Skip to main content
Log in

Investigation of Coated Tool Performance on the Machinability, Surface Residual Stress and Chip Morphology of Martensitic AISI 420 Steel

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Martensitic AISI 420 steel has widespread applications in the manufacturing of shafts of large vertical pumps, various dental and surgical instruments because of its better mechanical, heat and corrosion resistance properties. However, the machining of this steel possesses a great challenge because of its poor thermal conductivity. Therefore, the current study aims to study the performance of different coated carbide tool (multi-coated TiN-Al2O3-TiCN-TiN, multi-coated TiN-TiCN-Al2O3-TiN coated, single TiAlN coated) and uncoated carbide tool during the dry turning of martensitic AISI 420 steel at different cutting parameters (speed, feed, depth). The machining performances such tool wear, surface defect, residual stress, cutting force and chip morphology are assessed. Abrasion, built-up edge, adhesion and micro-cracks are the wear mechanism observed in the cutting tools. The uncoated tool showed minimum generation of residual stress on the machined surface followed by single TiAlN coated tool. The influence of tool coatings and machining parameters on the various geometrical characteristics of the sawtooth chip has been investigated. It is perceived that the TiAlN coated tool results in minimum frequency and maximum chip segmentation ratio of chips compared to other tools. Out of the different coated and uncoated carbide tools utilized during the turning of martensitic AISI 420 steel, the single-layer TiAlN coated tool performed superior in terms of reduction of tool wear, cutting forces and surface roughness compared to the other coated tools and uncoated tool. The results indicate an average percentage reduction in flank wear, surface roughness, feed force and tangential force of 70.5, 42.8, 24.1 and 20.7%, respectively, using the TiAlN coated tool compared to the uncoated tool. The current investigations recommend the TiAlN coated tool with a feed rate in the range of 0.10–0.25 mm/rev while machining martensitic AISI 420 steel because of its excellent overall performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

MSS:

Martensitic Stainless Steel

CVD:

Chemical Vapour Deposition

PVD:

Physical Vapour Deposition

MT-CVD:

Medium Temperature-Chemical Vapour Deposition

AISI:

American Iron and Steel Institute

TiAlN:

Titanium Aluminium Nitride

AlTiN:

Aluminium Titanium Nitride

AlCrN:

Aluminium Chromium Nitride

TiAlSiN:

Titanium Aluminium Silicon Nitride

TiN:

Titanium Nitride

TiCN:

Titanium Carbo Nitride

SEM:

Scanning Electron Microscope

EDS:

Energy-Dispersive X-ray Spectroscopy

XRD:

X-Ray Diffraction

BUE:

Built-Up Edge

References

  1. Corrêa, J.G.; Schroeter, R.B.; Machado, A.R.: Tool life and wear mechanism analysis of carbide tools used in the machining of martensitic and supermartensitic stainless steels. Tribol. Int. 105, 102–117 (2017). https://doi.org/10.1016/j.triboint.2016.09.035

    Article  Google Scholar 

  2. Campbell, F.C.: Elements of metallurgy and engineering alloys. Ohio, ASM International (2008)

    Book  Google Scholar 

  3. International stainless steel forum.categories, grades and product form, https://www.worldstainless.org/about-stainless/what-are-stainless steels/categories grades-and-product-forms/. Accessed 16 Aug 2020

  4. Gupta, M.K.; Mia, M.; Singh, G.R.; Pimenov, D.Y.; Sarikaya, M.; Sharma, V.S.: Hybrid cooling-lubrication strategies to improve surface topography and tool wear in sustainable turning of Al 7075–T6 alloy. J. Adv. Manuf. Technol. 101(1–4), 55–69 (2019). https://doi.org/10.1007/s00170-018-2870-4

    Article  Google Scholar 

  5. PalDey, S.C.; Deevi, S.C.: Single layer and multi-layer wear resistant coatings of (Ti, Al) N: a review. Mater Sci and Eng: A. 342(1–2), 58–79 (2003). https://doi.org/10.1016/S0921-5093(02)00259-9

    Article  Google Scholar 

  6. Ranjan, P.; Hiremath, S.S.: Role of textured tool in improving machining performance: a review. J. Manuf. Process. 43, 47–73 (2019). https://doi.org/10.1016/j.jmapro.2019.04.011

    Article  Google Scholar 

  7. Sargade, V.G.; Gangopadhyay, S.; Paul, S.; Chattopadhyay, A.K.: Effect of coating thickness on the characteristics and dry machining performance of TiN film deposited on cemented carbide inserts using CFUBMS. Mater. Manuf. Proc. 26(8), 1028–1033 (2011). https://doi.org/10.1080/10426914.2010.526978

    Article  Google Scholar 

  8. De Paula, M.A.; Ribeiro, M.V.; Souza, J.V.; Kondo, M.Y.: Analysis of the performance of coated carbide cutting tools in the machining of martensitic stainless steel aisi 410 in dry and mql conditions. Mater. Res. Express. 6(1), 016512 (2018). https://doi.org/10.1088/2053-1591/aae28b

