact
with each other and can be monitored remotely. The device
administrators require insights into these devices for better
management of the functions of the intelligent environment.
The management process of devices is usually manual and
distributed across departments. TheQuality of Service (QoS)
demands automated recognition, monitoring, profiling, and
classification of the IoT devices to ensure the legitimate func-
tioning ceaselessly and quarantining the machines in any
cyber-attack.

1.1 Motivation

The IoT traffic might be distinctly diverse based on network
specifications and available bandwidth, reaching the far hori-
zons of the possible bandwidth spectrum. The devices may
need a connection to the server continuously, periodic, spo-
radic, or triggered by some event. Therefore, the IoT traffic
and device classification are critical to reedifying the net-
works with intelligent devices. The automated profiling of
devices may help in traffic routing decisions, load balancing,
distribution of computational load, etc. [10]. The network
backbone is an essential component of an IoT ecosystem.

Hence, device awareness may be crucial to boosting the sys-
tem’s performance.

Another enthralling motivation behind the research is that
IoT devices are continuously increasing in numbers and het-
erogeneity. These devices always function in unison to meet
a specific demand, such as Quality of Service (QoS). Given
the variety of IoT devices, the market is forecasted to reach
around 25.4 billion by 2030 [16,18], producing massive net-
work traffic. The massive network traffic is fuel to big data
technologies. Moreover, it is critical to process the ingress
traffic in real-time for an efficient classification and secu-
rity system. The amalgamation of intelligent algorithms, big
data analytics, and various application areas has boosted the
internet traffic classification domain.

Moreover, it is an unpleasant truth that severe challenges
accompany a massive number of IoT devices. Determining
the device type connected to a network enables application
security measures and the assurance of the device’s accurate
functioning. Thorough knowledge of IoT traffic is critical for
creating and optimizing an IoT traffic categorization. Indeed,
the emergence of unique traffic behaviors and thewidespread
deployment of sensor nodes have prompted a stream of orig-
inal research to offer innovative solutions.

Another compelling motive for IoT traffic profiling is for
intensifying cyber-security. The IoT devices are low-power,
specific-purpose devices with limited security and computa-
tional capabilities thatmake themvulnerable to cyber-attacks
and easy to infiltrate [3,11]. The security gaps in geographi-
cally distributed, heterogeneous IoT devices have motivated
the researchers to recommend defense solutions that rely on
a deep understanding of normal IoT traffic behavior [54].
Relatively recent, governments are also simplifying ISP obli-
gations concerning lawful interception (LI) of internet traffic.
IoT traffic pigeonholing is an indispensable part of LI solu-
tions [7].

1.2 Network Traffic Classification History

Researchers have invested sincere efforts in Internet traf-
fic classification for the last two decades. After establishing
the registered ports (e.g., assignment of port 80 for HTTP,
port 13 for daytime, etc.) by Reynolds (RFC-1340) [38], the
research in its inception employed port-based classification
techniques [40]. The port-based approach used the ports reg-
istered with the Internet Assign Number Authority (IANA).
The port-basedmethodwas error-prone because peer-to-peer
applications used dynamic ports instead of IANA assigned
ports. Following it, researchers employed the payload-based
classification method. The approach was processor and
memory intensive and backslid for encrypted network traffic.
Furthermore, a direct probe of session contentsmay represent
a privacy violation.
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Fig. 2 Roadmap of abstract concepts for network traffic Classification

Researchers endeavoured on leveraging the device
attributes for traffic classification. For example, (i) Identifi-
cation of devices based onMac address and Organizationally
Unique Identifier (OUI) prefix [30]. The technique is unre-
liable as Network Interface Cards (NIC) for IoT devices are
generally manufactured by third parties. Moreover, theMAC
addresses of malicious devices are spoofed. (ii) Another
approach utilizes the hostname of the IoT devices for the
device type identification [51]. However, hostnames are not
consistent across the device families, or device users update
the hostnames. Even when the manufacturers expose device
names, it does not make much sense for some devices (e.g.,
Withing’s sleep sensor has the hostname WSD-28C6).

Thenceforth, researchers proposed the statistical-based
classification approaches that rely on traffic flow attributes
such as flow duration, idle time, packet inter-arrival time,
etc [37]. Laner et al. [24] demonstrated in their work that
M2M device traffic could assume one of the three cate-
gories: periodic traffic exchange, traffic generated because of
some event trigger, or payload exchange. The proposed fea-
tures uniquely attribute to the specified classes of devices.
The Internet traffic classification has gathered momentum
from the employment of machine learning. However, with
the advent of IoT devices, Internet traffic is going gigan-
tic and heterogeneous. The sophistication of traffic has
made the machine learning algorithms inefficient for the

IoT-generated traffic. The focus is on the next-generation
specialized machine learning algorithms, deep learning. The
intelligent learning algorithms can make decision-making
similar to the human brain and hold out against the novel
traffic flow.

Figure 2 presents the traffic classification roadmap based
on the abstract concepts from inception to date.

The accuracy of the solution has always been a prime
objective of the classification framework. Nevertheless, in
real-time, the following parameters (As depicted in Fig. 3)
are vital attributes of the cutting-edge frameworks [12,36]:

1. On-demand Scalability: The device classification frame-
works should be capable of scaling up or down to address
heterogeneous network traffic generated by IoT devices,
thereby offering on-demand resources.

2. Robustness and Portability: Framework portability refers
to operating at various deployment locations, and robust-
ness is associatedwith consistent prediction accuracywith
the emergence of new traffic.

3. Memory and computational Resources: The emerging
machine and deep learning algorithms require high-end
computational resources (e.g., GPU accelerators). Dis-
tributed computation is the effort in managing high
volume traffic in real-time or short quantum batch jobs.
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Fig. 3 IoT Classification Framework Attributes

4. Classification Latency: The device identification process
must be like blazes to offer Quality of Service (QoS).

5. Privacy: The privacy policies of an enterprise restrain
the information shared on the network. So, the classifier
should be able to draw the maximum of non-proprietary
traffic attributes.

