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Abstract
The necessity to diminish the heliostats’ cost so that central tower concentrating solar power (CSP) systems can stride to the 
forefront to become the technology of choice for generating renewable electricity is obliging the industry to consider inno-
vative designs, leading to new materials being implemented into the development of heliostats. Honeycomb sandwich com-
posites offer a lightweight but stiff structure that appear to be an ideal substitute for existing heliostat mirrors and their steel 
supporting trusses, avoiding large drive units and reducing energy consumption. However, realizing a honeycomb sandwich 
composite as a heliostat, among a multitude of possible combinations can be tailored from, that delivers the best trade-off 
between the panel’s weight reduction (broadly equates to cost) and structural integrity is cumbersome and challenging due to 
the complex nonlinear material behaviour, along with the large number of design variables and performance constraints. We 
herein offer a simulation–optimization model for behaviour prediction and structural optimization of lightweight honeycomb 
sandwich composite heliostats utilizing artificial neural network (ANN) technique and particle swarm optimization (PSO) 
algorithm. Considering various honeycomb core configurations and several loading conditions, a thorough investigation was 
carried out to optimally choose the training algorithm, number of neurons in the hidden layer, activation function in a network 
and the suitable swarm size that delivers the best performance for convergence and processing time. Carried out for three 
case scenarios, each with different design requirements, the results showed that the proposed integrated ANN-PSO approach 
provides a useful, flexible and time-efficient tool for heliostat designers to predict and optimize the structural performance of 
honeycomb sandwich composite-based heliostats as per desired requirements. Knowing that heliostats in the field are not all 
subjected to the same wind conditions, this method offers flexibility to tailor heliostats independently, allowing them to be 
made lighter depending on the local wind speed in the field. This could lead to reductions in the size of drive units used to 
track the heliostat, and the foundations required to support these structures. Such reductions would deliver real cost savings, 
which are currently an impediment to the wider spread use of CSP systems.
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1 Introduction

Among all concentrating solar power (CSP) technologies 
[1–3], central-receiver tower CSP systems are one of the 
most promising renewable technologies for large-scale 

electricity production [4, 5]. However, a key challenge to 
these systems is the large number of mirrored heliostats 
which represent up to 50% of a CSP plant’s cost [6]. This has 
motivated the development of innovative heliostat designs 
and solutions, intended to reduce the heliostats’ cost without 
affecting its tracking performance [7–11].

One promising way of reducing the cost of heliostats 
would be to combine the mirror and its supporting struc-
ture into a single system. However, heliostats are constantly 
exposed to aerodynamic forces that can lead to structural 
deformations, affecting their optical performance. Therefore, 
one of the challenges in realizing this goal is ensuring they 
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are able to cope with the aerodynamic loads imposed upon 
them during operation [12–15].

In this vein, sandwich composite materials offer a light-
weight but stiff structure that appear to be an ideal sub-
stitute for existing heliostat mirrors and their supporting 
trusses [16–18]. Sandwich composites have been exten-
sively adopted in the motorsport, construction, marine and 
aerospace industries [19–22] (applications where reducing 
weight whilst maintaining the stiffness is of key importance) 
due to their comparatively low-cost, high strength-to-weight 
ratio, corrosion-resistance and good energy-absorbing capa-
bilities [23–26].

One common sandwich composite is the honeycomb core 
panel, whereby there are a large number of hexagonal voids 
for mass reduction, and the thickness of the core provides the 
stiffness. By relatively simple variations in cell geometry, 
and panel thickness, the properties of these panels can be 
tailored to the appropriate load conditions. In a recent study, 
the authors [27] characterized the wind loads that would 
be encountered on a heliostat for a range of wind condi-
tions. Based on the findings of this study, it was apparent 
that a sandwich composite heliostat mirror might maintain 
its structural integrity, to the appropriate optical require-
ments, and for the typical aerodynamic loading conditions. 
However, no attempt was made to confirm this.

Now, realizing a honeycomb core sandwich composite as 
a heliostat is a trade-off between weight reduction (which 
broadly equates to cost) and its structural properties (which 
determine its optical performance). In this respect, the prop-
erties of the honeycomb core are highly dependent upon the 
honeycomb’s cellular geometry [cell wall angle (φ), cell wall 
length (a) and cell wall thickness (t)] and the core thickness 
(D). Therefore, a relatively minor change in one parameter 
can lead to a significant alteration in the properties of the 
core. This, in turn, changes the properties of the panel, thus 
offering flexibility to tailor a material to a specific require-
ment [28–30].

Hence, with existing production process, it is possible 
to adjust honeycomb core sandwich composites to achieve 
superior mechanical properties through varying the core 
and panel configuration. This, in turn, improves both the 
strength and stiffness of the sandwich composite-based 
heliostat structure. However, accurately predicting the 
heliostat’s structural performance based on its honeycomb 
core’s configuration using classical analytical approaches 
are at best cumbersome and, at worst, unable to facilitate the 
predictions. Moreover, determining the optimal honeycomb 
core and panel configuration, among a multitude of pos-
sible combinations, that delivers the best trade-off between 
the panel’s weight reduction and structural integrity is not 
an easy task. The complex nonlinear material behaviour, 
along with the large number of design variables and perfor-
mance constraints, is a challenge to traditional deterministic 

and classical statistical-based design of experiments meth-
ods that are generally time-consuming and inefficient with 
the presence of local optima [31, 32]. This heightens the 
need for an accurate and powerful prediction–optimization 
method that overcomes such limitations.

1.1  Artificial Neural Network (ANN) Modelling

Given the nonlinearities and challenges to existing tech-
niques, the problem appears well suited to the use of a 
machine learning technique, such as an artificial neural net-
work (ANN). ANN has emerged as one of the prominent 
techniques for modelling complex nonlinear relationships, 
particularly in situations where the development of phe-
nomenological or conventional regression models becomes 
impractical or cumbersome [33]. ANN is a biologically 
inspired computational technique that emulates the human 
brain’s behaviour and learning process [34]. This approach 
does not require explicit knowledge of the physical phenom-
ena under investigation [35] but depends solely on the his-
toric input–output dataset (example set) to learn the relation-
ship between the data through training. ANN-based models 
provide multiple advantages, including the possession of 
an outstanding generalization ability owing to which it can 
accurately predict outputs for a new input data set, and the 
capability of dealing with noisy data and uncertainties [36].