    Article  Google Scholar 

  9. Paseuth, A.; Fukui, H.; Yamagata, K.: Improvement of mechanical properties and cutting performance of modified MT-TiCxN1− x coating by moderate temperature chemical vapor deposition. Surf. Coat. Technol. 291, 54–61 (2016). https://doi.org/10.1016/j.surfcoat.2016.02.023

    Article  Google Scholar 

  10. Rosa, G.C.; Souza, A.J.; Possamai, E.V.; Amorim, H.J.; Neis, P.D.: Wear analysis of ultra-fine grain coated carbide tools in hard turning of AISI 420C stainless steel. Wear 376, 172–177 (2017). https://doi.org/10.1016/j.wear.2017.01.088

    Article  Google Scholar 

  11. Noordin, M.Y.; Venkatesh, V.C.; Sharif, S.: Dry turning of tempered martensitic stainless tool steel using coated cermet and coated carbide tools. J. Mater. Process. Technol. 185(1–3), 83–90 (2007). https://doi.org/10.1016/j.jmatprotec.2006.03.137

    Article  Google Scholar 

  12. Alok, A.; Das, M.: Multi-objective optimisation of cutting parameters during sustainable dry hard turning of AISI 52100 steel with newly develop HSN2-coated carbide insert. Measurement 133, 288–302 (2019). https://doi.org/10.1016/j.measurement.2018.10.009

    Article  Google Scholar 

  13. Parsi, P.K.; Kotha, R.S.; Routhu, T.; Pandey, S.; Dwivedy, M.: Machinability evaluation of coated carbide inserts in turning of super-duplex stainless steel. SN Appl. Sci. 2(11), 1–19 (2020). https://doi.org/10.1007/s42452-020-03570-9

    Article  Google Scholar 

  14. Kumar, C.S.; Patel, S.K.: Performance analysis and comparative assessment of nano-composite TiAlSiN/TiSiN/TiAlN coating in hard turning of AISI 52100 steel. Surf. Coat. Technol. 335, 265–279 (2018). https://doi.org/10.1016/j.surfcoat.2017.12.048

    Article  Google Scholar 

  15. Jamil, M.; Khan, A.M.; He, N.; Li, L.; Iqbal, A.; Mia, M.: Evaluation of machinability and economic performance in cryogenic-assisted hard turning of α-β titanium: a step towards sustainable manufacturing. Mach. Sci. Technol. 23(6), 1022–1046 (2019). https://doi.org/10.1080/10910344.2019.1652312

    Article  Google Scholar 

  16. Wang, X.; Huang, C.; Zou, B.; Liu, G.; Zhu, H.; Wang, J.: Experimental study of surface integrity and fatigue life in the face milling of inconel 718. Front. Mech. Eng. 13(2), 243–250 (2018). https://doi.org/10.1007/s11465-018-0479-9

    Article  Google Scholar 

  17. Bhandarkar, L.R.; Behera, M.; Mohanty, P.P.; Sarangi, S.K.: Experimental investigation and multi-objective optimisation of process parameters during machining of AISI 52100 using high performance coated tools. Measurement 172, 108842 (2021). https://doi.org/10.1016/j.measurement.2020.108842

    Article  Google Scholar 

  18. Sánchez, H.Y.; Trujillo, V.F.J.; Bermudo, G.C.; Hurtado, L.S.: Experimental parametric relationships for chip geometry in dry machining of the Ti6Al4V alloy. Materials 11(7), 1260 (2018). https://doi.org/10.3390/ma11071260

    Article  Google Scholar 

  19. Xiong, Y.; Wang, W.; Jiang, R.; Lin, K.; Shao, M.: Mechanisms and FEM simulation of chip formation in orthogonal cutting in-situ TiB2/7050Al MMC. Materials 11(4), 606 (2018). https://doi.org/10.3390/ma11040606

    Article  Google Scholar 

  20. Prevey, P.S.: X-ray diffraction residual stress techniques. ASM International, ASM Handbook. 10, pp. 380-392 (1986)

  21. Das, S.R.; Panda, A.; Dhupal, D.: Experimental investigation of surface roughness, flank wear, chip morphology and cost estimation during machining of hardened AISI 4340 steel with coated carbide insert. Mech. Adv. Mater. Modern Process. 3(1), 1–14 (2017). https://doi.org/10.1186/s40759-017-0025-1

    Article  Google Scholar 

  22. Sahoo, S.P.; Datta, S.: Dry machining performance of AA7075-T6 alloy using uncoated carbide and MT-CVD TiCN-Al 2 O 3-coated carbide inserts. Arab J. Sci. Eng. 45(11), 9777–9791 (2020)