The traditional machine learning algorithms have proven
inefficient with shallow learning algorithms in addressing the
aforesaid vital attributes of framework evaluation. The hot off
the press development is propelled by the “Big Data” wave
supporting streamlined analysis of enormous datasets [23,
27]. Only limited researchers have managed the additional
evaluation metrics, and work is in its inception.

This paper has taken the aforesaid vital parameters for the
device classification framework into account and developed
a distributed, robust, scalable framework based on stack-
ensemble methods. The scaling of the computing resources
is carried through distributed clusters of Docker containers
equipped with H2O prediction models [15] in the AI/ML
pipeline. The framework can handle latency and privacy
issues. We have further recommended using the proposed
framework in global intrusion detections [47], including
signature-based attacks [46], anomaly detection [52], and
application areas in smart environments.

1.3 Acronyms

The acronyms used in the literature are defined in Table 1:

Table 1 Acronyms used in the literature

Acronym Description

ANN Artificial Neural Networks

CAGR Compound Annual Growth Rate

CNN Convolutional Neural Networks

DL Deep Learning

DNS Domain Name System

DRF Distributed Random Forest

GBM Gradient Boost Machine

GLM Generalized Linear Model

GPU Graphics Processing Unit

HTTP Hyper Text Transfer Protocol

HTTPS HTTP over SSL

IANA Internet Assign Number Authority

IIoT Industrial Internet of Things

IoT Internet of Things

IP Internet Protocol

ISP Internet Service Provider

LI Lawful Interception

M2M Machine to machine

ML Machine Learning

MOJO Model Object

NTP Network Time Protocol

QoS Quality of Service

RNN Recurrent Neural Networks

SMTP Simple Mail Transfer Protocol

SSL Secure Socket Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

1.4 Research and development Questions

The locus of research and framework development lies close
to the following questions (described in Table 2):

1.5 Our Contributions

We have proposed a novel framework for IoT devices iden-
tification and classification. We have brought the novelty
forward by proposing the two-stage classifier that integrates
best-of-the-class machine learning algorithms. The novel
two-stage classifier fits into distributed big data processing
engine, which is scalable, portable, and extensible. Further-
more, the highly durable, reliable, and high-performance
streaming platform makes the solution highly resilient. The
Stack-Ensembled model is the heart of the framework, with
computational intelligence distributed to the H2O cluster.
More concretely, the paper answers the research and develop-
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Table 2 Research and Development Requirements and Responses

Requirement No. Requirement Response

RQ1 Can we accurately distinguish the IoT devices from
non-IoT devices solely based on behavioral traits
of network traffic?

We have proposed the IoT device identification and
classification framework entirely based on device
activity and signaling behavior. Sections 3 and 4
explains how the behavioral attributes fit into the
classification picture.

RQ2 Can the behavioral traffic attributes be applied to
distinguish between IoT devices?

Yes. The details for the same are in line with the
RQ1 response

RQ3 Is it possible to propose the classification solution as
an extensible, distributed, scalable, and portable
framework with the growing network traffic?

The paper proposes a distributed device
classification framework architecture for
computational load distribution. The defense
solution is scalable and leverages the scalable
Docker containers. The model is implemented as a
platform-independent MOJO object and can be
easily ported to any H2O-enabled server. The
proposed solution can process a high volume of
real-time traffic. Section 4 illustrates the
architectural details of the framework

RQ4 What effect does excluding payload attributes (to
address the privacy issues) have on the solution’s
performance?

The model behaves well with IoT traffic behavioral
attributes only. We have achieved 99.94% accuracy
using our proposed novel stack ensemble model.
The framework reduces the computational load for
analyzing and extracting the packet payload and
addresses privacy issues. The performance details
are discussed in Sect. 4

ment questions (as described in Sect. 1.4) and has following
contributions to the research community:

1. The novel framework includes the stack of state-of-
the-art machine learning algorithms ensembled to offer
high performance. The paper evaluated several classifi-
cation models as base models for the Stack Ensemble
Metamodel and selected four best-performing models as
candidates for the base models. The framework archi-
tecture distributes the computational effort to the cluster
of intelligent H2O nodes for low latency and high-
performance computations.

2. To the best of our comprehension, we are the first to pro-
pose a big-data based extensible, distributed, scalable, and
portable traffic classification framework. The framework
can readily be appreciated as a foundation stone for the
security frameworks.

3. The paper contributes a novel architecture to process
ingress IoT flow stream. The paper has proposed dis-
tributed solution leveraging H2O.ai to act on a network
stream. The inclusion ofApacheKafka [5] and integration
of scalable Docker-based distributed computing engine
(H2O.ai) ensures that the ingress traffic flow is processed
in real-time (or near to real-time in batch processing with
short quantum). The framework architecture addresses
on-demand scalability, memory resources, computational
distribution, latency, and privacy requirements, vital for

a real-time processing engine. Moreover, the framework
components have carefully been selected to be compat-
ible with Big-data tool(s) like Apache Spark for higher
performance.

4. The paper comprehended IoT traffic traces’ flow level
statistical attributes and excluded the payload attributes
to avoid privacy infringement.

1.6 Paper Organization

The organization of the rest of the paper is as follows: Sect.
2 explains relevant previous work in a similar area. Sect. 3
presents the intent of the system development and how it fits
into the big picture. It also includes the details of the dataset,
IoT characterization based on the IoT traffic behavioural
study and introduces the novel Stack Ensemble Model.
Section 4 presents the experimentation details, discusses
the model development and deployment, and concludes the
experiment results. Section 5 offers the recommendation and
future directions. Finally, Sect. 6 concludes the study.