Owing to their several attractive characteristics, the ANN 
approach has been extensively used in numerous applica-
tions in engineering, medicine, meteorology, economics, 
psychology and many other fields [34, 35, 37, 38]. In light 
of this, several studies have explored the use of ANN’s to the 
assessment of sandwich composite panels [39–47]. However, 
with regard to honeycomb core sandwich composites, there 
tends to be a scarcity of studies that attempt to establish a 
generalized prediction model that can capture the influence 
of each of the honeycomb core’s geometrical parameters 
[cell wall thickness (t), and the cell wall angle (φ), cell wall 
length (a), core thicknesses (D)]. The few attempts found in 
literature [39–42] were limited by the geometrical param-
eters considered and the variations in the cell geometry.

1.2  Particle Swarm Optimization (PSO)

In realizing a lightweight, but stiff, heliostat, there is a need 
to optimize the materials to achieve this. In recent years, 
several nature-inspired optimization techniques have come 
into existence including genetic algorithms (GA) [48], ant 
colony optimization (ACO) [49], bacterial foraging opti-
mization (BFO) [50], artificial bee colony (ABC) [51] and 
particle swarm optimization (PSO) [52]. Of these, particle 
swarm optimization (PSO) is a particularly promising and 
effective optimization technique for solving highly con-
strained nonlinear and non-convex optimization problems 
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[53]. Introduced by Kennedy and Eberhart [52], the PSO 
algorithm is based on the cooperative behaviour among spe-
cies such as bird flocking and fish schooling. The positions 
of points (particles) in the design space record the potential 
solutions of an optimization problem. Each particle updates 
its location according to its own best position and the entire 
swarm’s best position at each generation [54]. PSO has many 
merits over other optimization techniques, such as the fewer 
number of parameters to adjust unlike many other competing 
techniques, the low computational time and the flexibility to 
combine with other techniques to form hybrid tools. Added 
also, the PSO algorithm does not depend on the initial solu-
tion to start its iteration process [55, 56].

Because of its ease of implementation and fast search-
ing speed, the PSO algorithm has been widely used in vari-
ous engineering applications [54, 56–58] including several 
studies that utilized PSO in honeycomb sandwich compos-
ite investigations [41, 59–63]. However, it is surprising that 
these studies did not consider all the honeycomb core’s phys-
ical parameters [core thickness (D), cell wall angle (φ), cell 
wall thickness (t) and the cell wall length (a)] in their opti-
mization problems, considering the impact that each of these 
parameters has on the performance of honeycomb cores.

1.3  Overview and Contribution

Given the recent developments and potential application of 
machine learning techniques, ANN in particular, it is sur-
prising that their utilization in the design of central tower 
CSP systems is not more widely discussed in the literature, 
and to heliostats in particular. Having a predictive model 
that estimates the heliostat’s structural performance under 
the worst-case operational conditions would eradicate the 
need to establish a fluid–structure interaction (FSI) model 
[combined computational fluid dynamics and finite element 
analysis (CFD-FEA)] for design variations. This, in turn, 
reduces the implementation time and minimizes unnecessary 
computations. Furthermore, it appears that the utilization 
of PSO method for structural optimization of heliostats has 
not been studied yet. Rather, the use of PSO in central tower 
CSP systems’ has mainly focused on optimizing the heliostat 
field layout and the aiming strategy only [64–68].

As such, the aim of this work is to utilize artificial neural 
network (ANN) technique and particle swarm optimization 
(PSO) algorithm to establish a novel prediction–optimiza-
tion (ANN-PSO) model that predicts the structural perfor-
mance of honeycomb sandwich composite-based heliostats, 
and determines the optimum honeycomb core configuration 
leading to minimum self-weight of the heliostat’s sandwich 
composite panel while satisfying the necessary performance 
requirements (i.e. optical and material failure). Such an inte-
grated approach is intended to provide a useful, flexible and 
time-efficient tool for heliostat designers to optimize and 

tailor the structural performance of honeycomb sandwich 
composite-based heliostats (i.e. the chosen site’s maximum 
design wind velocity and optical and material failure limits).

2  Materials and Methods

2.1  Structural Configuration of the Honeycomb 
Sandwich Composite‑Based Heliostat

As the aim of the work was to explore the use of honeycomb 
composites as heliostats for CSP, it was necessary to ensure 
a comparable context to existing work in the field. In this 
respect, Sandia National Laboratories’ analysis of heliostat 
cost versus size [6] indicated that heliostats of around 150 
 m2 show the best economy. Hence, for this study, a honey-
comb sandwich composite-based heliostat structure, sche-
matically shown in Fig. 1, formed the basis of this analysis. 
The heliostat consists of a 148  m2 [11.84 m (H) × 12.5 m 
(W)] rectangular sandwich composite plate supported by 
four steel attachments (Young’s modulus (E) = 200 GPa; 
Poisson’s ratio (v) = 0.3; shear modulus (G) = 76.92 GPa; 
density (ρ) = 7850 kg/m3), each approximately 6 m long and 
0.15 m wide. Unlike existing large-area steel-based helio-
stats, such as the ATS heliostat [6, 7], where steel-based 
trusses extend along the entire reflector, the attachments 
were made smaller to reduce the amount of steel, with the 
sandwich panel providing the mirror module with the neces-
sary rigidity and support. Both the panel and the attachments 
are mounted on a steel-based torque tube/pedestal configura-
tion in what is known as a T-type configuration (the torque 
tube and the pedestal together form a ‘T’ and are coupled 
to each other by the drive system). This configuration was 
selected because state-of-the-art central tower CSP plants 
typically use T-type heliostats with azimuth–elevation track-
ing mechanisms [8, 69].

Focusing on the sandwich composite panel, it was 
assumed to be an aluminium honeycomb core sandwiched 
between two 0.3 mm aluminium skins. Aluminium (E = 69 
GPa; v = 0.33; G = 27 GPa; ρ = 2700 kg/m3) is often used 
for constructing honeycomb sandwich panels [70], due to 
its comparatively low-cost, high strength-to-weight ratio, 
corrosion-resistance and good energy-absorbing capabili-
ties [23, 25].

Furthermore, a 4-mm-thick glass mirror, similar to the 
one used in the ATS heliostat, is mounted on the top surface 
of the sandwich composite. Mirrored glass (E = 68.94 GPa; 
v = 0.23; G = 28.02 GPa; ρ = 2457.6 kg/m3) was selected as 
the reflective surface, being relatively inexpensive, with a 
high reflectance (0.93–0.94) and durability (20–25 years’ 
lifespan), and is widely accepted by the industry [8, 69]. To 
accommodate differences in thermal expansion between the 
glass facets and the metallic support structure, mirrors are 
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often connected to the support structure via flexible adhe-
sives [8, 71]. However, for model simplification, the inclu-
sion of this layer was neglected.

