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Abstract
In the present study, modeling of intelligent numerical computing through Levenberg–Marquardt back propagation-based
supervised neural network (LMB-SNN) is incorporated to analyze the magnetohydrodynamic flow of a third grade fluid for
wire coating analysis (MHD-TGFWCA). The original mathematical formulations in terms of partial differential equations
for MHD-TGFWCA are converted into a system of ordinary differential equations through dimensionless parameters and
a suitable transformation mechanism. A reference dataset for the LMB-SNNs scheme is created with Adam’s numerical
technique for various scenarios by variation of different physical quantities such as third grade fluid parameter, magnetic
parameter, and the velocity ratio parameter. To compute the approximate solution for MHD-TGFWCA in terms of various
scenarios, the training, testing, and validation operations are carried out in parallel to adjust neural networks by developing
the mean square error function (MSEF) through Levenberg–Marquardt back-propagation. The comparative analyses and
performance studies through outputs of MSEF, regression illustrations, and error histograms validate the effectiveness of the
suggested solver LMB-SNNs. The method’s precision is verified by the closest numerical outputs of both built and dataset
values with similar levels 10−5 to 10−9.
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Abbreviations
LM Levenberg–Marquardt
SNN Supervised neural network
MHD Magnetohydrodynamic
B Back-propagation
w∗ Fluid velocity component
T Cauchy stress tensor
J Current density
b Induced magnetic force
M Magnetic parameter
Re Reynolds number
u Velocity ratio
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τo, τ1, τ2 Constants
V1, V2 Speed of the gas around the coated wire
β Non-Newtonian parameter
L Length
Uw Wire velocity
P Non-zero stress
TGF Third grade fluid
WC Wire coating
D
Dt Material derivative
A–E ~Absolute error
w Dimensionless fluid velocity
ρ Fluid density
B Total magnetic field
E Electric field
σ Electric conductivity
Bo Magnetic field
μ magnetic permeability
η Viscosity coefficient of the fluid
r , Z Space coordinates
Rw Wire radius
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Rd Die radius unit exit
MSE Mean square error−→
V Velocity vector

1 Introduction

In a wire coating (WC) process, the wire is placed into a
fluid bath containing a polymer molten, then into a mold
that wipes the fluid and produces a coating of the required
shape. In a manner, its the movement of the air that flows
via the polymer and brings it into the mold. The flux in the
die is a pull flux by a fixed cross-sectional equivalent to the
state of the pivotal loop withdrawal flow or a flight Cou-
ette flow. Very Little information is present in the existing
research on the topic of the WC problem about its solution
through stochastic techniques. Maximum literature on the
WC system solution methodologies is based on determinis-
tic infrastructure, i.e., Denn [1] and Middleman’s [2] books
are provided the fundamental design ofWC problem simula-
tion in a viscous fluid. Akter and Hashmi [3,4] introduced a
WC mathematical paradigm where the non-Newtonian fluid
follows the constituent systems of energy rule fluid. They
studied the impact of viscosity change through the illustra-
tion of the WC operation. The attention in the research of
non-Newtonian fluids has grown in the last few years. The
equations governing these fluids’ movement present many
defies for engineers, mathematicians, physicists, and model-
ers. Non-Newtonian mathematical models for WC analysis
are based on stiff nonlinear differential equations and nor-
mally exact analytical solutions of complex mathematical
models are not available in the literature. Therefore, a vari-
ety of numerical as analytical techniques is introduced by
the research community to handle the complexities of the
system by finding approximate solutions [5–13]. Moreover,
Mitsoulis [14] investigated the flow of WC with heat trans-
fer. Sajid et al. [15] applied Sisko fluid for the WC system
by using the homotopy analysis method. The Oldroyd 8–
constant fluid was utilized for analysis of WC by Shah et al.
[16]. Sajid et al. [17] studied the MHD flow of an Oldroyd
8–constant fluid for analysis of WC in a pressure–type coat-
ing die. Zeeshan et al. [18] developed the differential type
non-Newtonian system for WCA. Shah et al. [19] also stud-
ied the WC system for differential type fluidic system in the
presence of heat transfer. The existing literature onWC anal-
ysis is deeply investigated by using numerical and analytical
deterministic approaches for the solution of the WC system
subjected todifferent types ofNewtonian andnon-Newtonian
fluids. On the other hand, artificial intelligence-based numer-
ical soft computing solver is comparatively less discovered
and analyzed in the WC system-related problems, especially
for WC systems in different flow dynamics.

