
Arabian Journal for Science and Engineering (2022) 47:9713–9725
https://doi.org/10.1007/s13369-021-06342-8

RESEARCH ART ICLE -COMPUTER ENGINEER ING AND COMPUTER SC IENCE

A Heuristic Local-sensitive Program-Wide Diffing Method for IoT
Binary Files

Lu Yu1 · Yuliang Lu1 · Yi Shen1 · Zulie Pan1 · Hui Huang1

Received: 21 April 2021 / Accepted: 24 October 2021 / Published online: 27 November 2021
© The Author(s) 2021

Abstract
Code reuse brings vulnerabilities in third-party library to many Internet of Things (IoT) devices, opening them to attacks such
as distributed denial of service. Program-wide binary diffing technology can help detect these vulnerabilities in IoT devices
whose source codes are not public. Considering the architectures of IoT devices may vary, we propose a data-aware program-
wide diffingmethod across architectures and optimization levels. We rely on the defined anchor functions and call relationship
to expand the comparison scope within the target file, reducing the impact of different architectures on the diffing result. To
make the diffing result more accurate, we extract the semantic features that can represent the code by data flow dependence
analysis. Earth mover distance is used to calculate the similarity of functions in two files based on semantic features. We
implemented a proof-of-concept DAPDiff and compared it with baseline BinDiff, TurboDiff and Asm2vec. Experiments
showed the availability and effectiveness of our method across optimization levels and architectures. DAPDiff outperformed
BinDiff in recall and precision by 41.4% and 9.2% on average when making diffing between standard third-party library and
the real-world firmware files. This proves that DAPDiff can be applicable for the vulnerability detection in IoT devices.

Keywords IoT vulnerability · Program-wide diffing · Feature extraction · Binary vulnerability · Data flow analysis

1 Introduction

With the rapid development of Internet of Things (IoT)
technology, the security of IoT devices has attracted more
attention than ever. The loose protection of IoT devices and
the long-term existence of vulnerabilities make the security
problem of Internet of Thingsmore serious. Cui et al. [1] ana-
lyze about 4million IoTdevices andfind that 540,435of them
had vulnerabilities. Many vulnerabilities in IoT devices are
critical ones. Attacks on vulnerabilities in backbone services
such as Domain Name Service(DNS) have vast implications.
Mirai attack can use a large number of online IoT devices
to implement distributed denial of service (DDoS) attacks
against online services [2].

Vendors of IoT devices do not make the source code of
their firmware images publicly available,making the analysis
of IoT firmware files more difficult than that of open source
files. In addition, vendors rely heavily on general-purpose

B Yuliang Lu
lulu071227@163.com

1 College of Electronic Engineering, National University of
Defense Technology, Hefei 230007, China

packages and integrate such third-party software packages
(such as OpenSSL and Busybox) in firmware images. Any
vulnerability found in the third-party software packages may
open the related devices to an attack. Furthermore, the secu-
rity analysis of firmware files faces challenges from diverse
underlying architectures. The file of IoT device can be
compiled in MIPS or ARM architecture. The traditional vul-
nerability analysis methods of X86/X64 architecture cannot
usually be directly applied to the vulnerability analysis of
files inMIPS/ARMarchitecture.A feasible and effectiveway
to detect the vulnerabilities of IoT devices is binary diffing
technology across architectures.

Given two binary files without source code, the program-
wide diffingmethod aims to discover and analyze similarities
between the functions of the two files. There are a number of
mature binary diffing tools, such as state-of-the-art Diaphora
[3], BinDiff [4] and TurboDiff [5]. Diaphora compares two
binary files according to features including function address,
function hash, etc. TurboDiff takes the checksum of basic
blocks (a straight-line sequence of code with only one
entry point and only one exit) and the number of instruc-
tions as features for comparison. These features extracted
by Diaphora and TurboDiff may vary due to slightly code

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-021-06342-8&domain=pdf
http://orcid.org/0000-0002-7235-9640

9714 Arabian Journal for Science and Engineering (2022) 47:9713–9725

changes (such as instruction reordering), which affects the
accuracy of diffing results. BinDiff performs graph isomor-
phism detection on function pairs between binary files, and
uses the small-primes-products (SPP) [6] to make the graph
isomorphism fast in practice. However, the method based
on small-primes-products is mainly designed to solve the
slightly code changes, such as the instruction reordering, dif-
ferent register allocation and branch inversion. For binary
files compiled in different architectures, their binary codes
change greatly. Therefore, one challenge in binary diffing
across architectures is how to make the diffing process less
affected by architecture differences. Since the extracted fea-
tures are the basis of comparison, the diffing result will be
more accurate if the extracted features can better reflect the
behavior of the code. The second challenge is to extractwhich
features to represent code. Semantic features [7,8] in form
of abstract syntax tree (AST) and control flow graph (CFG),
etc., can better represent code behavior, making them good
candidates for program diffing. With the wide application of
machine learning technology in various fields, researchers
begin to investigate the semantic feature extraction methods
based on neural network. Ding et al. [9] apply a vector repre-
sentation method by learning the latent semantic information
without preliminary knowledge ofX86 assembly code. How-
ever, thismethod can only support single-architecture diffing.

In this paper, we implement a program-wide binary diffing
method across architectures and optimization levels to solve
the above two challenges. The comparison is implemented
based on the anchor functions and the call relationship
between functions. We define similar functions in the two
comparison files as anchor functions. In the initial anchor
function selection process, unique features are used, such
as string and integer constants, which remain unchanged for
files compiled at different architectures and optimization lev-
els. Based on the anchor functions and the call relationship,
more and more functions are added to the comparison set
from which new anchor functions are selected. This step-by-
step comparison strategy is less affected by architecture and
optimization level. In addition, it can divide the complete
set of functions to be compared into multiple subsets, reduc-
ing the time complexity of diffing. To obtain more semantic
features for comparison, we propose a local-data-sensitive
feature extraction method inspired by the live variable anal-
ysis in data flow analysis technology. This method can record
the variable transfer information between functions with call
relationship. Then, comparison between functions is imple-
mented by earth mover distance (EMD) [10] based mainly
on the semantic features extracted by data flow analysis.
According to the comparison results, more anchor functions
are obtained. This process is iterated for several times to find
more anchor functions to obtain the diffing result.