2.2  Design of the Artificial Neural Network Model

In developing the ANN model, there were five key input 
variables, the first four being the honeycomb core’s physi-
cal parameters [core thickness (D), cell wall angle (φ), cell 
wall thickness (t) and the cell wall length (a)] and the final 
being the wind speed. Now, according to [27], the sever-
est operational condition exists at a tilt angle of 30° when 
the wind flow is onto the mirrored heliostat surface. There-
fore, taking the worst-case condition as a baseline, a dataset 
was developed using the validated FSI model discussed in 
[27] for three different core thicknesses (D); 150, 300 and 
450 mm. For each of these core thicknesses, the following 
variations in the honeycomb cell geometry were considered: 
cell wall thicknesses (t) between 0.02 and 0.05 mm, cell wall 
lengths (a) ranging from 5 to 10 mm and cell wall angles (φ) 
varying between 10° and 50°, as shown in Fig. 2. Moreover, 
the wind speed was varied from 5 to 20 m/s to have a better 
generalized model that considers the desired site’s maximum 
recorded wind speed, delivering a total of 1440 data points.

Given this, Fig. 3 provides a schematic representation 
of the proposed network with the defined inputs and out-
puts, where the ANN model’s output variables represent 
the heliostat’s structural performance parameters. These 

parameters include the weight saving relative to the existing 
1550 kg ATS heliostat described previously [6] (determined 
by Eq. 1), the mirror surface’s maximum displacement, the 
maximum recorded stress at the heliostat panel’s lower 
aluminium sheet and a ‘core crush index’. This core crush 
index is defined as the ratio of the calculated critical collapse 
strength of the honeycomb core ( �collapse ) at a specific cel-
lular configuration relative to the maximum recorded stress 
at the core (Eq. 2) and a value greater than 1 indicates that 
the core is unlikely to experience material failure due to cell 
wall buckling.

where WATS is the total weight of the ATS heliostat’s mirror 
support structure; Whsch is the total weight of the honeycomb 
sandwich composite-based heliostat’s panel at a specific 
honeycomb core configuration.

Now in ANNs, the network learns the relationship 
between the data in the input and output layers using a 
training process that consists of several steps depending on 

(1)

Weight reduction percentage (% ) =
(WATS −Whsch)

WATS

× 100

(2)

Core crush index

=

Critical collapse strength of honeycomb
(

�collapse

)

Maximum recorded stress at the honeycmb core

Fig. 1  Sandwich composite-
based heliostat structure Mirror glass 

Aluminum honeycomb core 
(D) 

Aluminum sheet 
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the utilized training algorithm. In this work, two training 
algorithms were explored, the Levenberg–Marquardt (LM) 
and Bayesian Regularization (BR). When utilizing the LM 
algorithm, the training occurs through three phases: training, 
validation and testing. As such, the input data was randomly 
divided into three sets: 70% for training, 15% for testing and 
15% for validation. However, the BR training algorithm only 
uses two phases: training and testing [72]. Hence, for this 
algorithm, the input data were randomly divided with 70% 
of the data used for training and 30% used for testing.

In developing an ANN, the number of hidden neurons 
is a tuneable parameter, which is normally unknown and 
determined by the desired ANN model’s performance and 
complexity. For instance, having too few neurons in the hid-
den layer can give rise to lower predictive accuracy (i.e. the 
nonlinear trends in the dataset cannot be captured by the 
network). On the other hand, having too many neurons in the 
hidden layer can result in problems such as overfitting and 
high computational time [34]. Therefore, a trade-off needs to 
be found in order to determine the number of neurons in the 
hidden layer that provides the best prediction performance. 

In this study, the number of neurons in the hidden layer was 
varied between 3 and 101 neurons and assessing the model’s 
performance for each set of neurons using the tansig and 
logsig transfer functions.

The most common way to evaluate the performance 
of an established ANN model is by calculating the mean 
square error (MSE) (Eq. 3) and the determination coefficient 
(R2) between the model predicted output and actual values 
(Eq. 4). When the MSE is at its minimum and R2 is high, 
R2 > 0.98 ~ 0.99, a model can be judged to be providing good 
predictive capabilities, and so were used as the metrics in 
this study.

(3)MSE =
1

n

n
∑

i=1

(

Yact,i − Ypred,i

)2

(4)R
2 = 1 −

∑n

i=1

�

Yact,i − Ypred,i

�2

∑n

i=1

�

Yact,i − Yavg

�2

Fig. 2  Configurations used for the network design input dataset and design variables of optimization study with their search ranges

Fig. 3  Inputs and outputs of the 
ANN model for the prediction 
of the structural performance 
of the honeycomb sandwich 
composite-based heliostat
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where n is the number of data points, Yact is the cell wall 
length, Ypred is the predicted value from the established net-
work, and Yavg is the mean of the Yact values.

On this basis, the method for establishing the ANN model 
is shown schematically in Fig. 4.

2.3  Particle Swarm‑Based Structural Optimization 
of the Honeycomb Sandwich Composite‑Based 
Heliostat

Having defined the ANN, it was necessary to implement 
the particle swarm optimization (PSO) to optimize the 
properties of the heliostat material. In this regard, the PSO 
algorithm emulates the cooperative behaviour among spe-
cies such as flocks of birds and schools of fishes. Hence, 
potential solutions of an optimization problem are regarded 
as points (particles) in the design space. Each particle ( i ) 

Fig. 4  Flowchart of the pro-
posed ANN methodology
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possesses two characteristic components: position ( xi ) and 
velocity ( vi ). The particle’s position is the candidate solu-
tion, whereas the velocity determines the updating direction 
of the particle. These particles in the swarm proceed through 
the feasible solution space to explore optimal solutions. Each 
particle updates its location according to its own best posi-
tion ( pbesti

k
 ) and the entire swarm’s best position ( gbestk ) 

at each generation (iteration) ( k ). The velocity and position 
of a particle are updated based on Eqs. 5 and 6.

where vi
k
 and xi

k
 are the velocity and position of the ith parti-

cle in kth generation, respectively. c1 and c2 are acceleration 
constants (defined by c1 + c2 > 4 [31]) which determine the 
cognitive and the social learning rates, respectively, � is an 
inertia weight used to improve the convergence speed, and 
rand1 and rand2 are two random numbers comprise within 
the range of 0 and 1.

