Skip to main content
Log in

Fracture Behavior of Load-carrying Fillet Welded Joints Subjected to Tensile Loads

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For load-carrying fillet welded joints, the fracture due to the crack propagation near the root takes place frequently in practical engineering. Given the essential role of welded joints in Tee configurations with double-sided and single-sided welds, the assessments of the fracture behavior of such joints and the stress intensity factors (SIFs) related to the crack opening (mode-I) fracture and the sliding or shear (mode-II) fracture are the main topic of this study. A planar structure finite element model incorporating the crack body with the singularity in front of the crack tip is developed to simulate the failure at weld root due to the presence of non-penetrating regions. Effects of the fillet angle (θf), the effective weld throat thickness (he), the thicknesses of the main plate (tp) and the cross plate (tc) on SIFs are analyzed. The results show that the effect of he/tp has a significant effect on SIFs and becomes more obvious as the crack is propagated at the weld root and inside the fillet weld. The increase of θf significantly amplifies the SIFs especially for the fracture mode related to KII. The effect of tc/tp is insignificant for the fracture mode related to KI while its amplification results in a moderate increase of KII especially for the single-sided fillet welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

θ, r :

Angle and radius of the area of singularity at the crack tip, respectively

θ f :

Fillet angle

f(θ):

Angular function of near tip fields

σ x, σ y :

Stress components in x and y directions

σ m :

Nominal tensile stresses applied on main plate and converted from Ft/tpBp, respectively

τ xy :

Shear stress component

χ :

Constant for plain stress state

υ :

Poisson’s ratio

SIF:

Stress intensity factor

a :

Length of surface crack

B p :

Width of main plate

E :

Elastic modulus

F t :

Load applied on the main plate, respectively

f k :

Non-dimensional correction factor for cruciform shape

G :

Strain energy release rate

h e, h f :

Sizes of effective weld throat and weld leg assuming fillet angle of 45°, respectively

H c, H m :

Fillet leg lengths at the cross plate and the main plate, respectively

K I, K II :

Mode-I and mode-II stress intensity factors

References

  1. Lippold, J.C.: Welding metallurgy and weldability, 1st edn. Wiley, New York (2014)

    Google Scholar 

  2. Blodgett, O.W.; Funderburk, R.S.; Miller, D.K.; Quintana, M.: Fabricators’ and Erectors’ Guide to Welded Steel Construction. The James F Lincoln Arc Welding Foundation, Cleveland (1999)

    Google Scholar 

  3. CEN: ENV1993–1–8, Eurocode 3: Design of steel structures: Part 1.8 Design of joint, European Standard, CEN, Brussels. (2005)

  4. Fisher, J.; Frank, K.; Hirt, M.; McNamee, B.: Effect of Weldments on the Fatigue Strength of Steel Beams, HRB Report No. 102 (1970)

  5. Feldmann, M.; Bartsch, H.; Kuhlmann, U.; Drebenstedt, K.; Ummenhofer, T.; Seyfried, B.: Auswertung von Ermüdungsversuchsdaten zur überprüfung von Kerbfallklassennach EC3-1-9. Stahlbau 88, 1004–1017 (2019)

    Article  Google Scholar 

  6. Bartsch, H.; Drebenstedt, K.; Seyfried, B.; Feldmann, M.; Kuhlmann, U.; Ummenhofer, T.: Analysis of fatigue test data to reassess EN 1993-1-9 categories. Steel Constr 13, 280 (2020)

    Article  Google Scholar 

  7. Amraei, M.; Ahola, A.; Afkhami, S.; Björk, T.; Heidarpour, A.; Zhao, X.-L.: Effects of heat input on the mechanical properties of butt-welded high and ultra-high strength steels. Eng. Struct. 198, 109460 (2019)

    Article  Google Scholar 

  8. Hanji, T.; Tateishi, K.; Shimizu, M.; Uchida, D.; Asano, K.; Kimura, R.: Fatigue strength of cruciform joints and longitudinal joints with laser-arc hybrid welding. Weld. World. 63, 1379–1390 (2019)

    Article  Google Scholar 

  9. Wang, Y.; Shang, X.; Peng, K.: Relocating mining microseismic earthquakes in a 3-D velocity model using a windowed cross-correlation technique. IEEE Access 8, 37866–37878 (2020)

    Article  Google Scholar 

  10. Peng, K.; Shi, S.; Zou, Q.: Quantitative characteristics of energy evolution of gas-bearing coal under cyclic loading and its action mechanisms on coal and gas outburst. Rock Mech Rock Eng 54, 3115–3133 (2021)

    Article  Google Scholar 

  11. Shang, X.; Wang, Y.; Miao, R.: Acoustic emission source location from P-wave arrival time corrected data and virtual field optimization method. Mech Syst and Signal Process 163(15), 108129 (2022)

    Article  Google Scholar 

  12. BS7910-Amendment 1. Guide to methods for assessing the acceptability of flaws in metallic structures. UK: British Standards Institution (2013).