We implemented a DAPDiff (data-aware program-wide
diffing) prototype and evaluated it with several experi-

ments to measure its availability and effectiveness. DAPDiff
was compared with the state-of-the-art tools Asm2vec [9],
BinDiff [4] and TurboDiff [5] across architectures and opti-
mization levels. The experimental results show that DAPDiff
performs well not only across optimization levels but also
across architectures. Among the three comparison tools,
BinDiff performed better than Asm2vec and TurboDiff.
However, DAPDiff outperformed BinDiff by 41.4% and
9.2% in recall and precision on average when making diffing
between the standard third-party library and the binary file
in real-world firmware. DAPDiff detected CVE vulnerability
in 73 files of 93 real-world firmware files, proving the effec-
tiveness of DAPDiff in the detection of vulnerability in IoT
devices.

In summary, this papermakes the following contributions:

– We proposeDAPDiff, a data-aware program-wide diffing
method for binary files in IoT devices. Our comparison
expansion strategy relies on features that are independent
from architectures, and makes use of the call relationship
between functions.

– To make the diffing result more accurate, we explore a
local-data-sensitive feature extraction method to extract
semantic features for diffing. The features extracted by
this approach are combinedwith the earthmover distance
(EMD) for comparison between functions.

– Extensive evaluations were conducted to examine the
performance of DAPDiff. DAPDiff outperformed the
state-of-the-art tools Asm2vec, BinDiff and TurboD-
iff, especially when making diffing across architectures.
Experimental results prove that DAPDiff is applicable
for the vulnerability detection in IoT devices.

The rest of this paper is organized as follows. Section 2
presents an overview of the system workflow. Section 3
introduces our anchor function selection strategy and the
expansion strategy for the comparison function set. Section 4
presents how to extract data flow features and calculate EMD
for comparison. Experiments are implemented in Sect. 5 to
demonstrate the availability, efficiency and effectiveness of
our method. The related work is discussed in Sect. 6 and the
conclusion follows in Sect. 7.

2 SystemOverview

The program-wide binary diffing is to find the correspond-
ing similar functions in the two binary files to be compared.
We define similar functions in the two comparison files as
anchor functions. Ourmethod aims to findmore anchor func-
tions gradually according to the determined ones, and the
system workflow is shown in Fig. 1. Initial anchor function
selection is the first step of binary diffing. Unique features,

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9715

Fig. 1 System workflow

such as string constants and integer constants, are used to
determine the initial anchor functions. Candidate functions
refer to functions that have a call relationship with anchor
functions. We group candidate functions that have the call
relationship with the same anchor function into one compari-
son function subset. Then, new anchor functions are obtained
by comparing the functions in the comparison function sub-
set of two files. This comparison process relies on features
extracted based on variable-liveness analysis technology and
similarity result calculated by earth mover distance (EMD).
To extract the semantic features of candidate functions,
we explore a local-data-sensitive feature extraction method.
After the feature extraction of the candidate functions, the
earth mover distance (EMD) is applied to obtain the corre-
sponding relationship between the candidate functions in the
two comparison files, obtaining new anchor functions. The

selection of anchor function and candidate function iterates
continuously until the termination condition is reached.

3 Initial Anchor Function Selection and
Expansion of Comparison Function Set

3.1 Initial Anchor Function Selection

To obtain the corresponding relationship between the func-
tions in the two comparison files, we first need to find the
comparison basis. This paper presents an anchor function-
based comparison method. We define the anchor function in
Definition 1.

Definition 1 Given two comparison files F containing func-
tions { f1, f2, ..., fm} and F’ containing functions { f ′

1, f
′
2, ...,

f ′
n}, function f in file F and f ′ in file F’ are defined as

anchor functions if f and f ′ are proved to be similar where
f ∈ { f1, f2, ..., fm} and f ′ ∈ { f ′

1, f
′
2, ..., f

′
n}.

For the two binary files to be compared, the selection of
initial anchor function is critical for later comparison.The ini-
tial anchor function selection process depends on the features
that are unique and easy to compare. The string constants ref-
erencedby functions are relatively unique andwill not change
according to different optimization levels and architectures.
We study the functions with string constants in binary files
andfind that these functions account formore than 15%of the
total functions, making string constant a feasible candidate
feature for initial anchor function selection. However, some
functions share the same string constant, such as the func-
tion sendping_tail and echo_main in OpenSSL library.
Therefore, it is not enough to only take the string constant
feature as the unique feature when selecting the anchor func-
tion. It is found the largest frequency of integer constant of
sendping_tail and echo_main is 6 and 14, respectively. As
a result, the frequency of integer constants also helps to dis-
tinguish different functions. In this paper, we consider three
kinds of features when selecting the initial anchor functions,
which are string constant, largest frequency of integer con-
stant and the number of function parameters. Using these
three kinds of features, we obtain the anchor function set
containing the initial anchor functions.

The subsequent anchor function selection is different from
the initial anchor function selection procedure. New anchor
functions are added by calculating the EMD, which will be
discussed in detail in Sect. 4.

3.2 Expansion Procedure of Comparison Function
Set

The expansion procedure of the comparison function set
begins with anchor functions. We add the functions that have

123

9716 Arabian Journal for Science and Engineering (2022) 47:9713–9725

Fig. 2 The expansion procedure of comparison function set

call relationships with the anchor functions to the compar-
ison function set. Then, new anchor functions are selected
from the comparison function set. This process iterates until
most functions are covered and compared. The selection of
new anchor functions from comparison function set is dis-
cussed in detail in Sect. 4.3. In this section, we investigate
the availability of comparison function expansion procedure
based on the function call graph.

A function call graph [11,12] is a directed graph (andmore
specifically a flow graph [13]) that represents call relation-
ships between functions in a computer program. Specifically,
each node of the function call graph represents a function,
and each edge (f,g) indicates the call relationship between
function f and function g.

Figure 2 shows an example of a comparison function set
expansion process based on a partial function call graph. In
the function call graph, function node C has been selected as
the anchor node. We use the function call graph to explore
new comparison functions having call relationship with node
C. After two iterations, node A can be added to the compar-
ison function set and become a new anchor function. Nodes
D to G are then added to the comparison function set in the
next iteration.

The function expansion procedure benefits from the scale-
free property [14] of the function call graph. Like traffic
network and Internet, function call graph is a scale-free net-
work [15]. That is, most nodes have fewer edges with others,
while a few nodes connect with many other ones (with large
degree). During the comparison expansion procedure, the
earlier the function nodes with large degree are grouped into
the comparison function set, the fewer iterations are required
to cover most functions. Anchor function accounts for a rela-
tively large proportionof thewhole function set,whichmakes
the anchor function set more likely to contain function nodes
with large degrees. If the anchor function has higher degree,
there will be more functions added into the comparison set.
As the example shown in Fig. 2, anchor function B has more
opportunities to find a new candidate function with large

degrees, namely A. After selecting node A as the anchor
function, nodes D to G can be grouped into the comparison
function set. The expansion from node A can cover more
function nodes, reducing the number of subsequent itera-
tions. The scale-free property of function call graph can help
cover most functions by adding them into the comparison
function set in limited iterations.