For selecting the values of the acceleration constants 
c1 (cognitive learning parameter) and c2 (social scaling 
parameter), it was assumed that the cognitive behaviour of 
each particle cannot be privileged compared to the social 
(collective) behaviour. Hence, no difference can be made 
between the two constants c1 and c2 . In this study and based 
on the restriction: c1 + c2 > 4 [31], a value of  c1 = c2 = 
2.05 was selected. In determining the inertia weight ( � ), 
the best suggested approach is by having a dynamic inertia 
weight (Eq. 7) according to the number of iterations [31, 
56]. At the start of the search procedure, each particle must 
be more flexible with respect to the group’s global tendency. 
As the search procedure converges to the optimal solution, 
this flexibility must be reduced progressively. In this regard, 
it is crucial to have a varying � to achieve the best swarm 
performance.

where iter represents the current generation, itermax is the 
maximum generation number, and �max and �min are, respec-
tively, the maximum and minimum values of the inertia 
weight, which can be set as 0.9 and 0.4, respectively, as 
suggested by previous PSO investigations [31, 58, 73].

2.3.1  Optimization Problem Formulation (Objective 
Function, Decision Variables and Constraints)

Now for this study, the main objective function is the total 
weight of the heliostat’s sandwich composite panel, which is 
intended to be as light as possible and ideally lighter than the 

(5)
v
i

k+1
= �v

i

k
+ c1 rand1

(

pbesti
k
− x

i

k

)

+ c2 rand2
(

gbest
k
− x

i

k

)

(6)x
i

k+1
= x

i

k
+ v

i

k+1

(7)�(iter) =
(itermax − iter)

itermax

×
(

�max − �min

)

+ �min

existing 148  m2 steel-based ATS heliostat’s mirror support 
structure (approximately 1550 kg [6]). Hence, the objective 
function can be formulated as shown in Eq. 8:

The optimization procedure consists of searching for the 
various geometrical parameters of the sandwich composite-
based heliostat’s panel. Therefore, the honeycomb core’s 
physical parameters [core thickness (D), cell wall angle 
(φ), cell wall thickness (t) and the cell wall length (a)] were 
defined as design variables, as illustrated in Fig. 2. The wind 
velocity, on the other hand, was not defined as a design vari-
able and was considered a flexible input parameter that is set 
by the user, depending on the requirements associated with 
the desired site’s maximum recorded wind speed.

In order to accomplish the investigation objective, which 
is to determine the optimum honeycomb core configura-
tion leading to minimum self-weight, the heliostat structure 
must satisfy restrictive requirements (constraints) concern-
ing optical, material failure and weight criterions. For the 
optical criteria, the structure should be able to keep its defor-
mation below 21.3 mm (using Björkman’s [74] approach to 
calculate the maximum allowable displacement). As for the 
material failure criterions, the two highly stressed compo-
nents of the sandwich panel that have a higher probability of 
experiencing material failure are the lower aluminium sheet 
and the aluminium honeycomb core.

For the lower aluminium sheet, the stresses imposed upon 
it should not exceed the yield strength of the material ( �y = 
280 MPa) so that the face yielding failure mode does not 
occur. For the honeycomb core, the ratio of the calculated 
critical collapse strength of the honeycomb core at a spe-
cific cellular configuration relative to the maximum recorded 
stress at the core (defined earlier as core crush index) should 
be greater than 1. It is important to highlight that these 
requirements are the minimum conditions necessary for a 
reliable operation of a heliostat, though constraints can be 
altered for an enhanced structural performance depending 
on the heliostat designer’s needs.

2.3.2  ANN‑PSO Optimization Procedure

Having established both the ANN and PSO, Fig. 5 illus-
trates the relationship between the models and provides a 
flowchart of the combined algorithm. From this, it can be 
seen that the ANN-PSO approach involves the following 
major steps: (1) set the PSO parameters’ values (e.g. number 
of particles, maximum number of iterations, etc.) and ini-
tialize randomly the swarm particles’ position and velocity 

(8)
Maximizeweight reduction percentage (%)

= Maximize
(WATS −Whsch)

WATS

× 100
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in the population; (2) evaluate each particle’s fitness, using 
an objective function as outputs from the ANN model run 
with inputs of the honeycomb core’s physical parameters 
(i.e. values of particles’ position); (3) update and record the 
local best ( pbesti

k
 ) and the global best ( gbestk ) values while 

comparing the currently calculated fitness values with the 
previous records; (4) update the velocity and position of 
each swarm particle using Eqs. (5) and (6), respectively; (5) 
check the stopping criteria, so that the optimization process 
can be repeated until the desired value of the objective func-
tion is reached with an accepted deviation or unchanged or 
the number of iterations reaches the predefined maximum 
number of iterations ( itermax ). As the PSO algorithm arrives 
at the imposed termination criteria, the final recorded global 
best position over all iterations leads to the optimization 
problem’s solution.

In undertaking the optimization process, the swarm size 
(number of particles) was varied from 5 to 60 particles. The 
number of particles is an adjustable parameter of which is 
normally unknown and determined by the algorithm’s con-
vergence performance and processing time. For small num-
bers of particles, the swarm will fall effortlessly into local 
optima without being able to leave later to find better results. 
On the other hand, having too many particles might result 
in better convergence towards a more global optimum (par-
ticles gather more information to have a further global view 
regarding the search space) but will result in high computa-
tional time. In this regard, the swarm size was varied to ana-
lyse and find the suitable number of particles that delivers 
the best performance for convergence and processing time. 
Moreover, the number of iterations was set sufficiently high 
( itermax = 100) to ensure a good convergence to the optimum 
solution with no or very little improvement.

To demonstrate the feasibility of the proposed approach 
for this system, two scenarios were considered and are sum-
marized in Table 1. In the first case, the design require-
ments are the minimum conditions necessary for a reliable 
operation of a heliostat. However in the second case, it was Fig. 5  Flowchart of the ANN-PSO methodology

Table 1  Description of the three cases to be optimized

Configuration 1 Configuration 2 Configuration 3

Chosen site’s maximum design wind velocity (m/s) 20 20 5
Design variables
 Core thickness (D) (mm) To be optimized To be optimized To be optimized
 Cell wall angle (φ) (degree) To be optimized To be optimized To be optimized
 Cell wall thickness (t) (mm) To be optimized To be optimized To be optimized
 Cell wall length (a) (mm) To be optimized To be optimized To be optimized

Design requirements
 Maximum allowable structural deformation (mm) 21.3 10 21.3
 Maximum allowable stress at lower aluminium sheet (MPa) 280 100 280
 Minimum allowable core crush index 1 5 1
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assumed that the targeted heliostat was subjected to a wind 
of 20 m/s, but the design requirements were altered for more 
enhanced structural performance. As for the third case, the 
design wind speed was reduced to 5 m/s, with minimum 
design requirements similar to the first case.