2 RelatedWork

Researchers have conducted diligent research towards cate-
gorizing Internet traffic for the last two decades. The nucleus
of the researcher was the application detection (For example,
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web applications, Peer-to-Peer, DNS, SMTP, Gaming, etc.)
[28,34]. However, the work towards IoT device identification
and classification is in inception.

Cirillo et al. [10], in their paper, have classified the IoT
traffic flow using a supervised ensemble learning algorithm.
They have applied spectral analysis to packet lengths for
feature reduction. The authors have used Random Forest
Classifier as the base algorithm for ensemble learning and
adopted the tenfold cross-validation to evaluate the model
performance. Their experimentation results show a high
accuracy (98.0%). The high Recall (99.2%) and Precision
(99.2%) values underscore the high reliability of the system.
Lately, Khadse et al. [21] have also used an ensemble learn-
ing approach to classify multi-class IoT data collected from
diverse domains such as electric grid, air quality sensors,
cardiotocography sensors, etc. They have attained an aver-
age accuracy of 91.7% for binary classification and 90.6% for
multi-class categories. Along the lines, Junior et al. [32] have
applied a combination of Large Margin Nearest Neighbour
(LMNN) and SVM in the dimensionality reduction process
and achieved an accuracy of 95%.

Sivanathan et al. have classified the IoT devices based
on the active TCP port scan and proposed a hierarchical
TCP scan model for the IoT device classification. In the
recent past, the authors have used destination port as a crit-
ical attribute for device classification in the extended work
[43,45]. They instrumented the lab with 28 IoT devices, such
as cameras, sensors, lights, and smart plugs. They have pub-
lished the traffic traces collected for six months period for
the research community [42]. They further characterized the
IoT traffic and classified the IoT devices using the rich fea-
ture sets, including port numbers, communication protocol,
flow volume, activity cycles, etc. The authors have deployed
a hierarchical two-stage classifier in the machine learning
pipeline, the Naive Bayes classifier for stage-1 and Ran-
domForest Classifier for stage-2, and attained an exceptional
accuracy of 99.88%. The authors have further explored their
work to detect the behavioral change to IoT devices using the
unsupervised clustering technique. In a like manner, to clas-
sify the IoT device based on the device behavior, Hamza et
al. [17] proposed and developed a tool to generate the Man-
ufacturer Usage Description (MUD) profiles [25] for the IoT
devices. Hsu et al. [19] further experimented on the unvary-
ing dataset to identify the class of IoT devices rather than
a specific device. The concept is motivated by the fact that
the category devices manifest similar traffic behavior. For
instance, all motion sensors may show similar traffic behav-
ior. However, the authors did not discuss the details of the
performance metrics.

Desai et al. [13] designed a feature ranking classifica-
tion framework ranking the features based on the cost of
dataset retrieval, feature extraction, storage, computational
resources, etc. They demonstrated 95% accuracy with eight

features and 99% accuracy with 32 markers using the ran-
dom forest technique. Following the Random Forest, Santos
et al. [39] have achieved an accuracy of 99.0% for IoT
device classification. Howbeit, they have employed the pay-
load inspection for feature extraction.

Khandait et al. [22] devised a deep packet inspection-
based framework for IoT device classification. The frame-
work extracts the unique keywords, such as domain and
device names, frequencyof occurrence from the deviceflows.
The work reported in [31] is one of the primary studies using
machine learning-based classifier. They did experimentation
using several classifiers like Random Forest, Gradient Boost
(GBM). On a similar trend, [2] used protocol headers to
extract the feature-set to apply decision tables for IoT device
classification. However, the experimental study infers that
several manufacturers implement similar keywords in more
than one IoT device type, compromising the solution perfor-
mance.

Ammar et al. [4] have demonstrated exciting work in
their endeavors to classify the near-real-time heterogeneous
IoT traffic. They extracted the traffic features from the flow
and payload information, applied supervised learning, and
achieved an accuracy of 97.0% for autonomous device iden-
tification.Marchal et al. [29] have devised a framework based
on periodic traffic communication to develop an autonomous
classification solution. The authors have shown an accuracy
of 99.2% for 33 device types. Their novel technique utilized
the periodic IoT traffic communication in the passive fin-
gerprints. The solution has a distributed implementation for
high performance. Bao et al. [8] have also invested significant
efforts to develop an autonomous solution and identify het-
erogeneous traffic from IoT devices. They have adopted deep
neural networks for model implementation and autoencoders
for feature reduction.

There are various methods employed for the classification
and prediction tasks.However, the selection of an appropriate
model for prediction-related problems is still a challenge.

Izonin et al. [20] employed a novel non-iterative GRNN
ensemble model as a prediction method. The new predic-
tion model works on processing the individual dataset by
the ensemble members. The meta-algorithm used the SGTM
neural-like structure. The experimental results of predicting
the used cars prices tasks show that the proposed method is
best suited for achieving high accuracy with minimal time
and resource costs. Tkachenko et al. [50] continued their
work by proposing a GRNN-based prediction approach for
missing data recovery jobs. The authors applied the approach
to the air pollution monitoring dataset with missing sensor
data. They further elucidated the selection of optimal param-
eters of developedmethods and obtained encouraging results
with high accuracy.

The aforesaid discussedworkmakes remarkable contribu-
tions, but the prolific traffic volume, distribution of computa-
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tional loads, real-time processing, framework scalability, and
solution portability remained unexplored. Moreover, only a
few researchers have followed the discussion around a range
of performance parameters. Our work overcomes the short-
comings mentioned above. Table 3 depicts the comparative
analysis of the work accomplished to date and our proposed
framework. In the table, the symbol • represents the presence
of an attribute, and ◦ depicts the absence of the same.