4 Feature Extraction and EMD Calculation

As described in the previous section, the comparison func-
tion set contains functions that have call relationshipswith the
anchor functions. The functions in the comparison function
set can be selected as new anchor functions, so we call these
functions candidate functions. We select new anchor func-
tions from the candidate functions through feature extraction
and EMD-based comparison.

4.1 Local-Data-Sensitive Feature Extraction

The features that can represent the function are the basis for
findingnewanchor functions by comparison. Inspiredbydata
flow analysis, we implement a local-data-sensitive feature
extraction method to obtain finer data dependencies between
functions with call relationships. We focus on the variable
liveness information in instructions from the caller function
A to the function B called by A. Different from previous data
flow dependency analysis method in basic block granular-
ity, this extraction method works in instruction granularity,
which is finer. The local-data-sensitive feature extraction
algorithm is shown in Algorithm 1.

Algorithm 1 Local-data-sensitive feature extraction algo-
rithm.
Require: function B, function A that calls B
1: path=shortest_path(addr(A.entry),addr(call B)).reverse
2: for instruction i in path do
3: I N [i] = Fi (OUT [i])
4: Fi (x) = USE(i) ∪ (x − DEFS(i))
5: end for
6: for instruction j ∈ Prev(call B) do
7: for variable r in U SE[j] do
8: if r in I N [B] ∩ OUT (NEXT (A.entr y)): then
9: vector [r] = 1
10: else
11: vector [r] = 0
12: end if
13: end for
14: end for

The algorithm takes function B and its caller function A
as input. To reduce the analysis overhead, we only analyze
instructions from the function A entry address to the address
of call B in A. However, there may be multiple paths from

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9717

the entry of A to call B instruction. We choose the shortest
path of the multiple paths (line 1). For instructions in this
path, backward variable liveness analysis is applied to get the
definition_use chain [16] (lines 2–5). Here, DEFS(i) denotes
to the set of variables that are defined in instruction i and
not used before instruction i . USE(i) records variables used
in instruction i . We analyze the instructions in the entry of
function A, denoted as NEXT(A.entry), and the instructions
before the instruction of call B(X86 architecture) which is
Prev(call B).Variables used in instruction set of Prev(call B)
are judged whether they are defined in the NEXT(A.entry).
If they are defined in NEXT(A.entry), the relevant value is 1,
otherwise it is 0 (lines 6–14). Considering the binary analysis
process is implemented without source code, the local-aware
variable liveness analysis algorithm is implemented on the
intermediate language (IL). Therefore, the variables in the
algorithm are the related register values in the IL. We select
IL registers and form the vector representing the liveness of
variable in related instructions.

4.2 Extraction of Other Features

In addition to data flow features extracted through variable
liveness analysis, we choose some lightweight semantic fea-
tures. The out-degree and in-degree of each function node in
the function call graph reflect the call relationship between
functions, so they are added to the feature vector. Other fea-
tures added include parameter number, return type and the
number of API functions. These features are normalized to
numbers and added to the feature vector.

4.3 Selection of New Anchor Functions

To select new anchor functions from comparison function
set, we apply the earth mover distance (EMD) to make
comparison based on the features extracted instead of the
common-used graph edit distance method [17]. Earth mover
distance is proposed by Rubner et al. [10] to measure the
distance between two probability distributions in a specific
area. It has been applied in the field of natural language
processing (NLP) and Kusner et al. [18] proposed the word
movement distance (WMD) to calculate the distance among
documents. The structure of paragraph in natural languages
is somewhat like that of binary code. Therefore, in this sec-
tion, we apply the EMD to obtain the relaxed one-to-one
mapping relationship between the function nodes in the com-
parison function set. To adapt to the generated feature vector,
we make some modifications to EMD by replacing the dis-
tributed ground distance with cosine distance. Then, the flow
matrix is obtained according to the distance between function
nodes, which reflects the relaxed one-to-one mapping rela-
tionship between functions in candidate function set. The
relaxed one-to-one mapping relationship means that there

is probability that not all the nodes have strictly one-to-one
relationships. This is because for the functions in the can-
didate function subset, there may be some functions which
have close feature vector values, making the some one-to-
one mapping relationship not precise sometimes. However,
inmost cases, the features of functions in candidate subset are
not close, guaranteeing that the overall performance is rela-
tively good. Functions with one-to-one mapping relationship
are taken as new anchor functions.

After new anchor functions are selected, the calling func-
tions of new anchor functions will be obtained, which is used
to start a new iteration. The coverage rate of comparison func-
tion is high within limited iterations due to the scale-free
property of function call graph (Sect. 3.2).

5 Evaluation

We implemented a proof-of-concept DAPDiff (data-aware
program-wide diffing). To evaluate whether DAPDiff can
make the program-wide diffing effectively across multiple
optimization levels and different architectures, wewould like
to answer the following three research questions:

– RQ1 : Availabili t y. Is the expansion method based on
comparison function set feasible?

– RQ2 : Efficiency and Effectiveness. Can DAPDiff per-
form well across optimization levels and architectures
with acceptable time overhead?

– RQ3 : Proportion of Anchor Functions.Anchor func-
tions play an important part in the expansion of compar-
ison function set and influence the diffing result. Can we
achieve a relatively high proportion of anchor functions
in limited iterations?

In the experiment, we compiled Busybox, OpenSSL and
Coreutils in different architectures (ARM/MIPS/ X86/X64)
and optimization levels (O0-O3) like [19–21], taking the
compiled binary files as our analysis target. In addition, real-
world firmware files fromGenius dataset [22]were also used,
which contain third-party library. To verify the effectiveness
of DAPDiff, we compared DAPDiff with the state-of-the-art
tools Asm2Vec [9], BinDiff and TurboDiff.

5.1 Availability of the ExpansionMethod Based on
Function Call Graph(RQ1)

To testify the availability of the anchor-function-based
expansionmethod,we selected thefile in real-world firmware
R4500 [22] for analysis. Function call graph is the expansion
basis, so it is needed to firstly discuss the scale-free property
of function call graph. Then, the coverage of comparison

123

9718 Arabian Journal for Science and Engineering (2022) 47:9713–9725

functions is addressed to testify the result of call-graph-based
expansion method.