The artificial intelligence-based numerical solvers are estab-
lished primarily by the modeling artificial neural networks
(ANN) and different back-propagation search approaches for
solving a range of problems centered on ordinary and par-
tial differential systems. Recent applications based on the
soft computing solvers include nonlinear systems emerg-
ing in the fluid dynamics [20–22], biological mathematics
[21,23,24], financial system model [25], neuro-fuzzy model
[26], pantograph system [27–29], mathematical models in
plasma physics [30], COVID-19 virus spread model [31],
Lane–Emden model [21], magnetohydrodynamics problem
[32], delay differential equation system [33], and Heat con-
duction model [34] are little under significant examples of
these solutions. Such facts inspire the authors to explore and
incorporate soft computing architectures as an alternative,
precise, and feasible computational approach for solving
the fluid mechanic’s systems associated with the WC sys-
tem. In this research work, a stochastic solver based on
the back-propagation of the Levenberg–Marquardt method
is exploited for solving theWCmathematical system by per-
forming a parametric analysis to investigate the influences or
different physical parameters on the velocity profile. Math-
ematica and MATLAB applications are used for numerical
analysis. The creative ideas into the suggested computing
models are illustrated as follows:

– A new implementation centered intelligent computing of
the artificial intelligence is introduced using Levenberg–
Marquardt back-propagation based supervised neural
network (LMB-SNN) for interpreting the analysis of
MHD-TGFWCA.

– The original mathematical formulation in terms of PDEs
for MHD-TGFWCA is converted into a dimensionless
nonlinear system of ODEs.

– A dataset for proposed LMB-SNN is produced for the
analysis of fluidic flow system MHD-TGFWCA based
physical quantities associated with the system consist of
ODEs using state-of-the-art Adams numerical technique.

– The training, validation, and testing operations of the
LMB-SNN are developed for MHD-TGFWCA in terms
of different scenarios, and comparison with the reference
results confirms the accuracy of the suggested LMB-
SNN.

– Mean squared-based convergence analysis, regression
plots, and histograms representations are constructed for
the cases of MHD-TGFWCA, which further validate the
accuracy and convergence of the designed solver.

The remaining parts of the manuscript are organized as
follows: The problem formulation of magnetohydrodynamic
flux (MHD) of a viscoelastic fluid for the examination ofWC
is described in Sect. 2. The solution methodology of the sug-
gested LMB-SNN on various variables of MHD-TGFWCA
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Fig. 1 Wire-coating operations

Fig. 2 Geometry of the problem

is briefly explained in Sect. 3. The results and discussion are
presented in Sect. 4. The final fifth section consists of the
conclusion of the study.

2 Mathematical Model

Here, let us discuss a WC process in which the flow reaches
a control leak unit connected to the melting chamber. The
flow joins the pressure unit after moving through the melting
chamber. In this situation, the pressure put the coating on
the wire. Then, a speed control motor powers the bull-block
next, injuring a coated wire. The typical dynamics system of
the problem can be seen in Figs. 1 and 2. Where L is mold
length, and Rw is the wire radius.We suppose in our problem
the following:

– The flux of the molten polymer is laminar.
– The third grade is the fluid under study.
– The flow is concentric.
– At every point z, the axial fluid pressure is independent
on the radial length r .

We consider the momentum and continuity equations for
third grade fluid as following [29]:

∇ · −→
V = 0, (1)

ρ
D

−→
V

Dt
= J × B + ∇ · T . (2)

The velocity domain and the nonzero stress are

−→
V = 0i + 0 j + w∗(r)k, P = P(r). (3)

TheMaxwell’s equations for electrically conducting fluid are

∇ · E = 0, (4)

∇ × E = 0, (5)

∇ × B = μJ . (6)

Moreover, the Ohm’s law as following:

J = σ(E + w∗ × B), (7)

where E is the electric field, J is current density, σ is electric
conductivity, and μ is magnetic permeability. The magnetic
field B = b+ Bo is perpendicular to the velocity domainw∗,
and the inducedmagnetic force b is insignificant compared to
the applied magnetic force, resulting in a reduced magnetic
Reynolds number (Re). Relying on these considerations,
especially for low magnetic Re, the magnetohydrodynamic
force is

J × B = −B2
oσw∗. (8)

From Eqs. 1, 2, 3, and 8, supposing there is no pressure
gradient along the flow path, the momentum Eq. 2 transform
to the dimensional governing equation of the proposed WC
as follows:

2 (τ1 + τ2)
d

dr

[
r

(
dw∗

dr

)3
]

+ η

r

d

dr

(
r
dw∗

dr

)