3 SystemOverview

The section outlines the overview of IoT device identification
and classification system. It also describes the components
used in each of the stages of the end-to-end ecosystem,
such as details of the dataset used for the experimentation
study, listing and description of statistical traffic attributes
and elements of the stack ensemble model. The ingredients
are unfolded as follows:

3.1 Background and the Dataset

The fuel to our implementation is based on several flows cod-
ified into packet streams encoded in .pcap (packet capture)
format files. The files contain network packets annotatedwith
precise timestamps defining the transmission timestamp and
the packet length. The packet capture file is a binary file
that stores the packet information as a sequence of bytes,
including the protocols headers and the payload informa-
tion. Our primary source of data is the subset of the IoT
trace dataset, released publicly by the work mentioned ear-
lier by Sivanathan et al. [43,45]. The IoT traces contain six
months of network trace data from 21 IoT and seven non-
IoT devices instrumented in the university lab environment.
Each of the packet-capture files that the authors release cor-
responds to one day of flow information. We refer to the
dataset as the “Sydney UNSW dataset.” 1. The subset of the
devices obtained from the packet capture file used for model
development and prediction are shown in Table 4.

The .pcap file that we have used for our experimentation
purpose contains 17,51,968 packets in binary format. In order
to probe the traffic features from the IoT traces, we have con-
verted the row packet captures (.pcap) into flow entries using
the Cisco Joy tool [14]. We further developed a python script
to process the flow entries and compute the statistical features
for IoT devices. The statistical attributes contain the device’s
behavioral activity patterns and signaling attributes. We have
initially extracted the 23,987 instances of flow entries from
the IoT devices. After pre-processing the flow entries, we
rolled 21,598 flow entries from 13 IoT devices and six non-

1 The dataset is accessible at the following URL: https://iotanalytics.
unsw.edu.au/iottraces.

IoT devices (labeled non-IoT) for algorithm training, testing,
and validation purposes. Figure 4 shows the percentage dis-
tribution of the underlying protocols in the device flow. We
have validated the solution using another .pcap file contain-
ing 8,02,582 packets from 17 devices in binary format.

3.2 IoT Traffic Characterization

The section presents the details of the behavioral aspects of
the IoT traffic based on the passive packet analysis. We have
studied the Sydney UNSW IoT traces dataset that includes
traffic from 28 devices over six months for the IoT traffic
characterization. The traffic behavior is categorized based
on the following attributes:

3.2.1 Statistical Attributes

The statistical analysis of IoT traffic relies on the network
traffic attributes such as the number of bytes flowing in or
out of the interface, packet sizes, inter-arrival time for pack-
ets, etc. Several researchers use these statistical attributes to
derive traffic patterns, andmore meaningful features [2]. The
technique does not require looking at the payload contents. It
is computationally fast and adopted by many machine learn-
ing algorithms. The advantage of the method is that we can
deduce the class of unknown devices. The attributes are fur-
ther categorized into:

1. Attributes based on data exchange: We examined that the
critical traits of IoT traffic at the per-flow level are Flow
Volume and Flow Rate as defined below:

TotalFlowVol = BIn + BOut (1)

Where,

TotalFlowVol is total number of bytes exchanged during
a flow.

BIn is total number of bytes flowing in the network inter-
face per device per flow.

BOut is total number of bytes flowing out of the network
interface per device per flow. And,

RateFlow = TotalFlowVol

DurFlow
(2)

Where,

DurFlow is duration of the flow.
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Table 4 IoT and Non-IoT device list and MAC mapping

IoT Device MAC Address Non-IoT Device MAC Address

Amazon Echo 44:65:0d:56:cc:d3 Samsung Galaxy Tab 08:21:ef:3b:fc:e3

Smart Things d0:52:a8:00:67:5e MacBook ac:bc:32:d4:6f:2f

Netatmo Camera 70:ee:50:18:34:43 Laptop 74:2f:68:81:69:42

Samsung Smart Cam 00:16:6c:ab:6b:88 Android Phones 40:f3:08:ff:1e:da

Dropcam 30:8c:fb:2f:e4:b2 iPhone d0:a6:37:df:a1:e1

Insteon Camera 00:62:6e:51:27:2e MacBook/iPhone f4:5c:89:93:cc:85

Belkin Wemo Switch ec:1a:59:79:f4:89

Belkin Wemo Motion Sensor ec:1a:59:83:28:11

NEST Protect Smoke Alarm 18:b4:30:25:be:e4

Netatmo Weather Station 70:ee:50:03:b8:ac

Withings Smart scale 00:24:e4:1b:6f:96

Withings Aura Smart Sleep Sensor 00:24:e4:20:28:c6

Light Bulbs LiFX Smart Bulb d0:73:d5:01:83:08

Triby Speaker 18:b7:9e:02:20:44

PIX-STAR Photo-frame e0:76:d0:33:bb:85

HP Printer 70:5a:0f:e4:9b:c0

To study the device behavior based on data exchange,
we have plotted the flow volume (As shown in Fig. 5a)
exhibited by Amazon Echo, Belkin Switch, and Insteon
Camera. However, we have verified that other IoT device
categories also possess similar behavior. As we observed
from the flow volume plot, for Amazon Echo, more than
87 percent of data transfer is less than 100 bytes per flow.
Similarly, Belkin Switch has a data transfer between [200-
650] bytes for 95% of the flows, and Insteon Camera
reported the data transfer between [100–300] bytes per
flow for more than 83% of the flow.

Likewise, we observed a similar pattern for the average
flow volume. Quantitatively, Fig. 5b shows that Amazon
Echo maintains the flow rate of fewer than 160 bytes,
whereas, for Insteon Camera, the flow rate is less than
500 bytes with the lower limit of 30 bytes. However, the
Belkin switch maintained a higher flow rate than Amazon
Echo and Insteon Camera.

2. Attributes based on device activity: Other critical statis-
tical features that are based on device activity are Flow
Duration and Device Sleep Time.

DurFlow = FEnd
i − FStart

i (3)

Where,

DurFlow is the total duration for which flow happened.