Scale-free property of function call graph. We constructed
the function call graph of R4500 and recorded both the in-
degree and out-degree of each function node in the function
call graph. The cumulative distribution of degree is shown in
Fig. 3, demonstrating that both the in-degree and out-degree
distributions are in accordance with the power law distri-
bution [14,23]. Meanwhile, we recorded the distribution of
in-degree and out-degree in Fig. 4. The number of function
nodes in R4500 with in-degree more than 4 is 111, account-
ing for 19.9% of the 559 functions. The proportion of nodes
with out-degree greater than 4 is 22.4%. The maximum in-
degree and out-degree are 106 and 88, while more than 77%
of nodes have in-degree or out-degree less than 4. Thismeans
the connection between function nodes in function call graph
has uneven distribution. In the function call graph, nodeswith
higher in-degree or out-degree values account for a small
proportion of the total nodes. However, these nodes connect
more other function nodes, making them key hubs. So the
earlier such kinds of nodes are selected as anchor functions,
the fewer iterations are required.

Coverage of functions based on function call graph. The
diffing process starts with the initial anchor function. Using
call relationship, more and more functions are added to the
comparison function set from where new anchor functions
are selected. Here, we are not concerned with the generation
of new anchor functions according to our expansion strategy
which will be discussed in Sect. 5.4, but with the coverage
of comparison function set during iterations. For binary file
in R4500, Fig. 5 is actually a reconstruction of the function
call graph based on initial anchor functions. In the graph of

100 101 102 103

k,Degree

10-3

10-2

10-1

100

P
(x

>k
)

Cumulative Node Degree Distribution of R4500

Incoming
Outgoing

Fig. 3 Cumulative node degree distribution of R4500

(a)

(b)

Fig. 4 Degree distribution of R4500

Fig. 5, only function nodes that have a direct or indirect call
relationship with anchor functions have edges. Initial anchor
function nodes are colored red. Other function nodes are col-
ored differently according to the path length between them
and the initial function nodes. The number of initial anchor
functionnodes inR4500 is 154, accounting for 27.55percent-
age of all 559 functions. During the first round of function
call relationship analysis, the number of newly covered nodes
(having direct call relationship with initial anchor functions)
is 184, increasing the coverage ratio to 60.5%.

In addition, there are some red nodes without edges in
Fig. 5, meaning that these functions are initial anchor func-
tions, but they do not have call relationships with other
functions, such as function SSL_get_version. Furthermore,
the nodes colored blue do not have edges, which means that
they have no direct or indirect call relationship with the ini-
tial anchor functions. As a matter of fact, we later analyzed

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9719

Fig. 5 Function nodes covered by function call graph in R4500

these functions and found that they usually have no call rela-
tionship with any other functions in the function call graph.
We call them orphan functions. For example, the function
ssl3_alert_code is one of the orphan functions. The per-
centage of orphan nodes in R4500 is 17.2%. However, these
orphan functions can be grouped into a separate comparison
subset, and we can still extract features and compare them to
based on EMD find new anchor functions (Sect. 5.4).

5.2 Analysis Efficiency (RQ2)

To testify the feasibility of the DAPDiff method, the time
overhead should be discussed. The time cost of diffing is
mainly related to three procedures, that is data flow-based
feature extraction, statistical feature generation and the EMD
calculation.

Data flow-based feature extraction time overhead. For func-
tion pair containing function A and function B called by A,
data flow-based feature extraction time overhead refers to
the time required to generate liveness-variable-related fea-
ture vector between A and B. We analyzed and recorded the
variable liveness analysis (including vectorization) time of
all function pairs with call relationship. The time cost of all
function pairs in real-world firmware DAP-2360 is shown in
Fig. 6. The maximum time cost of function pair analysis is
62.5 s. However, for most function pairs, the time overhead is
less than 5 s and the average time cost is 9.63 s. In the actual
analysis procedure, we only make data dependence analysis
between anchor functions and functions that have call rela-
tionship with them, rather than all function pairs with call

Fig. 6 Liveness variable analysis time of DAP-2360

relationship in binary file. In this way, we can significantly
reduce the analysis overhead. This analysis strategy based
on partial function pairs makes our data flow-based method
relatively lightweight. The data flow analysis time cost of
all the function pairs is 99.5 minutes. However, when mak-
ing diffing between DAP-2360 and binary files compiled by
OpenSSL, the actual time cost can be reduced to 16 minutes,
which is relatively acceptable.

Statistical feature generation time. In addition to the data
flow feature, we also select other features that we call statis-
tical features, such as in-degree, out-degree and number of
called API functions. We extracted these statistical feature
by writing IDA plugin and recorded the time cost. Figure 7
shows the statistical feature extraction time cost of functions
in OpenSSL binaries compiled in different architectures. The
median line time of ARM/MIPS/X64/X86 architectures is
3.046e-6, 2.99e-6, 3.02e-6 and 3.0e-6 s, respectively. The
maximum time cost is 2.5e-4 s. The time cost of statistical
features generation is much less than that of data flow anal-
ysis.

EMD calculation time. We recorded the EMD calculation
time cost when comparing the standard third-party library
with the real-world firmware containing the library. We
selected theOpenSSL library v1.0.1f and thefirmwarefiles of
DIR-655 and R4500 containing the OpenSSL library, mak-
ing diffing to record the EMD calculation time cost. The
EMD calculation time cost when making diffing between
DIR-655 and OpenSSL is shown in Fig. 8a, with 0.058 s
as the maximum value and 0.007 s as the median line value.
Figure 8b shows the corresponding time cost between R4500
and OpenSSL. The calculation time is less than 0.045 s and
median line time is 0.008 s. EMD calculation time is also
much less than data flow analysis time.

123

9720 Arabian Journal for Science and Engineering (2022) 47:9713–9725

Fig. 7 Statistical feature extraction time of OpenSSL compiled in dif-
ferent architectures

(a) EMD calculation time in diffing DIR655 and
OpenSSL.

(b) EMD calculation time in diffing R4500 and
OpenSSL.

Fig. 8 EMD calculation time

The time cost of statistical feature extraction and EMD
calculation is much less than that of data flow analysis. This
is mainly because the variable liveness analysis procedure is
implemented in instruction granularity which is much finer
than other methods. Considering the time overhead caused
by finer granularity, we make optimizations such as focusing
on the variable within a limited number of instructions. In
addition, we only apply data flow analysis to calling function
pairs that contain anchor functions to improve efficiency.

5.3 Effectiveness (RQ2)

We evaluated the effectiveness of DAPDiff when making
diffing between files compiled in different optimization lev-
els and architectures. DAPDiff is compared with BinDiff,
TurboDiff and Asm2vec by using precision and recall met-
rics [19–21]. To define the metrics of precision and recall,
we use G to represent the ground truth information, which is
the set of actually matched function pairs in the two binary
files. The matched function pairs found by our method form
a set represented by D, while unmatched function pairs form
a set U . The three kinds of sets can be represented by Equa-
tion 1-3.