3  Results and Discussion

3.1  Effect of the Geometric Configuration 
of Honeycomb on the Aero‑Structural 
behaviour Characteristics of the Sandwich 
Composite‑Based Heliostat

Prior to implementing an ANN-PSO model, there is a need 
to understand the impact that each of the honeycomb’s geo-
metric properties [i.e. cell wall angle (φ), cell wall length 
(a), cell wall thickness (t)] has on the heliostat structure. To 
this end, it was decided to perform a parametric analysis of 
how each geometric property could potentially affect the 
structural behaviour characteristics of the heliostat’s sand-
wich composite panel, and the desired weight savings.

Exploring the effect of cell wall length (a), Fig. 6 shows 
the displacement distribution of the heliostat’s reflective 
surface and stress distribution at both the lower aluminium 

sheet and the aluminium honeycomb core, for a core with a 
thickness (D) of 300 mm, cell wall thickness (t) of 0.02 mm 
and cell wall angle (φ) of 10°, as the honeycomb’s cell wall 
length is varied. It can be seen that increasing the honey-
comb’s cell wall length was found to strongly affects the 
panel’s stiffness, causing the heliostat’s lower edge deflec-
tion to increase until it reaches its maximum at this con-
figuration when the cell wall length approaches a = 10 mm. 
Similarly, and corresponding to the variation in the helio-
stat’s structural deformation caused by changing the cell wall 
length, the same trend was observed in the stress concentra-
tions at both the lower aluminium sheet and the honeycomb 
core (Fig. 6). This is due to the fact that as the honeycomb’s 
cell wall length increases; the honeycomb cells become less 
dense, and the area fraction of non-load-carrying cell walls 
increases. This results in a reduction in the Young’s modulus 
of the honeycomb core in all directions (E1, E2, E3), caus-
ing the heliostat panel to be less stiff and less resistant to 
external loads. This could lead to a reduction in the panel’s 
ability to meet the other performance constraints placed 
on it. The same observation was also identified in Ivañez 
et al.’s [30] work, where they investigated both numerically 
and experimentally the effect of the variation of cell wall 
length (a) on the crushing behaviour and on the energy-
absorption capacity of honeycomb cores. In their work, it 
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Fig. 6  Displacement and stress distribution results for different cell wall lengths (a)
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was found that specimens with large cells had lower energy-
absorption levels as the contact area for bearing the com-
pressive load was smaller, leading to a lower average crush 
force. Although this appears undesirable, weight savings can 
be achieved by increasing the cell wall length, as shown 
in Fig. 7. This reduced weight on the supporting structure 
results in a decrease in the supporting steel attachments’ 
deformation contribution to the total deformation experi-
enced by the heliostat.

As for the cell wall thickness (t) effect on the structural 
behaviour characteristics of the heliostat’s sandwich com-
posite panel, Fig. 8 shows the displacement distribution of 
the heliostat’s reflective surface and the stress distribution 
at both the lower aluminium sheet and the aluminium hon-
eycomb core for a core with a thickness (D) of 300 mm, 
cell wall length (a) of 10 mm and cell wall angle (φ) of 
40°. From the results, it can be seen that increasing the 
honeycomb’s cell wall thickness (t) causes a decrease in 

Fig. 7  Cell wall length (a) effect on the mirror support structure’s 
attainable weight reduction
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Fig. 8  Displacement and stress distribution results for different cell wall thicknesses (t)
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the structural deflection of the panel’s lower edge region, 
resulting in lower stresses at the lower ends of the interface 
between the steel attachments and the panel’s back surface. 
This can be attributed to the fact that, as the honeycomb’s 
cell walls are thickened, their bending resistance increases, 

and consequently, the honeycomb core becomes more resist-
ant to local buckling and crushing, causing an increase in 
the heliostat panel’s stiffness and resistance to wind loads. 
Referring to Ivañez et al.’s [30] work that addressed, along 
with other parameters, the impact of cell wall thickness (t) 
on the performance of honeycomb cores, their investiga-
tion highlighted that cell wall thickness is the parameter that 
most affected the results, reaching compressive load values 
of up to 3.5 times higher with the doubled cell-wall thick-
ness model. Though this appears desirable, increasing the 
cell wall thickness results in a marked rise in weight (Fig. 9). 
The substantial increase in the overall weight of the honey-
comb core with the increase in cell wall thickness causes 
the supporting steel attachments to act upon this increase to 
maintain the deformations of the heliostat.

As for the cell wall angle effect (φ), Fig. 10 shows the 
displacement distribution of the heliostat’s reflective sur-
face, and the stress distribution at both the lower aluminium 
sheet and the aluminium honeycomb core for a core with a 
thickness (D) of 300 mm, cell wall thickness (t) of 0.02 mm 
and cell wall length (a) of 5 mm. It can be seen that the 
heliostat sandwich panel that consists of a honeycomb core 

Fig. 9  Cell wall thickness (t) effect on the mirror support structure’s 
attainable weight reduction
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Fig. 10  Displacement and stress distribution results for different cell wall angles (φ)
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with cell wall angle (φ) of 10° experiences the maximum 
structural deformation. Increasing the honeycomb’s cell wall 
angle strongly influences the stiffness of the panel, causing 
the deflection at the heliostat’s lower edge to decrease until 
it reaches its minimum when the cell wall angle reaches 
φ = 50°. Similarly, and corresponding to the change in the 
heliostat’s structural deformation caused by altering the cell 
wall angle, the same trend of decrease was seen also in the 
stress concentrations at both the lower aluminium sheet and 
the honeycomb core (Fig. 10). This can be attributed to the 
fact that as the honeycomb’s cell wall angle increases; the 
honeycomb’s cell walls become more compact and internally 
coherent, increasing the area fraction of load-carrying cell 
walls causes the heliostat panel to be stiffer and more resist-
ant to buckling and crushing. This coincides very well with 
the findings of Yamashita and Gotoh [29], where they inves-
tigated the out-of-plane (normal to the surface) mechanical 
properties of honeycomb structures with changed cell wall 
angles. In their study, it was shown that varying the cell 
structures by this simple method can enhance the honey-
comb’s out-of-plane crushing strength to almost 1.5 times 
comparing to the regular hexagonal honeycomb. Despite this 
observation, it can be clearly noted that for very low cell 
wall angles (φ = 10°), the overall weight of the sandwich 
panel is high. However, with the increase in cell wall angle 
the overall weight decreases as a result of the increase in the 
void between the cell walls. Due to the reduced weight on 
the supporting structure, the contribution of the supporting 
steel attachments to the total displacement experienced by 
the heliostat also decreases with a similar trend and reaches 
its lowest value at φ = 30°. Increasing the cell wall angle 
further, and as described previously that the honeycomb’s 
cell walls become more compact and dense and internally 
coherent with the increase in cell wall angle, the sandwich 
panel’s overall weight increases. This results in an increase 
in the supporting steel attachments’ deformation contribu-
tion to the total deformation experienced by the heliostat 
(Fig. 11). Despite the appearance of an optima at an angle 
of 30° for this case, it needs to be considered that the weight 
at this point is much larger than those seen in the preceding 
cases. As such, this point is a local optima, and thus high-
lights the need for a more advanced optimization strategy 
such as the ANN-PSO.