FEnd
i is flow end time for ith flow entry.

FStart
i is flow start time for ith flow entry.

And,

TSleep = FStart
i+1 − FEnd

i (4)

Where,

TSleep is the time duration for which the device was not
active and is considered the time between two consecutive
flows.

FStart
i+1 is start time for (i + 1)th flow entry.

FEnd
i is end time for ith flow entry.

The IoT devices send data in small bursts and sleep for
a specific duration. We observed that flow duration for
more than 80% of the flows lasted less than a second.
The fact that non-IoT devices have a higher flow duration
makes the flow duration a critical parameter. Figure 5c
shows that the devices considered for illustration exhibit
similar behavior for the entire flow period. Lastly, the
sleep pattern in Fig. 5d ascertains that the categories of
IoT devices show identical sleep patterns. Amazon Echo
reveals relatively short device sleep times because it keeps
TCP connections alive and sleeps only in case of discon-
nection.
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Fig. 4 Percentage distribution of flow entries per protocol

3.2.2 Classical Port-Scanning

The classical port scanning technique is fast, requires low
computational resources, and is supported by most net-

worked devices. The port numbers do not implement a
payload at the application layer. Hence, user privacy is not
compromised. The IoT devices are special-purpose, low-
power devices accessing limited remote services and port
numbers. The port numbers reserve special attention in IoT
device identification and characterization [44].

The study from the dataset under investigation verifies the
importance of the destination port number in the feature list.
Figure 6 shows the pictorial presentation of port numbers and
the number of IoT devices accessing them.

Furthermore, it also infers from the flow that port numbers
80, 123, 443, and 49153 are the most widely used. We took
Amazon Echo, Belkin Switch, and Insteon Cam for illus-
tration purposes in Fig. 7 and presented the frequency of
access of each port number. The instances show that the most
requested ports numbers are HTTP (port 80) and HTTPS
(443) ports, whereas the devices use port 123 (used for NTP
protocol) to query and sync with the time-server quite fre-
quently.

We also note that devices from the same manufacturers
used a standard set of port numbers. For example, Belkin

Fig. 5 Statistical flow attributes a Flow Volume, b Flow Rate, c Flow Duration, d Device Sleep Time
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Fig. 6 Destination ports and number of connected devices

Fig. 7 Destination ports and number of connected devices

Wemo Motion Sensors and Belkin Wemo Switch use port
numbers 3478and8443.Wealsonote that several IoTdevices
avail standard network services DNS (53), NTP (123), ICMP
(0), and SSDP (1900) on the well-known service ports.

Our experimental test results (In Sect. 4) also show that
destination ports have a high significance in intelligentmodel
building. Figure 7 depicts the variable importance graphs in
the machine-learning models used in our experimentation
setup. The figure contains the labeling of each of the vari-
able importance plots with the corresponding model. More
details are available in the experimentation section. We fur-
ther deduce from the plots that Gradient Boosting Machines
(GBM) algorithm Fig. 8c has placed destination ports on the
high ranking in the variable importance plot. XGBoost Fig.
8a and General Linear Model (GLM) Fig. 8d have empha-

sized individual ports as individual features in the feature
list, with ports 49152, 80, 123, and 443 placed at the higher
positions on similar lines. Distributed Random Forest Fig. 8b
upholds the port number importance as in the GBM model.

3.2.3 IoT Functional Attributes:

The functional attributes are the leitmotifs to perform device
management activities. IoT devices are special-purpose
devices designed for a specific objective. Contrary to non-
IoT devices, they access limited domains corresponding to
the service provider realm. We observed from the dataset
study that each device accesses a circumscribed sphere of
URLs that are generally unique to the device. For exam-
ple, Amazon Echo accesses example.org, example.com, and
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Fig. 8 Variable importance plot

example.net as the most communicated domains. Moreover,
the device is observed accessing thementioned domains over
a frequency of 5 minutes. Likewise, pool.ntp.org is the fre-
quently accessed domain (for NTP queries) for Smart Things
devices. Conversely, non-IoTdevices access diverse and non-
unique domain names.

Another critical operative attribute of IoT devices is man-
aging accurate and reliable time. The majority of IoT devices
communicate with standard NTP servers over UDP protocol
(port 123) [33] to synchronize time in a periodicmanner [53].
More of the periodic and repetitive operative tasks involve
negotiating for SSL connection, exchanging KeepAlivemes-
sages, etc.

3.3 Stack EnsembeModel

This section explains our proposed novel Stack Ensemble
algorithm to classify IoT devices based on behavioral traffic
features. The StackEnsemble paradigmworkswith the intent
of combining several models. The models are combined to

reduce the bias and variance. The base models are stacked in
a two-layer architecture as depicted in Fig. 9. Stage-0 rep-
resents the base model and data, whereas stage-1 refers to
the meta-model and the cross-validated data. We have used
diverse base models to get the maximum out of stacking. The
model employs k-fold validation to parameter fine-tuning
and evade the information leakage. We intend that each base
model train (k minus 1) folds and apply the prediction on the
untrained fold.

The input dataset is flow entries from the ingress network
traffic. Let D be the flow entries where:

D = { (X1,Y1), (X2,Y2), (X3,Y3), ..., (XN ,YN ) }

In the input flow entries,

Xi ∈ F (Feature set) = { f1, f2, f3, ..., fn }, and
Yi ∈ P (Predicted Device Labels) = { P1, P2, P3, ..., Pn }
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Wehave trained the Stack Ensemblemodel with the learn-
ing algorithm set:

Li = { L1, L2, L3, ..., Ln }

The learning algorithms set values as defined as follows:

L1 = { XGBoost1, XGBoost2, XGBoost3 }

i.e., XGBoost is trained in three of the pre-specified config-
urations.