−σ B2
ow

∗ = 0, (9)

with boundary conditions

w∗ (Rw) = V1, w∗ (Rd) = V2, (10)

where τ1 and τ2 are constants, w∗ denotes the dimensional
velocity in the trend of r, Rd is the radius of the mold, η

represents the viscosity coefficient of the fluid, and V2 is the
speed of the gas around the coated wire.
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The dimensionless variables/parameters as following:

w‘ = w∗

V1
, r ‘ = r

Rw

, τo = τ1 + τ2,
Rd

Rw

= δ > 1,

β = τo

μ

(
R2

w

V 2
1

) ,
V2
V1

= U , M2 = σ B2
o Rw

μ
. (11)

Using Eq. 11, we get:

r
d2w

dr2
+ dw

dr
+ 2β

[
3r

d2w

dr2

(
dw

dr

)2

+
(
dw

dr

)3
]

−M2w = 0, (12)

with boundary conditions

w(1) = 1, w(δ) = u, (13)

where w denotes the dimensionless velocity in the trend of
r, third grade fluid parameter β, magnetic parameter M , and
the velocity ratio u.

3 SolutionMethodology

There are two techniques for neural network training: unsu-
pervised and supervised. Unsupervised learning requires the
neural network to make a perception of the inputs values
without the help and guidance of a user. In the present study
are used supervised learning which both the input values and
the output values are given. The neural network then pro-
cedures the input data and relates the consequent outputs
to the target values. Errors are then propagated back via the
scheme, allow the scheme tomodify theweights that regulate
the neural network.
The complete design of the operations flow paradigm can
be seen in Fig. 3. The suggested LMB-SNN is carried out
using the ’nftool’ routine in MATLAB, whereas training the
neural network weight is carried out using the Levenberg–
Marquardt Backpropagation Method.
Numerical simulation for LMB-SNN is provided here for the
WC analysis model with third grade fluid shown in Eqs. 12
and 13. The suggested LMB-SNN is implemented for three
different scenarios by the impact of β, M , and u, for all cases
ofMHD-TGFWCAas shown inTable 1, i.e., every parameter
given in Eqs. 12 and 13 has four cases using different values
of the MHD flow analysis of a third grade fluid for wire
coating process have been numerically solved by the SNN-
LMB scheme.
Dataset for LMB-SNN is determined for inputs between
1 and 2 with a time interval of 0.001 by using the solu-
tions of state-of-the-art numerical technique throughout the

Table 1 Detailing of scenarios along with cases for MHD-TGFWCA

Scenario Case Physical quantities of interest
β M u

1 1 0.1 0.2 0.1

2 0.3 0.2 0.1

3 0.6 0.2 0.1

4 0.9 0.2 0.1

2 1 0.1 0.6 0.1

2 0.1 1.6 0.1

3 0.1 2.6 0.1

4 0.1 3.6 0.1

3 1 0.3 0.3 0.1

2 0.3 0.3 0.3

3 0.3 0.3 0.5

4 0.3 0.3 0.7

’NDSolve’ a numerical solver for differential equations in the
Mathematica software package for every variant of the WC
analysis model with third grade fluid as shown in Table 1.
The reference solutions for w(r) for 1001 input points are
chosen randomly to create and design a set with 40 is the
number of hidden neurons and 80 % of data values for train-
ing, 10 % validation, and 10 % for testing, respectively. The
LMB-SNN-based computational model structure of neural
networks with Levenberg–Marquardt back-propagation of
the designed network is presented in Fig. 4.

4 Results and Discussion

The outputs of LMB-SNN for each case of all variants
involved in MHD-TGFWCA in terms of performance are
shown in Fig. 5, while states are shown in Fig. 6. Also, dia-
grams of histograms are given in Fig. 7, whereas Fig. 8
demonstrated regression parameters of MHD-TGFWCA.
The explanation related to fitting parameters is illustrated
in Fig. 9. Moreover, the convergence achieved in terms
of performance index, MSE, back-propagation mechanism,
completed epochs, and time participations are listed in
Tables 2, 3, and 4 for scenarios 1-3 of MHD-TGFWCA.
The best fit is characterized by training lost, validation lost,
and testing lost that lower to a stability point with a small gap
between the three final lost worth’s. The loss of the LMB-
SNN model is almost always lesser on the dataset than on
the testing and validation datasets. This implies that a gap
between the train, test, and validation lost learning curves
should be expected. Fig. 5a–c provides a convergence of
mean square error for a train, test, and validation best curves
are given for the fourth case of scenarios 1, 2, and 3 ofMHD-
TGFWCA. It can be seen that the lost training curve lowers
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Fig. 3 Scheme process of the suggested LMB-SNN for the WC analysis model with third grade fluid
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Fig. 4 Design of suggested
Neural network
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(b) Outcomes of MSE for Scenario 2
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Fig. 5 Performance of the LMB-SNN for testing, validation, and training procedures of Case 4 in the wire coating analysis model with third grade
fluid
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Fig. 6 Performance of LMB-SNN in terms of Gradient, Mu, and validation checks of Case 4 in the wire coating analysis model with third grade
fluid
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Fig. 7 Error-Histogram views of the LMB-SNN procedures for Case 4 in the wire coating analysis model with third grade fluid