G = (g1, g
′
1), (g2, g

′
2), ...(gs, g

′
s) (1)

D = (d1, d
′
1), (d2, d

′
2), ...(dn, d

′
n) (2)

U = (u1, u
′
1), (u2, u

′
2), ...(ut , u

′
t) (3)

Then, D ∩ G is the set of correctly matched function pairs,
and elements in U −U ∩G refer to the unmatched function
pairs detected by our method. Precision indicates the ratio of
the correctly matched function pair number to the number of
detectedmatched pairs. It is represented inEquation 4. Recall
is the ratio of the correctly matched function pair number to
the number of all correctly classified pairs shown in Equation
5.

Precision = ||D ∩ G||
||D|| (4)

Recall = ||D ∩ G||
||D ∩ G +U −U ∩ G|| (5)

To verity the effectiveness of DAPDiff compared with the
other tools, we designed two scenarios: one is tomake diffing
between files compiled at different optimization levels and
the other is tomakediffingbetweenfiles compiled in different
architectures.

Binary diffing across optimization levels. During the pro-
cedure of diffing across optimization levels, we compared
the performance between DAPDiff and state-of-the-art tools
including Asm2vec, BinDiff and TurboDiff. We compiled
Coreutils(v5.93),Busybox(v1.27.2) andOpenSSL(1.0.1h) in

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9721

Table 1 Recall and precision in
different optimization levels

Recall/Precision

Asm2vec BinDiff TurboDiff DAPDiff

Coreutils V5.93O0-O3 0.418/0.98 0.828/0.967 0.317/0.917 0.918/0.986

V5.93 O1-O3 0.582/0.985 0.858/0.988 0.32/0.887 0.840/0.987

V5.93 O2-O3 0.629/0.992 0.884/0.99 0.316/0.961 0.814/0.9836

Average 0.543/0.986 0.856/0.982 0.318/0.922 0.857/0.985

Busybox 1.27.2 O0-O3 0.571/0.986 0.76/0.989 0.309/0.97 0.754/0.995

1.27.2 O1-O3 0.638/0.99 0.96/0.983 0381/0.967 0.942/0.991

1.27.2 O2-O3 0.677/0.987 0.983/0.992 0.427/0.974 0.972/0.989

Average 0.629/0.988 0.901/0.988 0.372/0.97 0.889/0.992

OpenSSL 1.0.1h O0-O3 0.571/0.992 0.848/0.995 0.246/0.935 0.794/0.989

1.0.1h O1-O3 0.644/0.991 0.917/0.991 0.232/0.942 0.781/0.989

1.0.1h O2-O3 0.665/0.992 0.90/0.991 0.290/0.856 0.784/0.985

Average 0.627/0.992 0.89/0.992 0.256/0.911 0.786/0.988

O0-O3 optimization levels and recorded the recall/precision
results in Table 1.

Among the three tools Asm2vec, BinDiff and TurboD-
iff, BinDiff performed better than the other two tools in both
recall and precision. However, the precision of the three tools
is close. For example, the average diffing precision of Core-
utils is 0.986, 0.982 and 0.922 for Asm2vec, BinDiff and
TurboDiff, respectively, while the average recall value of the
three tools was different. The average recall rate of Asm2vec
is 0.543 and TurboDiff is 0.318. BinDiff, on the other hand,
has an average recall of 0.856, which is higher than the
other two tools. Higher precision and relatively lower recall
relate to a higher false negative rate, meaning that a num-
ber of similar functions were not detected. When it comes
to the comparison of BinDiff and DAPDiff, the precision
and recall of Coreutils and Busybox are close. However, the
recall of DAPDiff is lower than BinDiff when make diffing
on OpenSSL binaries. This is mainly because that the orphan
function ratio of OpenSSL is higher than that of Busybox
and Coreutils, which affects the results of the anchor-based
diffing method applied by DAPDiff. However, the orphan
function ratio of real-world firmware files is not as high as
that of standard third-party libraries, and the diffing results
on firmware files discussed in the next paragraph are better
than those on standard library files.

Binary diffing across architectures. To verify the effective-
ness of DAPDiff across different architectures, we chose
real-world firmware and the standard library as our diffing
target. This diffing process actually deals with the compar-
ison across versions, optimization levels and architectures
because we usually do not know the version or optimiza-
tion levels of the library file used in real-world firmware.
Considering that Asm2vec can only make diffing in single
architecture, we compared the performance of BinDiff, Tur-

boDiff and DAPDiff. Real-world firmware files are obtained
from DCS-1100, DIR 855L, DAP-2590 and DIR-636. DCS-
1100 and DIR 855L contain OpenSSL library while DAP-
2590 and DIR-636 contain Busybox. The diffing was made
between the firmware files and the standard OpenSSL and
Busybox libraries compiled in X86/MIPS/ARM architec-
tures. Recall and precision values are listed in Table 2.
TurboDiff had high precision and low recall value, meaning
it makes wrong judgements on a number of similar func-
tions. Although the performance of BinDiff was comparable
to that of DAPDiff, and sometimes even better in the scenario
of making diffing across optimization levels, DAPDiff out-
performedBinDiff whenmaking diffing across architectures.
The average recall and precision of DAPDiff are 0.943 and
0.96, which are 41.4% and 9.2% higher than that of BinDiff.
BinDiff uses small-primes-products method, relying on the
basic blocks and edges of CFG. However, these features vary
in the files compiled in different architectures. On the other
hand, the features and call relationship used by DAPDiff
are less affected by different architectures. Furthermore, the
performance of DAPDiff in the real-world firmware diffing
is better than that across optimization levels due to fewer
orphan functions. The diffing across optimization levels is
made on the standard third-party library, which contains all
the functional modules. However, when vendors apply the
third-party library to their firmware, due to the limitation of
memory, they usually delete all the unnecessary codes includ-
ingmany orphan functions, resulting in a better performance.

