Skip to main content
Log in

A Compact Metamaterial-Based Open-Ended CPW Band-Pass Filter for Wireless Applications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article suggests an open-ended coplanar waveguide band-pass filter using stepped-impedance resonators (SIR) and complementary split-ring resonators (CSRR) that operates at a wider bandwidth with higher band selectivity at 4G—LTE applications. The filter described here is collimated to work in the frequency range of 2.23–4.2 GHz. SIR is used to provide improved selectivity at 2.6 GHz and 3.5 GHz with a return loss of − 30 dB and an insertion loss of − 0.2 dB. Similarly, including CSRR in the design aided in attaining broader bandwidth by ensuring a low ripple value across the bandwidth. The fractional bandwidth of 61.3 percent and a 2 GHz broad band coverage is accomplished with a small footprint of (16 × 16 × 0.8) mm3. The decreased dimensions of the filter result in a group delay of 0.5 ns for maximum filter performance. By loading CSRR into the structure, it established double negative property in the simulated frequency range of interest. A vector network analyzer is used to evaluate system characteristics such as operational bandwidth, return loss, and insertion loss (VNA). The filter’s electrical size (0.19 × 0.19)\({\uplambda }_{\mathrm{g}}\) compactness substantiates its application in 4G—LTE—WLAN/WiMaX standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All the data that are portrayed here are original information retrieved through appropriate simulator and the experimental verification was carried out using Agilent Vector Network Analyser.

References

  1. Marques, R.; Martin, F.; Sorolla, M.: Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. Wiley, Hoboken, NJ (2008)

    Google Scholar 

  2. Martin, F.; Bonache, J.; Falcone, F.; Sorolla, M.; Marques, R.: Split-ring resonator-based left-handed coplanar waveguide. Appl. Phys. Lett. (2003). https://doi.org/10.1063/1.1631392

    Article  Google Scholar 

  3. Bonache, J.; Gil, I.; García-García, J.; Martín, F.: Novel microstrip bandpass filters based on complementary split-ring resonators. IEEE Trans. Microw. Theory Tech. (2006). https://doi.org/10.1109/TMTT.2005.861664

    Article  MATH  Google Scholar 

  4. Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C.: Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microw. Theory Tech. (2002). https://doi.org/10.1109/TMTT.2002.805197

    Article  Google Scholar 

  5. Caloz, C.; Itoh, T.: Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. Wiley, New York (2005)

    Book  Google Scholar 

  6. Gil, M.; Bonache, J.; Garcia-Garcia, J.; Martel, J.; Martin, F.: Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design. IEEE Trans. Microw. Theory Tech. (2007). https://doi.org/10.1109/TMTT.2007.897755

    Article  Google Scholar 

  7. Velez, A.; Aznar, F.; Bonache, J.; Velazquez-Ahumada, M.C.; Martel, J.; Martin, F.: Open complementary split ring resonators (OCSRRs) and their application to wideband CPW band pass filters. IEEE Microw. Wirel. Compon. Lett. (2009). https://doi.org/10.1109/LMWC.2009.2015490

    Article  Google Scholar 

  8. Borja, A.L.; Belenguer, A.; Cascón, J.; Esteban, H.; Boria, V.E.: Wideband passband transmission line based on metamaterial-inspired CPW balanced cells. IEEE Antennas Wirel. Propag. Lett. (2011). https://doi.org/10.1109/LAWP.2011.2178385

    Article  Google Scholar 

  9. Borja, A.L.; Carbonell, J.; Boria, V.E.; Lippens, D.: Highly selective left-handed transmission line loaded with split ring resonators and wires. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3116647

    Article  Google Scholar 

  10. Borja, A.L.; Carbonell, J.; Boria, V.E.; Lippens, D.: Symmetrical frequency response in a split ring resonator based transmission line. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.3025625

    Article  Google Scholar 

  11. Aznar, F.; Bonache, J.; Martin, F.: Improved circuit model for lefthanded lines loaded with split ring resonators. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2839600

    Article  Google Scholar 

  12. Gil, I.; Bonache, J.; Gil, M.; García-García, J.; Martín, F.; Marqués, R.: Accurate circuit analysis of resonant-type left handed transmission lines with inter-resonator coupling. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2353174

    Article  Google Scholar 

  13. Nguyen, H.V.; Caloz, C.: Broadband highly selective bandpass filter based on a tapered coupled-resonator (TCR) CRLH structure. Proc. Eur. Microw. Assoc. 2, 44–51 (2006)