Table 2 Results of LMB-SNN for Scenario1 of the WC analysis model with third grade model fluid

Scenario Cases MSE
Training Validation Testing Performance Grad Mu Epochs Time

(1) Variation in β 1 6.48E–13 9.09E–13 6.89E–13 9.0885E–13 9.89E–08 1E–13 139 0.01

2 7.74E–13 8.28E–13 9.99E–13 8.2820E–13 9.98E–08 1E–13 120 0.01

3 6.04E–13 7.22E–13 7.10E–13 7.2203E–13 9.94E–08 1E-13 143 0.01

4 1.24E–13 1.55E–13 1.79E–13 1.5528E–13 9.71E–08 1E–14 91 0.00

to the stability point. Also, the testing and validation loss
plots reduce to a stability point and have a tiny gap with
the training lost curve, indicating that a learning curves plot

show the best fit and the most perfect and united execution is
carried out at 91, 101, and 57 epochs with MSE in the range
10−13, 10−13, and 10−12, respectively. The gradient and Mu
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Fig. 8 Regression views of the LMB-SNN results for Case 4 of scenario 3 in the WC analysis model with third grade fluid, The top left and right
sub-figures are results for training and validation samples, respectively, while bottom left and right sub-figures are for the results of testing and all
samples, respectively

Table 3 Outcomes of LMB-SNN for second Scenario of the WC analysis model for third grade fluid

Scenario Cases MSE
Training Validation Testing Performance Grad Mu Epochs Time

(2) Variation in M 1 1.55E–13 2.37E–13 2.48E–13 2.3672E–13 9.76E–08 1E–14 74 0.00

2 1.20E–13 1.38E–13 1.63E–13 1.3835E–13 9.897E–08 1E–14 95 0.00

3 1.40E–13 1.83E–13 2.02E–13 1.8317E–13 9.72E–08 1E–14 82 0.01

4 1.16E–13 1.65E–13 1.52E–13 1.6541E–13 9.97E–08 1E–14 101 0.00

parameters of Levenberg–Marquardt back-propagation are
(9.71×10−08, 9.97×10−08, and 9.20×10−08) and (10−14)
as given in Fig. 6a–c. The results indicate the precision and
convergence efficiency of the LMB-SNNprocedure for every
case of MHD-TGFWCA.

The dynamics of the performance is further analyzed by error
histogram as shown in Fig. 7a–c for scenarios 1, 2, and 3,
respectively, of MHD-TGFWCA. The average error value
closed to zero axes or at 8.24 × 10−09, −3 × 10−08, and
7.5 × 10−08) for respective 1, 2, and 3 scenarios of MHD-
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Fig. 9 Comparison of reference solutions with LMB-SNN outcomes for case 4 in the wire coating analysis model with third grade fluid

TGFWCA. The investigation throughout regression training
is performed by means of co-relation analyses. Figure 8 is
the regression outputs of one variation of MHD-TGFWCA
given in Eqs. 12 and 13. It can be seen that the worths of
correlation index R are closed to unity, i.e., good model-

ing scenario, in a situation of training, testing as well as
validation, which approved the correctness of LMB-SNN
methodology for MHD-TGFWCA.

The efficacy ofLMB-SNN-based outputs obtained is iden-
tified with matching results of Adams numerical solver for
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Table 4 Outcomes of LMB-SNN for third Scenario of the WC analysis model for third grade fluid

Scenario Cases MSE
Training Validation Testing Performance Grad Mu Epochs Time

(3) Variation in u 1 6.99E–13 8.95E–13 9.01E–13 8.9530E–13 9.92E–08 1E–13 109 0.00

2 6.16E–13 6.98E–13 8.64E–13 6.9784E–13 9.98E–08 1E–13 138 0.00

3 2.27E–12 2.88E–12 4.28E–12 2.8766E–12 9.76E–08 1E–13 89 0.00

4 3.76E–13 7.28E–13 5.83E–13 7.2837E–13 9.20E–08 1E–14 57 0.00

1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Proposed:  = 0.1
Proposed:  = 0.3
Proposed:  = 0.6
Proposed:  = 0.9
Numerical

(a) Impact of β on the velocity.