  13. Molski, K.L.: Stress concentration at load-carrying fillet welded cruciform joints subjected to tensile and bending loads. Acta Mechanica et Automatica 13(4), 245–250 (2019)

    Article  Google Scholar 

  14. Kainuma, S.; Mori, T.: A study on fatigue crack initiation point of load-carrying fillet welded cruciform joints. Int J Fatigue 30, 1669–1677 (2008)

    Article  Google Scholar 

  15. Ahola, A.; Björk, T.: Fatigue strength of misaligned non-load-carrying cruciform joints made of ultra-high-strength steel. J Constr Steel Res 175, 106334 (2020)

    Article  Google Scholar 

  16. Kainuma, S.; Mori, T.: A fatigue strength evaluation method for load-carrying fillet welded cruciform joints. Int J Fatigue 28, 864–872 (2006)

    Article  Google Scholar 

  17. Xu, K.; Lu, Y.; Lie, S.T.: Loading-carrying welds joints analysis using boundary element method. Int J Solids Struct 42, 2965–2975 (2005)

    Article  Google Scholar 

  18. Pedersen, M.M.; Mouritsen, O.; Hansen, M.R.; Andersen, J.G.: Wenderby, J: Re-analysis of fatigue data for welded joints using the notch stress approach. Int. J. Fatigue 32(10), 1620–1626 (2010)

    Article  Google Scholar 

  19. Karakas, O.: Application of Neuber’s effective stress method for the evaluation of the fatigue behaviour of magnesium welds. Int. J. Fatigue 101, 115–126 (2017)

    Article  Google Scholar 

  20. Raftar, H.R.; Dabiri, M.; Ahola, A.; Björk, T.: Re-evaluation of weld root fatigue strength for load-carrying fillet welded joints using the notch stress concept. Int. J. Fatigue. 144, 106076 (2021)

    Article  Google Scholar 

  21. Parker, A.P.: The mechanics of fracture and fatigue. E. & F. N. Spon Ltd., London (1981)

    MATH  Google Scholar 

  22. Irwin, G.R.: Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys; Naval Research Lab: Washington, DC, USA, 1956; Sagamore Research Conference Proceedings; Volume 2, pp. 289–305.

  23. Harrison, J.D.: An analysis of the fatigue behavior of cruciform joints. Welding Institute Report No. E/21/12/68, 1968

  24. Hobbacher, A.F.: Recommendations for fatigue design of welded joints and components. Springer, Basel, Switzerland (2016)

    Book  Google Scholar 

  25. ANSYS@Academic Research, Release 15.0, Help System, Structural Analysis Guide, ANSYS, Inc., (2013)

  26. Molski, K.L.; Tarasiuk, P.: Stress concentration factors for welded plate T-joints subjected to tensile, bending and shearing Loads. Materials 14, 546 (2021)

    Article  Google Scholar 

  27. Al-Mukhtar, A.; Hu¨bner, P.; Henkel, S.; Biermann, H.: Lebensdauerberechnung Von Schweissverbindungen Mit Bruchmechanischen Methoden (Fatigue life calculation of welded joints with fracture mechanics methods), The German association for materials research and testing (DVM), 41 Conference, 17–18 February, Wuppertal, Germany, 63–72 (2009) (in German)

Download references

Acknowledgements

The authors are most grateful to the financial support provided by Sichuan Province Science and Technology Support Program (Grant No. 2020YJ0307), China Ministry of Housing and Urban-Rural Development (MOHURD) (Grant No. 2018-K9-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

All data generated or used during the study are available from the corresponding author by request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wang, Z., He, M. et al. Fracture Behavior of Load-carrying Fillet Welded Joints Subjected to Tensile Loads. Arab J Sci Eng 47, 4531–4543 (2022). https://doi.org/10.1007/s13369-021-06164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06164-8

Keywords

Navigation