Similarly,

L2 = { DRF }
L3 = {GBM1,GBM2,GBM3,GBM4,GBM5 }
L4 = {GLM } and

MMetaModel = { StackEnsemble_MetaModel }

Algorithm 1 describes the algorithm details as follows:

4 Experimental Details and Results

We have targeted the system model (As shown in Fig. 10)
of a typical IoT network connected to an IoT cloud ser-
vice. The primary goal of the system model is to identify
the type of connected devices so that system administrators

can ensure the effective operations and enforcement of poli-
cies to secure the network. The core of device identification
relies on passive monitoring of the network traffic generated
by IoT and non-IoT devices. The framework does not use
active or dynamic probing of the devices. The active probing
techniques are generally employed and tailored for a spe-
cific class of IoT devices that require special permissions
from the device owners. The model meets the requirements
of autonomy, stability, low classification latency, scalability,
and portability.

4.1 Experimental Testbed

In this section, we present the experimental testbed. We
instrumented the testbed to design, train, and deploy the clas-
sification model. The testbed consists of virtual and physical
hosts, distributed H2O.ai containers. We created the virtual
hosts using Oracle VM VirtualBox [1]. We have employed
04 virtual hosts in the testbed. All the hosts are Ubuntu 20.04

machines with 4 GB RAM, Quad-core i5 1.60 GHz proces-
sors. The details of the individual host (As presented in Fig.
11) and their role is as below:

– 01 Host: For Model Training and Model Development.
We have further utilized the same host for feeding the
flow stream from the dataset to Apache Kafka Server. As
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Fig. 9 Stack Ensemble architecture for IoT device classification

Fig. 10 IoT Device Classification System Model

explained earlier, we have referred to the packet capture
dataset from the real-life smart-environment setup.

– 01 Host: The machine hosts the Apache Kafka server for
streaming. The Kafka host is responsible for running the
Zookeeper and Kafka broker. Kafka hosts the streaming
topic, “iot_device_live_stream”, for producer and con-
sumer applications to subscribe.

– 01 Hosts: We created a network for H2O.ai docker
containers and added 3 H2O.ai docker containers for dis-
tributed H2O.ai cluster implementation.

– 01 Host: The machine hosts the binary Stack Ensem-
ble model (a.k.a. MOJO The Model Object), receives a
stream of Kafka topic flows, and makes predictions.

The flow for the IoT classification pipeline starts with the
ingress packet capture (.pcap files). The native Cisco tool
converts the packet capture into JSON flow entries and feeds
to JSON parser. JSON parser converts the JSON flow entries
into CSV formatted flow entries. The flow entries are fur-
ther pre-processed to handle missing entries, hot encoding,
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Fig. 11 Testbed for proposed IoT classification framework

Fig. 12 Setup details for traffic capture and streaming to Kafka engine

NaN (not a number) values, and perform other pre-process
operations. The streaming engine produces the flow entries to
subscribed Kafka topics (As shown in Fig. 12). The deployed
ensembled model consumes the subscribed Kafka topic for
the prediction task (As discussed in the later section of the
text in Sects. 4.2 and 4.3).

4.2 Model Development

We have constructed the framework in a two-stage process:
(a)Model development and (b)Model deployment. The over-
all process flow of the solution is depicted in Fig. 13.

The details of each stage are as follows: In the proposed
solution deployment, we intercept the stream of the live net-
work traffic. However, in the experimentation study, we have
used the .pcap file available as a publicly released dataset. In
the real-world scenario, on-the-fly network traffic attributes
extraction requires the infrastructure to have sufficient visi-
bility into the network traffic flows. In modern-day network
infrastructures, such as SDN switches or NetFlow capable
devices, we can extract the behavioral attributes (such as
flow_volume, flow_duration, etc.) from the flow relatively
easily.

For the model development (Column 2 of Fig. 13), we
have leveraged the H2O.ai framework for model develop-
ment and deployment. H2O.ai is an open-source platform,
employs distributed computational architecture specifically
designed for processing enormous datasets. During the train-
ing phase, we have included XGBoost, Distributed Random
Forest (DRF), Gradient Boost Machines (GBM), General-
ized Linear Model (GLM) as base algorithms. We further
divided the IoT trace datasets into a training set (70%), test
set (15%), validation set (15%). Thence, we have trained and
cross-validated (with nfolds = 5) the models with (a) three
specified H2O configurations for XGBoost, (b) GLM, (c)
DRF, and (d) five GBM configurations. H2O.ai includes the
pre-specified model configurations for quick results for each
of the algorithms.
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Fig. 13 Ensemble Learning model process flow

Stack Ensembles involves training a second-level meta-
learning process to determine the optimal blend of base
algorithms. In our experimentation setup, we trained the
meta-learner using fivefold cross-validated base learners.
The final version of Stack Ensemble includes the best-
performing base models from each class of algorithms. The
final version of stacking in our configuration is the instance
of the Super Learner algorithm.

4.3 Model Deployment

After building and training the novel Stack Ensembled
IoT classification model, we exported it as MOJO (Model
Object). We deployed it in the machine-learning pipeline as
shown in Fig. 14. We have written a script to subscribe to
the Kafka topic and send an ingress stream of network traffic
flows to the subscribed topic. Kafka is the prominently used
streaming server for reliable, low-latency, high-throughput,
real-time network feeds. Kafka server runs on a separate host
in the experimental lab. However, it can easily be deployed
on a cluster for higher load. We deployed the device iden-
tification and prediction module on the production server
that lies on the consumer end of Kafka and reads the stream
in real-time. The module mentioned above is responsible
for loading the exported MOJO object and performing the
prediction. The computations are performed on the H2O.ai
cluster. To model the H2O server fit into scalable architec-
ture, we deployed the distributed configuration of the H2O
server onto the Docker containers, which are highly scalable.

As shown in Fig. 11, the machine-learning pipeline in the
production environment starts by consuming the live stream
of network traffic, pre-processed by an intermediate module,
and produced to Kafka topic. The other end of the pipeline
is responsible for munching the live traffic stream and iden-
tifying the IoT devices.