5.4 Relationship Between Anchor Function Ratio
and Iterations (RQ3)

The anchor function selection process will iterate for several
times to find more functions to compare, from which new

123

9722 Arabian Journal for Science and Engineering (2022) 47:9713–9725

Table 2 Recall and precision of
diffing across architectures

Recall/precision

BinDiff TurboDiff DAPDiff

OpenSSL_X86 vs DCS-1100 0.715/0.917 0.077/0.709 0.908/0.952

OpenSSL_ARM vs DCS-1100 0.737/0.685 0.151/0.776 0.867/0.979

OpenSSL_MIPS vs DCS-1100 0.726/0.942 0.137/0.922 0.92/0.963

OpenSSL_X86 vs DIR-855L 1.01 0.738/0.721 0.084/0.845 0.964/0.985

OpenSSL_ARM vs DIR-855L 1.01 0.444/0.604 0.11/0.847 0.944/0.943

OpenSSL_MIPS vs DIR-855L 1.01 0.854/0.949 0.094/0.889 0.973/0.973

Busybox_X86 vs DAP-2590 0.482/0.898 0.144/0.857 0.98/0.955

Busybox_ARM vs DAP-2590 0.48/0.962 0.192/0.819 0.969/0.948

Busybox_MIPS vs DAP-2590 0.498/0.936 0.191/0.902 0.952/0.936

Busybox_X86 vs DIR-636 0.787/0.979 0.39/0.982 0.928/0.97

Busybox_ARM vs DIR-636 0.767/0.970 0.354/0.952 0.947/0.972

Busybox_MIPS vs DIR-636 0.777/0.981 0.381/0.949 0.967/0.944

Average 0.667/0.879 0.192/0.87 0.943/0.96

anchor functions can be found. Due to the scale-free prop-
erty of function call graph, most functions can be added to
the comparison function set in limited iterations. However,
the diffing result relies on the number of anchor functions
found. In this section, we hope to explore how many itera-
tions should bemade to cover a high ratio of anchor functions
and answer the question RQ3.

The anchor function ratio is the ratio of the anchor func-
tion number to the total function number in the binary
files. The diffing was made between functions in standard
third-party library and the real-world firmware files. We
took DCS-1100 firmware containing OpenSSL and DAP-
2590 firmware containing Busybox library as the diffing
target. The file in DCS-1100 firmware was made diffing with
OpenSSL v1.0.1f binary compiled in ARM/MIPS/X86/X64
architectures.DAP-2590was comparedwithBusybox 1.27.2
binaries compiled in the above four architectures. The new
anchor functions selection process was iterated four times.
However, there are a number of orphan functions which have
no call relationship with other functions, like the blue node
shown in Fig. 5. After four iterations, we grouped all orphan
nodes into one comparison subset, making feature extraction
and EMD calculation like the new anchor function selection
process. In this way, the anchor functions were selected from
the orphan functions.

Figure 9a and b shows the anchor function ratio of
firmware DCS-1100 and DAP-2590 when making diffing
between them and the corresponding third-party library dur-
ing different iterations. The first thing we need to mention
is that although the anchor function ratio of each iteration
is different for the four architectures, the difference is very
small. This proves that both the anchor selection and the
feature extraction strategies are not affected too much by
the architecture. It can also be observed that the growth rate

of anchor function becomes slower as the number of itera-
tions increases. This is mainly because the anchor function
is selected from comparison function set. However, as the
number of iterations increases, many functions have been
compared, resulting in fewer and fewer functions added to
the comparison function set. After four iterations, we com-
pared orphan functions using the same feature extraction and
EMD calculation method to select anchor functions from
orphan functions. This method is proved to be effective,
increasing the average anchor function ratio to more than
90%.

Furthermore, we applied the diffing method to the vulner-
ability detection in the third-party library used by real-world
firmware. It was found that of the chosen 93 real-world
firmware files, 73 files were affected by CVE-2015-0204,
indicating that this method can be applied to help detect vul-
nerabilities in IoT devices.

6 RelatedWork

Comparedwith the relativelymature open-sourced code diff-
ing technology [24–30], binary diffing analysis method faces
code optimization problems such as function inlining, redun-
dancy elimination, instruction reordering and conversion in
the compilation process. These problems make binary diff-
ing more difficult than open-sourced files. However, many
commercial software and files used in some fields (such
as Internet of things devices) are not open-sourced, mak-
ing binary diffing necessary and appropriate for vulnerability
detection.

Researchers investigate the semantic equivalence of code
by graph comparison [31], symbolic execution and theorem
proving [32,33]. However, graph isomorphism is a NP-

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9723

(a)

(b)

Fig. 9 Anchor function ratio of real-world firmware

complete problem, leading to low efficiency, and the method
based on theorem proving is not scalable. Later researches
use the execution trace [34–37] or code signature [38] to
measure the similarity of functions in binary files. However,
they either have low coverage or are not robust to changes
brought about by compiler optimization.

With the development of machine learning, especially
deep learning, researchers begin to apply machine learn-
ing methods to binary diffing. Graph embedding [39–42]
and graph neural network [43–45] models are applied to
extract features to represent binary code. Genius [22] is one
of the most outstanding solutions that transform the ACFG
(attribute control flow graph) into feature vector to represent
the functions and measure the similarity by bipartite graph
matching algorithm. Gemini [46] relies on deep neural net-
work to embed the ACFG graph of Genius into a matrix. The
features extracted by Gemini and Genius are statistical, con-

taining limited semantics. Vulseeker [47] generates labeled
semantic flow graph(LSFG) to represent code feature. Red-
mond et al. [48] convert the binary code to intermediate
language and record the input/output as signature for com-
parison across architectures. Zhang et al. [49] andWang et al.
[50] focus on the changes between patched and unpatched
code and make similarity comparison of code snippet. Yu
et al. [51] adopt the convolutional neural network to extract
the order information as well as semantic information. They
make diffing between source-code and binary code combin-
ing deep pyramid convolutional neural network (DPCNN)
with graph neural network (GNN) [52]. There are also local
preferencemethods tomake binary function diffing.Kam1n0
[53] combines the subgraph matching and adaptive LSH to
detect the code clone. Li et al. [54] propose a topology-aware
hashing method by extracting graph signature of CFG as the
comparison basis. Duan et al. [55] implement DEEPBIN-
DIFFwhich combines theNLP(natural language processing)
andTADWalgorithm (Text-associatedDeepWalk algorithm)
[56] to obtain the semantic cross-function dependency fea-
ture. However, DEEPBINDIFF applies random walk in
ICFGs (inter-procedural CFGs), which is relatively time-
consuming. Besides, it only supports diffing in a single
architecture.

7 Conclusion

In this paper, a data-aware program-wide diffing method is
proposed to compare the binary files across architectures and
optimization levels. Using the anchor functions and call rela-
tionship, this method expands the diffing scope step by step.
To obtain more accurate diffing results, we extract semantic
features by variable liveness analysis, andmake comparisons
using the extracted features and the modified EMD calcula-
tion method. Experiments show that our DAPDiff prototype
performs well when making diffing across architecture and
optimization levels, which proves that it is available for the
vulnerability detection on IoT devices. This method can also
be combined with other feature extraction and similarity cal-
culation methods, such as those based on machine learning
technology. However, there are improvements for the meth-
ods proposed in this paper. The accuracy of diffing results
rely on the features extracted before the calculation of EMD.
Currently, the features extractedmainly include the data-flow
related variable liveness and the simple statistical ones such
as in-degree and out-degree. These features guarantee a rela-
tively stable and promising diffing precision and recall value.
However, due to the inherent limitation of static method, fea-
tures extracted cannot fully represent the behavior of binary
code. In future work, we will explore ways to extract the
dynamic execution related features that can represent code
behavior more thoroughly, such as the relationship between

123

9724 Arabian Journal for Science and Engineering (2022) 47:9713–9725

input and output values [47], and combine the feature extrac-
tion method with neural network model which can extract
more semantic features that can represent the binary code
[46,47].