3.2  Assessment and Validation of the ANN Model

Having shown the impact of the honeycomb’s geometric 
configuration on the aero-structural behaviour characteris-
tics of the sandwich composite-based heliostat, the potential 
weight savings that could be achieved through variations to 
the heliostat core’s geometric configuration, as well as hav-
ing noted the shortcomings of a heuristic approach to this 

analysis, attention was turned towards establishing an ANN 
model and assessing its performance.

As noted previously, two variations were explored, the 
Levenberg–Marquardt (LM)- and the Bayesian regulariza-
tion (BR)-based ANN models, trained using the tansig and 
logsig transfer functions. Figure 12 shows the mean square 
error (MSE) and determination coefficient (R2) for both net-
works, with various number of neurons in the hidden layers. 
The results demonstrate the number of neurons in the hidden 
layer does not automatically imply that the ANN model will 
have a better predictive accuracy. Rather, the best architecture 
for the ANN model is recognized as that which has a minimum 
MSE and maximum R2. In this regard, the BR training algo-
rithm outperformed the LM algorithm, resulting in lower MSE 
and higher  R2 values. The same remark was also highlighted 
in Khalid et al.’s [72] work, where their research focused on 
proposing a procedure to estimate the duration of software 
projects utilizing ANN. In their work, BR and LM training 
algorithms were used to train the ANN model. After compar-
ing the performances of the two approaches, it was concluded 
that BR offers superior results than LM. Furthermore, it is 
evident that a BR-based ANN model trained using the tansig 
transfer function showed the best predictions.

Based on these findings, the final network model was 
trained using the BR algorithm and the tansig transfer func-
tion. It constituted of 5 neurons in the input layer, 89 neurons 
in the hidden layer and 4 neurons in the output layer, as these 
had shown the minimum MSE and maximum  R2 value.

Exploring this further, Fig. 13 shows a normalized com-
parison between the predicted values from the ANN model 
and the actual values for the entire dataset. From the results, 
it can be seen that the optimum model shows good predic-
tion ability, thereby improving our confidence in utilizing it 
in further analyses.

Fig. 11  Cell wall angle (φ) effect on the mirror support structure’s 
attainable weight reduction
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3.2.1  Predictive Performance of the ANN Model Within 
the Training Dataset Bounds

In order to demonstrate the flexibility of the ANN model, the 
model was tested for its ability to predict the structural per-
formance of the heliostat based on an unseen dataset within 
the training bounds. For a heliostat panel subjected to a wind 
of 20 m/s and consisting of a honeycomb core with a thick-
ness (D) of 300 mm, Figs. 14 and 15 demonstrate the cell 
geometry effect and the structural performance predictions 
made by the ANN model at multiple cell wall angles for 
unseen honeycomb cell wall thicknesses (t) of 0.025, 0.035 
and 0.045 mm.

Starting with the case when the heliostat panel consists 
of a honeycomb core with cell wall angle (φ) of 10°, the 
panel experiences the maximum structural deformation and 
stress values when the honeycomb’s cell wall thickness is 

of t = 0.02 mm. At this configuration (φ = 10°, t = 0.02 mm), 
the resultant deformation and stresses at both the lower alu-
minium sheet and the aluminium honeycomb core were 
found to increase with the increase in the honeycomb’s cell 
wall length (a). As previously discussed, weight savings are 
achieved by increasing the cell wall length. This is due to the 
fact that as the honeycomb’s cell wall length increases; the 
honeycomb cells become less dense, and the area fraction of 
non-load-carrying cell walls increases. However, it needs to 
be tempered against the fact that this results in a reduction 
in the Young’s modulus of the honeycomb core, resulting in 
a less stiff heliostat panel with less resistance to wind loads.

Both the displacement and stress values dramati-
cally decrease as the honeycomb’s cell wall thickness (t) 
increases from t = 0.02 mm to t = 0.03 mm for the same 10° 
cell wall angle results and all cell wall lengths. As previ-
ously described, the honeycomb’s cell walls’ bending resist-
ance increases with the increase in thickness, causing an 
increase in the heliostat panel’s stiffness and resistance to 
local buckling and crushing. Moreover, it is apparent from 
the results that a further increase in the cell wall thickness 
has a slight influence on the heliostat’s structural perfor-
mance, and as the cell wall thickness gradually increases 
from t = 0.03 mm to t = 0.05 mm, the displacement and stress 
values do slightly decrease. This slight improvement in the 
structural performance comes with a substantial increase in 
the overall weight of the honeycomb core.

The maximum displacement and stress results for a helio-
stat panel that consists of a core with φ = 30° revealed the 
same patterns of variation seen in the 10° cell wall angle 
configuration but lower in magnitudes. This reduction car-
ies on as the cell wall angle progressively increases until it 
reaches φ = 50° for all cell wall lengths. Having said that, 
the trend in weight savings does not follow the same pattern 
and instead, it exhibits a notable increase in the attained 
weight reduction as the honeycomb’s cell wall angle (φ) 

(a) (b))ESM(rorreerauqsnaeM Coefficient of determination (R2) 

Fig. 12  Determination of optimum network architecture for different neurons in the hidden layer

Fig. 13  Predicted values from the established ANN model versus the 
actual values for all datasets
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changes from φ = 10° and φ = 50° to φ = 30° as a result of 
the increase in the void between the cell walls.

As demonstrated in the results for the unseen honeycomb 
cell wall thicknesses (t) of 0.025, 0.035 and 0.045 mm, the 
ANN model’s predictions lie between the two limits bound-
ing each of the investigated unseen cell wall thicknesses, as 
one might expect. This provides confidence that the model 
is behaving correctly.