1 1.2 1.4 1.6 1.8 2
10-9

10-8

10-7

10-6

10-5

 = 0.1
 = 0.3
 = 0.6
 = 0.9

(b) Analyze of A-E

Fig. 10 Comparison between suggested LMB-SNN with results of numerical reference for scenario 1 in the wire coating analysis model with third
grade fluid

1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Proposed: M = 0.6
Proposed: M = 1.6
Proposed: M = 2.6
Proposed: M = 3.6
Numerical

(a) Impact of M on the velocity.

1 1.2 1.4 1.6 1.8 2

10-8

10-7

10-6

M = 0.6
M = 1.6
M = 2.6
M = 3.6

(b) Analyze of A-E

Fig. 11 Comparison between suggested LMB-SNN with results of numerical reference for scenario 2 in the wire coating analysis model with third
grade fluid

scenarios 1, 2, and 3 of MHD-TGFWCA, as illustrated in
Fig. 9 and further supported by graphs of error. The maxi-
mum error for testing, training, and validation inputs of the

structure LMB-SNNare around 1×10−5, 1×10−5, 2×10−6,
and 1×10−6 for different cases of systemMHD-TGFWCA.
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u = 0.5
u = 0.7

(b) Analyze of A-E

Fig. 12 Comparison between suggested LMB-SNN with results of numerical reference for scenario 3 in the wire coating analysis model with third
grade fluid

Moreover, Tables 2, 3, and 4 present results of the process
of LMB-SNN for solving each case of all three scenarios of
MHD-TGFWCA using ‘nftool,’ i.e., a routine used for neu-
ral network fitting tool in Matlab software which lists the
details of the study with varying number of epochs, grad,
Mu (i.e., step-size of back-propagation), time participations,
MSE for testing, training, and validation of learning algo-
rithmand their performance. The respective numerical values
established inTables 2, 3, and 4 for scenarios 1-3 of the veloc-
ity parameter of MHD-TGFWCA show that performance on
MSE for the suggested LMB-SNN process is around 10−13,
10−13, and 10−12 to 10−13 for MHD-TGFWCA. All numer-
ical outputs and illustrations provided in Tables 2, 3, and 4
confirm the robust, consistent, and accurate performance of
LMB-SNN for solving the variants of MHD-TGFWCA.
As a result, the LMB-SNN outcomes are analyzed for the
dimensionless velocity distribution for all three scenarios of
the MHD-TGFWCA as seen in Figs. 10, 11, and 12. The
outcomes of the LMB-SNN corresponded to the numerical
solutions of the Adams numerical method for each scenario.
It can be seen from Fig. 10a that the rise of the third grade
fluid parameter and the velocity ratio slightly increase the
fluid velocityw(r) in the flowdynamics ofMHD-TGFWCA,
while the velocity profile is decreasing by the rise of themag-
netic parameter as shown in Fig. 11a. Furthermore, Fig. 12a
describes that the high value of the velocity ratio increases
the velocity profile. Figures 10b, 11b, and 12b indicate that
the A–E is about 10−5 to 10−9, 10−6 to 10−8, and 10−5

to 10−9 for all scenarios of MHD-TGFWCA, respectively.
The numerical and graphical diagrams show the validity and
worth of the solver LMB-SNN based on the precise accu-
racy, convergence, and powerful performance analysis for
the solution of MHD-TGFWCA.

5 Conclusion

In this work, the integrated stochastic numerical comput-
ing solver is discussed for finding the solution of fluid
mechanics problem representing the WC process using
magneto–hydrodynamic (MHD) flow of a third grade fluid
based on various scenarios for the parameter of third grade
fluid, the parameter of magnetic, and the velocity ratio.
The training (80%), validation (10%), and testing (10%) are
exploited to create structured LMB-SNNswith 40 number of
hidden neurons. The MSE level 10−05 to 10−09 accessed the
accuracy of the suggested design based on LMB-SNNs. In
addition, the correctness is verified by numerical and graph-
ical illustrations for the convergence plots on MSE index,
error histograms as well as regression dynamics. We found
that the rise of the third grade fluid parameter (β) and the
velocity ratio (u) enhances the velocity fluid in the flow
dynamics of the proposed problem, while the rise of themag-
netic parameter (M) reduces themagnetohydrodynamic flow
impact near the surface.
In the future, one may utilize the intelligent computing of
backpropagated with the Levenberg–Marquardt method to
clarify and better solve fluid mechanics problems [13,35,36].
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