Acknowledgements We thank the anonymous reviewers for the help-
ful comments. We thank JianGao for sharing his code of Vulseeker in
github, which inspired us a lot when implementing our prototype.

Compliance with ethical standards

Funding This work is supported by the National Key Research and
Development Program of China (No. 2017YFB0802900)

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Cui, A.; Stolfo, S.J.: A quantitative analysis of the insecurity
of embedded network devices: results of a wide-area scan. In:
Proceedings of the 26th Annual Computer Security Applications
Conference, pages 97–106 (2010).

2. Herzberg, B.; Bekerman, D.; Zeifman, I.: Breaking downmirai: An
iot ddos botnet analysis. Incapsula Blog, Bots and DDoS, Security
(2016)

3. Diaphora. https://github.com/joxeankoret/diaphora. Accessed
December 15, 2020.

4. Bindiff, Z.: https://www.zynamics.com/bindiff.html. Accessed
September 14, 2020.

5. Turbodiff. https://www.coresecurity.com/core-labs/open-source-
tools/turbodiff-cs. Accessed December 20, 2020.

6. Dullien, T.; Rolles, R.: Graph-based comparison of executable
objects (english version). SSTIC 5(1), 3 (2005)

7. Pewny, J.; Schuster, F.; Bernhard, L.; Holz, T.; Rossow, C.: Lever-
aging semantic signatures for bug search in binary programs. In:
Proceedings of the 30th Annual Computer Security Applications
Conference, pp. 406–415. ACM (2014)

8. Karim, M.E.; Walenstein, A.; Lakhotia, A.; Parida, L.: Malware
phylogeny generation using permutations of code. J. Comput.
Virol. 1(1), 13–23 (2005)

9. Ding, S.H.H.; Fung, B.C.M.; Charland, P.: Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization. In: 2019 IEEE Symposium
on Security and Privacy (SP), pp. 472–489. IEEE (2019)

10. Rubner, Y.; Tomasi, C.; Guibas, L.J.: The earth mover’s distance
as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121
(2000)

11. Callahan, D.; Carle, A.; Hall, M.W.; Kennedy, K.: Constructing
the procedure call multigraph. IEEE Trans. Software Eng. 16(4),
483–487 (1990)

12. Khedker, U.P.; Sanyal, A.; Karkare, B.: Data flow analysis: theory
and practice. CRC Press, Cambridge (2017)

13. Jalote, P.: An integrated approach to software engineering. Springer
Science & Business Media, Berlin (2012)

14. Barabási, A.; Bonabeau, E.: Scale-free networks. Sci. Am. 288(5),
60–69 (2003)

15. Yu, L.; Shen,Y.; Pan, Z.: Structure analysis of function call network
based on percolation. In: 2018 Eighth International Conference on
Instrumentation & Measurement, Computer, Communication and
Control (IMCCC), pp. 350–354 IEEE (2018)

16. Stanier, J.; Watson, D.: Intermediate representations in imperative
compilers: A survey. ACM Comput. Surv. (CSUR) 45(3), 1–27
(2013)

17. Nair, A.; Roy, A.; Meinke, K.: funcgnn: A graph neural net-
work approach to program similarity. In: Proceedings of the 14th
ACM/IEEE International SymposiumonEmpirical Software Engi-
neering and Measurement (ESEM), pp. 1–11 (2020)

18. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K.: From word
embeddings to document distances. In: International Conference
on Machine Learning, pp. 957–966. PMLR (2015)

19. Zabihimayvan, M.; Doran, D.: Fuzzy rough set feature selection
to enhance phishing attack detection. In: 2019 IEEE International
Conference onFuzzySystems (FUZZ-IEEE), pp. 1–6. IEEE (2019)

20. Zabihimayvan, M.; Sadeghi, R.; Kadariya, D.; Doran, D.: Interac-
tion of structure and information on tor. In: International Confer-
ence on Complex Networks and Their Applications, pp. 296–307.
Springer (2020)

21. Sadeghi, R.; Banerjee, T.; Hughes, J.: Predicting sleep quality in
osteoporosis patients using electronic health records and heart rate
variability. In: 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), pp.
5571–5574. IEEE (2020)

22. Feng, Q.; Zhou, R.; Xu, C.; Cheng, Y.; Testa, B.; Yin, H.: Scalable
graph-based bug search for firmware images. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 480–491, ACM (2016)

23. Zabihimayvan, M.; Sadeghi, R.; Doran, D.; Allahyari, M.: A broad
evaluation of the tor english content ecosystem. In: Proceedings of
the 10th ACM Conference on Web Science, pp. 333–342 (2019)

24. Ghaffarian, S.; Mohammad, S.; Hamid, R.: Software vulnerability
analysis and discovery using machine-learning and data-mining
techniques: a survey.ACMComput. Surv. (CSUR)50(4), 56 (2017)

25. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z.; Wang, S.; Wang,
J.: Sysevr: a framework for using deep learning to detect software
vulnerabilities. arXiv preprint arXiv:1807.06756 (2018)

26. Kronjee, J.; Hommersom, A.; Vranken, H.: Discovering software
vulnerabilities using data-flow analysis and machine learning. In:
Proceedings of the 13th international conference on availability,
reliability and security, p. 6. ACM (2018)

27. Chernis, B.; Verma, R.: Machine learning methods for software
vulnerability detection. In: Proceedings of theFourthACMInterna-
tional Workshop on Security and Privacy Analytics, pages 31–39.
ACM (2018).