3.2.2  Predictive Performance of the ANN Model Outside 
the Training Dataset Bounds

Previously, it was shown that the ANN provided accurate 
predictions within the bounds of the data it was trained. 
Having said that, if the ANN model is provided with inputs 
outside the training set’s bounds, one would anticipate less 

accurate predictions. With a robust network, the model 
should be capable of delivering insights that would be dif-
ficult to realize by traditional approaches. Therefore, to 
investigate the ANN model capabilities outside the training 
bounds, the ANN model was utilized to predict the structural 
performance of the sandwich composite-based heliostat that 
consisted of a core with honeycomb cell wall thickness of 
t = 0.01 mm.

It was previously noted that a decrease in the cell wall 
thickness causes the panel’s stiffness to decrease, and conse-
quently, the honeycomb core becomes less resistant to local 
buckling and crushing. However, this decrease in stiffness 
comes with a notable increase in the attained weight reduc-
tion. Based on this, one would anticipate seeing the same 
behaviour characteristics for a heliostat that consists of a 
core with honeycomb cell wall thickness t = 0.01 mm.
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Fig. 14  ANN model predictions of the heliostat’s attainable weight reduction and maximum structural displacement at multiple cell wall angles 
for unseen cell wall thicknesses of 0.025, 0.035 and 0.045 mm
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As such, Figs. 16 and 17 show the predictions of the 
ANN model at multiple cell wall angles for a core with cell 
wall thickness (t) between 0.01 and 0.05 mm for a heliostat 
subjected to a wind of 20 m/s, with a core thickness (D) 
of 300 mm. To fully evaluate the predictive value of the 
ANN model, simulations were carried out using the previ-
ously established FSI model for the same cell wall thickness 
(t = 0.01 mm) and the results were compared to the ANN 
model predictions. The results illustrate the behaviour one 
would expect, demonstrating that the ANN model can pro-
vide insights into the structural performance of the heliostat 
with design parameters outside the training bounds.

3.3  Heliostat Structural Optimization

Having established an ANN model that accurately predicts 
the heliostat’s structural performance based on its honey-
comb core’s configuration, attention was turned towards 
the structural optimization of the sandwich composite-
based heliostat by integrating the PSO algorithm with the 
ANN. As discussed earlier, the swarm size is an adjustable 
parameter and is determined by the algorithm’s perfor-
mance. In this regard, and having set up the optimization 
scheme, the effect of the swarm size (number of particles) 
on the optimization performance was investigated to find 
the number of particles that delivered the best performance 
for convergence and processing time.

Figure 18 demonstrates the objective function evolu-
tion (weight reduction percentage) for Configuration 1 in 
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Fig. 15  ANN model predictions of the heliostat’s recorded maximum stress at the lower aluminium sheet and core crush index at multiple cell 
wall angles for unseen cell wall thicknesses of 0.025, 0.035 and 0.045 mm
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Table 1 as a function of the number of iterations real-
ized for various swarm sizes. From to the results, the most 
obvious conclusion is that increasing the size of the swarm 
improves the quality of the optimum obtained. However, 
for swarms with more than 40 particles, there is little 
change in the optimal weight reduction. In this sense, a 
swarm size of 40 particles was selected for the optimiza-
tion study.

Having identified the swarm size, attention was focused 
on evaluating the effectiveness of the established PSO 
algorithm. This evaluation was based on the comparison 
between of results obtained by the PSO approach and 
those obtained by scanning of all the search space defined 
by the variables to be optimized. It should be noted that 

high number of parameters to optimize, the dependence 
between them, and the existence of several local optima, 
makes the optimization procedure extremely complex.

In undertaking the evaluation, both algorithms were 
applied to the first case scenario (Configuration 1). In this 
case, the heliostat was subjected to a wind of 20 m/s and 
was constrained such that the maximum allowable struc-
tural deformation was 21.3 mm, the maximum allowable 
stress at the lower aluminium sheet was 280 MPa, and the 
minimum allowable core crush index was 1.

From the space scanning method, and starting with the 
case when the heliostat panel consists of a honeycomb 
core with a thickness of D = 150 mm, only a few hon-
eycomb configurations have satisfied the optical criteria, 
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Fig. 16  ANN model predictions of the heliostat’s attainable weight reduction and maximum structural displacement at multiple cell wall angles 
for unseen cell wall thickness 0.01 mm
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with a minimum deformation of 19.27 mm recorded when 
the honeycomb’s cell wall thickness (t) and length (a) are 
of 0.05 mm and 5 mm, respectively. At this configuration 
(φ = 50°, t = 0.05 mm, a = 5 mm), the maximum recorded 
stress at the lower aluminium sheet (78.73 MPa) and the 
core crush index (67.2) are found to be within the per-
missible material failure limits. With both optical and 
structural strength requirements being satisfied, a weight 
reduction of approximately 14.07% is achieved with this 
core configuration.

Moving to the case when the heliostat panel consists 
of a honeycomb core with a thickness of D = 300 mm, the 
configuration that gives most desirable trade-off between 
the heliostat panel’s structural integrity and attained weight 
reduction is when the panel consists of a honeycomb core 
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Fig. 17  ANN model predictions of the heliostat’s recorded maximum stress at the lower aluminium sheet and core crush index at multiple cell 
wall angles for unseen cell wall thickness of 0.01 mm

Fig. 18  Objective function evolution (weight reduction percentage) 
according to the number of iterations performed for various swarm 
sizes (case of configuration 1)
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with cell wall angle of φ = 50°, cell wall length of a = 10 mm 
and cell wall thickness of t = 0.02 mm, with a maximum 
displacement of 20.3 mm, a maximum stress of 117.83 MPa, 
a core crush index value of 1.57, and an achieved weight 
reduction of approximately 44%. For the case when the heli-
ostat panel consists of a honeycomb core with a thickness of 
D = 450 mm, and with all the requirements being satisfied 
(i.e. optical, material failure and weight reduction), a helio-
stat panel with a core configuration of φ = 50°, a = 10 mm 
and t = 0.02 mm provides a sensible trade-off between the 
panel’s structural integrity and weight reduction percentage, 
with a maximum displacement of 12.21 mm, a maximum 
stress of 83.1 MPa, a core crush index value of 4.13 and an 
attained weight reduction of approximately 34.45%.

From these results, it can be concluded that among the 
various honeycomb core configurations investigated earlier 
using the search space scanning method, one stood out dis-
tinctively in terms of providing the most desirable trade-
off between the heliostat panel’s structural integrity and 
attained weight saving (~ 44% weight reduction percentage). 
This configuration is when the heliostat panel consists of a 
honeycomb core with a thickness (D) of 300 mm, cell wall 
angle (φ) of 50°, cell wall length (a) of 10 mm and cell wall 
thickness (t) of 0.02 mm.