    Google Scholar 

  14. Borja, A.L.; Carbonell, J.; Boria, V.E.; Cascon, J.; Lippens, D.: A 2% bandwidth C-band filter using cascaded split ring resonators. IEEE Antennas Wirel. Propag. Lett. (2010). https://doi.org/10.1109/LAWP.2010.2046711

    Article  Google Scholar 

  15. Carbonell, J.; Borja, A.L.; Boria, V.E.; Lippens, D.: Duality and superposition in split ring resonator loaded planar transmission lines. IEEE Antennas Wirel. Propag. Lett. (2009). https://doi.org/10.1109/LAWP.2009.2028299

    Article  Google Scholar 

  16. Marques, R.; Mesa, F.; Martel, J.; Medina, F.: Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—theory and experiments. IEEE Trans. Antennas Propag. (2003). https://doi.org/10.1109/TAP.2003.817562

    Article  Google Scholar 

  17. Gorur, A.K.; Karpuz, C.; Ozek, A.; Emur, M.: Metamaterial based dual-band bandpass filter design for Wlan/Wimax applications. Microw. Opt. Technol. Lett. (2014). https://doi.org/10.1002/mop.28564

    Article  Google Scholar 

  18. Quddious, A.; Abbasi, M.A.B.; Saghir, A.; Arain, S.; Antoniades, M.A.; Polycarpou, A.; Vryonides, P.; Nikolaou, S.: Dynamically reconfigurable SIR filter using rectenna and active booster. IEEE Trans. Microw. Theory Tech. (2019). https://doi.org/10.1109/TMTT.2019.2891524

    Article  Google Scholar 

  19. Pozar, D.M.: Microwave engineering. Wiley, Hoboken (2011)

    Google Scholar 

  20. Dib, N.I.; Katehi, L.P.B.: Theoretical Characterization of coplanar waveguide transmission lines and discontinuities. Radiation Lab, University of Michigan, Ann Arbor, Michigan (1992)

    Google Scholar 

  21. Simons, R.N.: Coplanar Waveguide Circuits, Components, and Systems. Wiley, New York (2001)

    Book  Google Scholar 

  22. Ferran, M.: Metamaterials for wireless communications, radio frequency identification and sensors. ISRN Electron (2012). https://doi.org/10.5402/2012/780232

    Article  Google Scholar 

  23. Danaeian, M.; Moznebi, A.-R.; Afrooz, K.: Compact narrow band-pass filter based on alternate right–left handed transmission line concept. Analog Integr Circuits Signal Process (2020). https://doi.org/10.1007/s10470-020-01635-8

    Article  Google Scholar 

  24. Bandyopadhyay, A.; Sarkar, P.; Mondal, T.; Ghatak, R.: A high selective tri-band bandpass filter with switchable passband states. Int. J. Microw. Wirel. Technol. (2019). https://doi.org/10.1017/S1759078719001053

    Article  Google Scholar 

  25. Surendar, U.; Revathi, G.; William, J.: Design of metamaterial bandpass filter for wireless applications. Proc. Int. Conf. Recent Trends Inf. Telecommun. Comput. ITC ACEEE 2, 788–792 (2014)

    Google Scholar 

  26. Ramanujam, P.; Arumugam, C.; Venkatesan, R.; Ponnusamy, P.G.M.: Design of compact UWB filter using parallelcoupled line and circular open-circuited stubs. J Res (2020). https://doi.org/10.1080/03772063.2020.1803772

    Article  Google Scholar 

  27. Volakis, J.L.; Chen, C.; Fujimoto, K.: Small Antennas: Miniaturization Techniques and Applications. Mcgraw-Hill, New York (2010)

    Google Scholar 

  28. Alici, K.B.; Ozbay, E.: Electrically small split ring resonator antennas. J. Appl. Phys. 101, 083104–1-083104–4 (2007). https://doi.org/10.1063/1.2722232

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendar Udhayasuriyan.

Ethics declarations

Conflict of interest

I hereby declare that the authors and co-authors of the manuscript have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udhayasuriyan, S., Subramaniyan, S. & Johnson, W. A Compact Metamaterial-Based Open-Ended CPW Band-Pass Filter for Wireless Applications. Arab J Sci Eng 47, 3473–3480 (2022). https://doi.org/10.1007/s13369-021-06339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06339-3

Keywords

Navigation