4.4 Results and Discussions

We have evaluated the intelligent models over multiple
dimensions. The study compares the mean per class error
values, RMSE,Logloss, learning curve evaluation, confusion
matrix, the model hit ratios, accuracy, precision, recall, F1-
score. The multi-dimensional evaluation intends to project
the isometric view of the model performance and the exper-
imental results. The model performance dimensions are
explained as follows:

4.4.1 The Models Leaderboard

We trained the Stack Ensemble and the base models with
the training data during the training and development stage.
We prepared and evaluated each of the models for a set of
pre-specified configurations. The inputs models were then
considered for the best of the family and included as the
base model. Table 5 below shows the leaderboard and the
evaluation metrics for the input models:

The statistical details in the table show that Stack
Ensemble assumes a small Mean Per Class Error value of
0.0183571, which is the least compared to other models.
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Fig. 14 Novel Stack Ensemble Model deployment

Table 5 Base and Meta Models leaderboard

Model Id Optimal Parameter(s) Mean per Class Error Logloss RMSE MSE

StackedEnsemble_AllModels – 0.0183571 0.0316226 0.0876373 0.00768029

GBM_5 number_of_trees = 96, 0.0202543 0.0450185 0.096788 0.00936791

min_depth = 1,

max_depth = 15,

min_leaves = 1,

max_leaves = 71,

mean_leaves = 58

XGBoost_3 number_of_trees = 120 0.0224418 0.0373026 0.0942976 0.00889204

DRF_1 number_of_trees = 46, 0.0313595 0.0743251 0.124194 0.0154243

min_depth = 5,

max_depth = 20,

min_leaves = 6,

max_leaves = 274,

mean_leaves = 76

GLM_1 family = multinomial, – – 0.37236 0.13865

λ = 0.002609,

λMax = 18.99,

λMin = 0.0026

Hence, each class’s small average error value indicates the
better Mean Square Error (MSE). The classification predic-
tions on the regression line are closer to the actual values and
have the slightest deviations. Likewise, the comparison of
the Logloss value of base models and Stack Ensemble also
demonstrates that the Meta Model results (Stack Ensemble)
are closer to the actual values.

The table also shows all the optimal parameters and the
optimal error values for the investigatedmethods. The param-
eter list specifies the maximum number of trees and the
minimum and the maximum depth of the tree leaves in a par-
allel distributed environment. TheGLMspecifies the strength
of regularization to avoid overfitting problems.
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4.4.2 Model Learning Curves

To study the model in the context of learning performance,
Fig. 15 represents the learning efficiency of each of the
selectedmodels over some time. Themodels are evaluated on
the training dataset and untrained validation set at the end of
each update. The learning curve for XGBoost shows that the
training data has a lower deviation of the predicted values at
the curve’s start. However, a higher variation is observed for
the untrained validation set. The curve settles with a lower
deviation value. However, the validation and training sets
have an observable deviation in the predicted values.We also
observed that the learning curve for theGBMmodel parallels
that of XGBoost. The higher values of Logloss in the train-
ing set for DRF and the lower Logloss on the validation set
reveal that the model performed well on the validation set.
Inconsistent with the other models, GLM is not perceived to
perform well and has a higher deviation towards the curve’s
stabilization end. We can see the sustained results with The
Meta Model (Stack Ensemble). The model reflects quite a
slight deviation towards the curve’s tail. The model performs
alike for the training, testing, and validation set.

4.4.3 Confusion Matrix

We have further explored the model in the dimension of the
primary building block of the performance metrics (True
Positives (TP), True Negatives (TN), False Positives (FP),
False Negatives (FN)). The vertical axis represents the actual
class, and the horizontal axis represents the predicted class.
Furthermore, we have encoded the devices per the following
dictionary for the readability purpose in the confusionmatrix
plot:

IoTdevices = {0: “AmazonEcho”, 1: “Belkin Wemo
MotionSensor”, 2: “BelkinWemoSwitch”, 3: “InsteonCam-
era”, 4: “NonIoT”, 5: “PIXSTAR Photo Frame”, 6: “Smart
Things”, 7: “Withings AuraSleep Sensor”}.

We have also included the validation dataset comprising
the data fromanentirely different set of IoT traces to attain the
purpose. We plotted the confusion matrix (as shown in Fig.
16) for the test data (Stack Ensemble) and benchmark hold-
out of validation data (Base andMetaModels). The confusion
matrix upholds theStackEnsemble’s best performance on the
test and the validation set. However, the results of GLM are
not encouraging and take a higher error rate into account. We
observe the optimum performance of Stack Ensemble by the
stacking of the base models.

4.4.4 Base Models Hit ratio

Hit ratio is the number of accurate predictions in proportion
to the total predictions. The Hit-Ratio for the base models
is depicted in Table 6. Though the base models show higher

Hit-Ratios for the instrumented IoT devices, all the mod-
els interpreted Withings Aura Sleep Sensor correctly in all
the prediction attempts. The justification for the perfect hit
ratio is that the Sleep Sensor exhibits distinctive flow patterns
compared to other IoT devices. The device records a higher
flow volume (average 1700 bytes per flow) and an average
device sleep time of 5 minutes.

The Hit-Ratio’s comparative plot (as shown in Fig. 17)
shows that the base models are observed to perform a con-
sistent Hit-Ratio for the instrumented IoT devices. However,
the models have shown a variation for the Amazon Echo
device. The rationale following the Hit-Ratio deviation is in
the way models depicted the flow pattern of Amazon Echo.
The device keeps the TCP connections active and sleeps only
in disconnection, incorrectly classifying predictions into the
non-IoT category.