For the values acquired by the ANN-PSO approach, 
Fig. 19 demonstrates the evolution of the honeycomb core’s 
physical parameters [core thickness (D), cell wall angle (φ), 
cell wall thickness (t) and the cell wall length (a)] and the 
weight reduction percentage along the iterative procedure. 
We can observe, that at the beginning, the swarm is ran-
domly distributed and searching for the optimal honeycomb 
core and panel configuration, then along the iterative proce-
dure the particles move and regroup progressively towards 
the optimal zone for each parameter.

It can be seen that the honeycomb core thickness, the cell 
wall angle, the cell wall thickness and the cell wall length 
converge to constant values after 60 iterations, reaching an 
optimum (D = 302.91 mm, φ = 50°, t = 0.02 mm, a = 10 mm) 
that corresponded to a weight reduction of 44.47%, a maxi-
mum panel displacement of 19.6 mm, a maximum stress at 
the lower aluminium sheet of 116.33 MPa and a core crush 
index value of 1.99. From this, it can be noted that the PSO 
optimization results are in good agreement with the results 
attained by scanning of all the search space, proving the 
reliability of the approach and the selected PSO parameters.

However, this cannot be retained as a comparison between 
the two approaches since the computing time consumed by 
using the scanning method is far from ideal. A slight change 
in the performance requirements (constraints) can lead to a 
superficial adjustment in the optimal solution, but necessi-
tates the scanning of the entire search space defined by the 
variables to be optimized again. Also, the scanning approach 
is not well suited for a higher number of parameters. For 

instance, if the method in the aforementioned case requires 
a scan resolution of 1% of the definition interval of each 
parameter, the number of simulations required to scan all 
the calculation domains is 100 × 100 × 100 × 100 = 1 ×  1
08. Whereas, via the PSO approach, the number of simula-
tions performed is: Number of particles × Number of itera-
tions = 40 × 100 = 4000 simulations only. This demonstrates 
that such limitations can be avoided by utilizing the ANN-
PSO approach, making this approach very attractive in terms 
of computational time and the capability of producing an 
optimum and a reliable solution.

Having demonstrated the advantages of the ANN-PSO 
approach, it was applied to the remaining two cases in 
Table 1, with the results summarized in Table 2. For Con-
figuration 2, it was found that changing the design require-
ments to reduce panel deflection and stresses at both the 
lower aluminium sheet and the honeycomb core resulted 
in an increase in the honeycomb core thickness. Although 
increasing the panel thickness tends to improve the structural 
performance of the heliostat, which may present an advan-
tage from a structural point of view, this could represent a 
minor disadvantageous material cost given the increase in 
panel thickness and also the slight decrease in the panel’s 
weight reduction percentage (which also broadly equates to 
cost). As for Configuration 3, one can observe that the reduc-
tion in the design wind speed requirement had a pronounced 
impact on the optimal solution. For this configuration, a heli-
ostat panel with a reduced core thickness (D = 150 mm) and 
t = 0.02 mm, a = 10 mm, φ = 47.92° satisfies all the require-
ments (i.e. optical and material failure), with a weight saving 
of approximately 55%.

This finding is extremely significant as it implies that 
heliostats near the centre of a heliostat field, which are sub-
ject to lower local wind speeds, can be made to be much 
lighter. This could lead to reductions in the size of drive 
units used to track the heliostat, and the foundations required 
to support these structures. Such reductions would deliver 
real cost savings, which are currently an impediment to the 
wider spread use of CSP systems.

4  Conclusion

The present study was undertaken to investigate the utiliza-
tion of artificial neural network (ANN) technique and parti-
cle swarm optimization (PSO) algorithm to establish a novel 
prediction–optimization (ANN-PSO) model that predicts the 
structural performance of honeycomb sandwich composite-
based heliostats, and determines the optimum honeycomb 
core configuration leading to minimum self-weight of the 
heliostat’s sandwich composite panel while satisfying the 
structural performance requirements (i.e. optical and mate-
rial failure).
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Starting with the prediction component, the ANN was 
trained, tested and validated by a rich dataset obtained 
from a comprehensive parametric study carried out with 
various honeycomb core configurations assessed consid-
ering several loading conditions (wind velocities of 5, 
10, 15 and 20 m/s). A thorough investigation was carried 
out to optimally choose the training algorithm, number 
of neurons in the hidden layer and activation function in 
a network. Among all the neural network configurations 
explored, a network model with Bayesian regularization 

(BR) training algorithm, tansig transfer function and hav-
ing 89 neurons in the hidden layer was found to be the 
optimum network with the best predictive performance 
(R2 = 0.99994, MSE = 0.1026). The results showed that 
the established ANN model was capable of predicting 
the structural performance of the honeycomb sandwich 
composite-based heliostat based on unseen honeycomb 
core configurations extremely accurately. Moreover, it 
was demonstrated that the established ANN model could 
deliver insights into the heliostat’s structural performance 

Honeycomb core thickness (D) Cell wall angle ( ) 

Cell wall thickness (t) Cell wall length (a) 

Weight reduction percentage (%) 
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Fig. 19  Evolution of the optimum along the iterative procedure (case of configuration 1)
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with design parameters outside the training bounds. Given 
the capability and flexibility of the ANN technique, it 
demonstrates a unique and novel alternative method to 
designing and analysing the structural performance of 
honeycomb sandwich composite-based heliostats. This 
is of particular significance as accurately predicting the 
heliostat’s structural performance based on its honeycomb 
core’s configuration using classical analytical approaches 
are at best cumbersome and, at worst, unable to facilitate 
the predications.

Moving to the optimization component, a rigorous 
investigation was carried out to optimally choose the suit-
able swarm size (number of particles) that delivers the best 
performance for convergence and processing time. It was 
found that increasing the size of the swarm greater than 40 
particles does not further improve the quality of the optimum 
obtained. In this sense, a swarm size of 40 particles was 
selected for the optimization study. The optimization process 
was carried out for three case scenarios, each with different 
design requirements, to demonstrate the feasibility of the 
proposed approach for this system. The results showed that 
the proposed integrated ANN-PSO approach, which can also 
be encompassed as a user-friendly graphical user interface 
(GUI), provides a useful, flexible and time-efficient tool for 
heliostat designers to predict and optimize the structural per-
formance of honeycomb sandwich composite-based helio-
stats as per desired requirements.
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