28. Pradel, M.; Sen, K.: Deep learning to find bugs. TU Darmstadt,
Department of Computer Science (2017)

29. Harer, J.A.; Kim, L.Y.; Russell, R.L.; Ozdemir, O.; Kosta, L.R.;
Rangamani, A.; Hamilton, L.H.; Centeno, G.I.; Key, J.R.; Elling-
wood, P.M., et al.: Automated software vulnerability detectionwith
machine learning. arXiv preprint arXiv:1803.04497 (2018)

30. Zou, Q.; Lu, L.; Yang, Z.; Gu, X.; Qiu, S.: Joint feature rep-
resentation learning and progressive distribution matching for
cross-project defect prediction. Inf. Softw. Technol. pp. 106588
(2021)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/joxeankoret/diaphora
https://www.zynamics.com/bindiff.html
https://www.coresecurity.com/core-labs/open-source-tools/turbodiff-cs
https://www.coresecurity.com/core-labs/open-source-tools/turbodiff-cs
http://arxiv.org/abs/1807.06756
http://arxiv.org/abs/1803.04497

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9725

31. Flake,H.: Structural comparison of executable objects. In:DIMVA,
vol. 46, pp. 161–173. Citeseer (2004)

32. Gao, D.; Reiter, M.K.; Song, D.: Binhunt: automatically finding
semantic differences in binary programs. In: International Confer-
ence on Information and Communications Security, pp. 238–255.
Springer (2008)

33. Ming, J.; Pan, M.; Gao, D.: ibinhunt: Binary hunting with inter-
procedural control flow. In: International Conference on Informa-
tion Security and Cryptology, pp. 92–109. Springer (2012)

34. Zuo, F.; Li, X.; Young, P.; Luo, L.; Zeng, Q.; Zhang, Z..: Neu-
ral machine translation inspired binary code similarity comparison
beyond function pairs. arXiv preprint arXiv:1808.04706 (2018)

35. Alrabaee, S., Shirani, P.,Wang, L., Debbabi,M.: Sigma: a semantic
integrated graph matching approach for identifying reused.

36. Zhang, C.; Feng, C.; Li, R.H.: Locating vulnerability in binaries
using deep neural networks. Ieee Access 7, 134660–134676 (2019)

37. Hu, Y.; Wang, H.; Zhang, Y.; Li, B.; Gu, D..: A semantics-based
hybrid approach onbinary code similarity comparison. IEEETrans.
Softw. Eng. pp. 1–1 (2019)

38. Pewny, J.; Garmany, B.; Gawlik, R.; Rossow, C.; Holz, T.: Cross-
architecture bug search in binary executables. In: 2015 IEEE
Symposium on Security and Privacy, pp. 709–724. IEEE (2015)

39. Tixier, A.J.-P.; Nikolentzos, G.; Meladianos, P.; Vazirgiannis, M.:
Graph classification with 2d convolutional neural networks. In:
International Conference on Artificial Neural Networks, pp. 578–
593. Springer (2019)

40. Atamna, A.; Sokolovska, N.; Jean-Claude, C.: A simple
permutation-invariant graph convolutional network. Spi-gcn
(2019)

41. Wang,L.; Zong,B.;Ma,Q.;Cheng,W.;Ni, J.;Yu,W.;Liu,Y.; Song,
D.; Chen, H.; Fu, Y.: Inductive and unsupervised representation
learning on graph structured objects. In: ICLR (2020)

42. Liu, S.; Demirel, M.F.; Liang, Y.: N-gram graph: Simple unsu-
pervised representation for graphs, with applications to molecules.
arXiv preprint arXiv:1806.09206 (2018)

43. Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P.: Graph matching
networks for learning the similarity of graph structured objects. In:
International Conference on Machine Learning, pp. 3835–3845.
PMLR (2019)

44. Wang, R.; Yan, J.; Yang, X.: Learning combinatorial embed-
ding networks for deep graph matching. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp.
3056–3065 (2019)

45. Jiang, B.; Sun, P.; Tang, J.; Luo, B.: Glmnet: graph
learning-matching networks for feature matching. arXiv preprint
arXiv:1911.07681 (2019)

46. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D.: Neural
network-based graph embedding for cross-platform binary code
similarity detection. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 363–
376. ACM (2017)

47. Gao, J.; Yang, X.; Fu, Y.; Jiang, Y.; Sun, J.: Vulseeker: a semantic
learning based vulnerability seeker for cross-platform binary. In:
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 896–899. ACM (2018)

48. Redmond, K.; Luo, L.; Zeng, Q.: A cross-architecture instruction
embedding model for natural language processing-inspired binary
code analysis. arXiv preprint arXiv:1812.09652 (2018)

49. Zhang, H., Qian, Z..: Precise and accurate patch presence test
for binaries. In: 27th {USENIX} Security Symposium ({USENIX}
Security 18), pp. 887–902 (2018)

50. Wang, S.-C.; Liu, C.-L.; Li, Y.; Xu,W.-Y.: Semdiff: Finding semtic
differences in binary programs based on angr. In: ITM Web of
Conferences, vol. 12, pp. 03029. EDP Sciences (2017)

51. Zeping, Y.; Cao, R.; Tang, Q.; Nie, S.; Huang, J.; Shi, W.: Order
matters: semantic-aware neural networks for binary code similarity
detection. In: Proceedings of the AAAI Conference on Artificial
Intelligence vol. 34, 1145–1152 (2020)

52. Yu, Z.; Zheng, W.; Wang, J.; Tang, Q.; Nie, S.; Wu, S.: Codecmr:
cross-modal retrieval for function-level binary source code match-
ing. Adv. Neural Inf. Process. Syst. 33 (2020)

53. Ding, S.H.H.; Fung, B.C.M.; Charland, P.: Kam1n0: Mapreduce-
based assembly clone search for reverse engineering. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 461–470 (2016).

54. Li, Y.; Jang, J.; Ou, X.: Topology-aware hashing for effective con-
trol flow graph similarity analysis. In: International Conference on
Security and Privacy in Communication Systems, pp. 278–298.
Springer (2019)

55. Duan, Y.; Li, X.; Wang, J.; Yin, H..: Deepbindiff: Learning
program-wide code representations for binary diffing (2020)

56. Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; Chang, E.: Network repre-
sentation learning with rich text information. In: Twenty-Fourth
International Joint Conference on Artificial Intelligence (2015)

123

http://arxiv.org/abs/1808.04706
http://arxiv.org/abs/1806.09206
http://arxiv.org/abs/1911.07681
http://arxiv.org/abs/1812.09652

	A Heuristic Local-sensitive Program-Wide Diffing Method for IoT Binary Files
	Abstract
	1 Introduction
	2 System Overview
	3 Initial Anchor Function Selection and Expansion of Comparison Function Set
	3.1 Initial Anchor Function Selection
	3.2 Expansion Procedure of Comparison Function Set

	4 Feature Extraction and EMD Calculation
	4.1 Local-Data-Sensitive Feature Extraction
	4.2 Extraction of Other Features
	4.3 Selection of New Anchor Functions

	5 Evaluation
	5.1 Availability of the Expansion Method Based on Function Call Graph(RQ1)
	5.2 Analysis Efficiency (RQ2)
	5.3 Effectiveness (RQ2)
	5.4 Relationship Between Anchor Function Ratio and Iterations (RQ3)

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