4.4.5 Essential Performance Metrics

The final dimension in the isometric view of the model
performance discussion is the details of the essential perfor-
mancemetrics (Accuracy, Precision, Recall, F1-score). Table
7 shows the Accuracy, Precision, Recall, and F1 score for
the Stack Ensemble model for the instrumented IoT devices
in the flow entries. We have demonstrated an overall model
accuracy of 99.93%. The higher values of Precision, Recall,
and F1 score complements the Accuracy of the model. The
mentioned table shows that although the Accuracy of the
Withings Aura Sleep Sensor is high, the slightly less fraction
of Precision infers that certain sleep sensor instances do not
belong to the sleep sensor class. The samples misclassified
to sleep sensor was from the non-IoT class. We can see the
evidence of the model behavior in the F1 score parameter for
the Withings Aura Sleep Sensor class.

Table 8 shows the comparative analysis of the base
model’s Accuracy, Precision, Recall, and F1 score. TheGLM
is observed to perform poorly as compared to other models.
Also, the low precision in the case of GLM is evident that a
fraction of devices belonging to a specific class classified by
GLM did not belong to that class. The low Recall fraction
indicates that the model did not perform well as compared to
other models. However, the combined stacking effect of the
base model listed the high performance of the Stack Ensem-
ble.

Table 9 shows the comparison of proposed work with
state-of-the-art in IoT classification domain.

5 Recommendations and Future Directions

The locus of the research is IoT traffic characterization,
device identification, and classification. However, the work
paves the opportunities for researchers to unfold the frame-
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Fig. 15 Learning curve for base and meta models

work architecture and apply it to various problems. IoT
devices are omnipresent, exponentially increasing, and geo-
graphically distributed. The pervasiveness of IoT devices has
also attracted cyberpunks and technophiles to exploit sys-
tem vulnerabilities [49]. IoT devices are insecure, low-cost
devices with a limited computational capacity. The avail-
ability of such devices in the novice user domain, unaware of
security, hasmade the problemmanifold.The IoTdevices can

easily be compromised to launch the most fatal distributed
denial of service attacks (DDoS). DDoS attacks exhaust the
system resources and make the system unavailable [48].
Though the work towards defense against IoT-generated
DDoS attacks is in its inception, another perspective issue is
deploying the computationally expensive intelligent model.
It requires high-end resources and costly hardware. We have
proposed a horizontally scalable architecture that is less
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Fig. 16 Confusion Matrix for Base and Meta Models

Table 6 Base Models Hit Ratio Device XGBoost DRF GBM

Amazon Echo 0.996321 0.994264 0.99682

Belkin Wemo Motion Sensor 0.998753 0.999002 0.999065

Belkin Wemo Switch 0.999252 0.999564 0.999377

Insteon Camera 0.999377 0.999751 0.999564

NonIoT 0.999688 0.999813 0.999688

PIXSTAR Photo Frame 0.999751 0.999875 0.999938

Smart Things 0.999751 0.999938 1

Withings Aura Sleep Sensor 1 1 1

expensive than vertical scaling of the hardware. Furthermore,
the framework is extensible, resilient, portable, and enabled
for handling high-volume traffic. We recommend unfolding
the proposed framework and applying it to the security prob-
lems.

6 Conclusion

The prolific increase in heterogeneous IoT devices and mas-
sive network traffic volume has tailpiece the operational onus
to smart-environment operators and security enforcers. This
paper has characterized the ingress of IoT traffic based on
IoT devices’ statistical and functional attributes. The pro-
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Fig. 17 Model Performance: Hit Ratio

Table 7 Stack Ensemble
Performance Metrics

Device Accuracy Precision Recall F1-score

Amazon Echo 0.99937652 0.99677159 0.99516519 0.99596774

Belkin Wemo Motion Sensor 0.99950122 0.99823217 0.99941003 0.99882075

Belkin Wemo Switch 0.99950122 0.99007444 0.99007444 0.99007444

Insteon Camera 0.9998753 0.9994233 0.9994233 0.9994233

NonIoT 0.99812956 0.99736401 0.99545563 0.99640891

PIXSTAR Photo Frame 0.99931417 0.98825503 0.99325464 0.99074853

Smart Things 0.99981296 0.99976365 0.99952741 0.99964552

Withings Aura Sleep Sensor 0.99962591 0.98141264 0.99622642 0.98876404

Table 8 Base and Meta Models
Performance Metric
Comparison

Model Accuracy Precision Recall F1-score

Stack Ensemble 0.99939211 0.9939121 0.99606713 0.99498165

XGBoost 0.99908037 0.99164874 0.99494307 0.99326702

DRF 0.99855041 0.98928635 0.99375101 0.99147384

GBM 0.99920506 0.99441994 0.99631352 0.99536173

GLM 0.97004177 0.72807298 0.86856859 0.74825788

posed Stack Ensemble model stacks XGBoost, Distributed
Random Forest, Gradient Boosting Machine, and General
LinearMachine algorithms. Through experimental study, we
demonstrated that the model outperformed with an accu-
racy of 99.94%. The paper has also illustrated the essential
performance metrics (Precision, Recall, F1 score), model
learning details, and comparative analysis of the stacking
models from the experimentation study thatmany researchers

usually missed. The higher values of Precision (99.4%),
Recall (99.6%), and F1-score (99.5%) complement the sys-
tem’s accuracy. The article has also proposed a Docker
container base scalable and distributed architecture for hor-
izontal resource scaling for distributing the computational
load. The novel framework is scalable, extensible to security
solutions, and portable. The proposed framework is capa-
ble of handling high-volume real-time network traffic. The
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developed framework is evaluated on the Sydney dataset.
However, it can further be evaluated on a variety of publi-
cally available benchmark IoT datasets.

In the future, it is recommended to integrate big-data
tool(s) like Apache Spark due to its advanced analytics
and in-memory processing capabilities. Furthermore, it is
planned to unfold the framework architecture to apply cyber-
attack issues and develop autonomous defense solutions.
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