    Article  Google Scholar 

  23. Gabaldo, S.; Diniz, A.E.; Andrade, C.L.; Guesser, W.L.: Performance of carbide and ceramic tools in the milling of compact graphite iron-CGI. J. Braz. Soc. Mech. Sci. Eng. 32, 511–517 (2010). https://doi.org/10.1590/s1678-58782010000500011

    Article  Google Scholar 

  24. Sharif, S.; Rahim, E.A.: Performance of coated-and uncoated-carbide tools when drilling titanium alloy—Ti–6Al4V. J. Mater. Process. Technol. 185(1–3), 72–76 (2007). https://doi.org/10.1016/j.jmatprotec.2006.03.142

    Article  Google Scholar 

  25. Tuffy, K.; Byrne, G.; Dowling, D.: Determination of the optimum TiN coating thickness on WC inserts for machining carbon steels. J. Mater. Process. Technol. 155, 1861–1866 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.277

    Article  Google Scholar 

  26. Rajaguru, J.; Arunachalam, N.: Coated tool performance in dry turning of super duplex stainless steel. Procedia Manuf. 10, 601–611 (2017). https://doi.org/10.1016/j.promfg.2017.07.061

    Article  Google Scholar 

  27. Talib, R.J.; Zaharah, A.M.; Selamat, M.A.; Mahaidin, A.A.; Fazira, M.F.: Friction and wear characteristics of WC and TiCN-coated insert in turning carbon steel workpiece. Procedia Engineering 68, 716–722 (2013). https://doi.org/10.1016/j.proeng.2013.12.244

    Article  Google Scholar 

  28. Basavarajappa, S.; Suresh, R.; Gaitonde, V.N.; Gaitonde, V.N.; Samuel, G.L.: Analysis of cutting forces and surface roughness in hard turning of AISI 4340 using multi-layer coated carbide tool. Int. J. Mach. Mach. Mater. 16(2), 169–185 (2014). https://doi.org/10.1504/IJMMM.2014.064687

    Article  Google Scholar 

  29. Chinchanikar, S.; Choudhury, S.K.: Investigations on machinability aspects of hardened AISI 4340 steel at different levels of hardness using coated carbide tools. Int. J. Refract. Hard. Met. 38, 124–133 (2013). https://doi.org/10.1016/j.ijrmhm.2013.01.013

    Article  Google Scholar 

  30. Grzesik, W.: Experimental investigation of the cutting temperature when turning with coated indexable inserts. Int. J. Mach. Tools Manuf. 39(3), 355–369 (1999). https://doi.org/10.1016/S0890-6955(98)00044-3

    Article  Google Scholar 

  31. Ezugwu, E.O.; Bonney, J.; Da Silva, R.B.; Cakir, O.: Surface integrity of finished turned Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies. Int. J. Mach. Tools Manuf. 47(6), 884–891 (2007). https://doi.org/10.1016/j.ijmachtools.2006.08.005

    Article  Google Scholar 

  32. Li, X.; Liu, Z.; Liang, X.: Tool wear, surface topography, and multi-objective optimisation of cutting parameters during machining AISI 304 austenitic stainless steel flange. Metals 9(9), 972 (2019). https://doi.org/10.3390/met9090972

    Article  Google Scholar 

  33. Vasumathy, D.; Meena, A.: Influence of micro scale textured tools on tribological properties at tool-chip interface in turning AISI 316 austenitic stainless steel. Wear 376, 1747–1758 (2017). https://doi.org/10.1016/j.wear.2017.01.024

    Article  Google Scholar 

  34. Fernández-Abia, A.I.; Barreiro, J.; De Lacalle, L.L.; Martinez, S.: Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels. Int. J. Adv. Manuf. 57(1–4), 61–71 (2011). https://doi.org/10.1007/s00170-011-3267-9

    Article  Google Scholar 

  35. Joshi, S.; Tewari, A.; Joshi, S.: Influence of preheating on chip segmentation and microstructure in orthogonal machining of Ti6Al4V. J. Manuf. Sci. Eng. 135(6), 061017 (2013). https://doi.org/10.1115/1.4025741

    Article  Google Scholar 

  36. Sun, S.; Brandt, M.; Dargusch, M.S.: Characteristics of cutting forces and chip formation in machining of titanium alloys. Int. J. Mach. Tools Manuf. 49(7–8), 561–568 (2009). https://doi.org/10.1016/j.ijmachtools.2009.02.008

    Article  Google Scholar 

  37. Arulkirubakaran, D.; Senthilkumar, V.: Performance of TiN and TiAlN coated micro-grooved tools during machining of Ti-6Al-4V alloy. Int. J. Refract. Hard Met. 62, 47–57 (2017). https://doi.org/10.1016/j.ijrmhm.2016.10.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somashekhar S. Hiremath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, P., Hiremath, S.S. Investigation of Coated Tool Performance on the Machinability, Surface Residual Stress and Chip Morphology of Martensitic AISI 420 Steel. Arab J Sci Eng 47, 8503–8522 (2022). https://doi.org/10.1007/s13369-021-06303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06303-1

Keywords

Navigation