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Abstract
The task of fault detection is crucial in modern chemical industries for improved product quality and process safety. In this
regard, data-driven fault detection (FD) strategy based on independent component analysis (ICA) has gained attention since
it improves monitoring by capturing non-gaussian features in the process data. However, presence of measurement noise
in the process data degrades performance of the FD strategy since the noise masks important information. To enhance the
monitoring under noisy environment, wavelet-based multi-scale filtering is integrated with the ICA model to yield a novel
multi-scale Independent component analysis (MSICA) FD strategy. One of the challenges in multi-scale ICA modeling is
to choose the optimum decomposition depth. A novel scheme based on ICA model parameter estimation at each depth is
proposed in this paper to achieve this. The effectiveness of the proposedMSICA-based FD strategy is illustrated through three
case studies, namely: dynamic multi-variate process, quadruple tank process and distillation column process. In each case
study, the performance of the MSICA FD strategy is assessed for different noise levels by comparing it with the conventional
FD strategies. The results indicate that the proposed MSICA FD strategy can enhance performance for higher levels of noise
in the data since multi-scale wavelet-based filtering is able to de-noise and capture efficient information from noisy process
data.

Keywords Fault detection · Process Monitoring · Wavelets · Multi-scale Independent Component Analysis · Quadruple tank
process · Distillation column process · MSICA modeling

1 Introduction

In modern petrochemical industries, process abnormalities
or faults hamper smooth functioning and this needs to be
addressed before they pose a further threat. In this regard,
process monitoring plays a vital role in ensuring safe pro-
cess operation as well as good product quality. A survey
has suggested that the USA’s petrochemical industries could
save billions of dollars each year if they were to have an
effective fault detection (FD) strategy [1]. Similarly, in other
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parts of the world, lots of cost saving is possible if they were
to have an effective FD strategy. Different techniques have
been proposed in the literature to tackle process faults and
they are broadly divided into two families: model based and
data-driven methods [2–4]. In the last decade, there has been
rapid development in the field of computer-aided systems
and advanced sensor technologies which has lead to quick
and improved extraction of data from the process. Due to the
complex nature of process plants, model-based FD methods
are difficult to develop practically. In contrast, large process
data is sufficient for modeling data-driven methods which
have found themselves in the core of the industrial big data
revolution [5]. The multi-variate statistical process monitor-
ing (MSPM) belongs to the group of data-driven monitoring
with the luxury of monitoring multiple variables simultane-
ously and has been applied in FD domain. Good research has
been carried out in various domains of neural networks and
soft computing in recent years [6–11].

Principal component analysis (PCA), a popular multi-
variate strategy, handles large dimensional correlated data
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by projecting it into a lower dimensional subspace with-
out compromising original data information [12]. In the last
few years, several works have been carried out as an exten-
sion to conventional PCA technique that includes dynamic
PCA(DPCA), recursive PCA, multi-way PCA, moving win-
dow PCA, multi-scale PCA and nonlinear PCA techniques
[13–16]. The PCA technique relies only on second-order
statistics of mean and variance, thus providing restricted
representation of non-gaussian data. An MSPM technique
based on Independent component analysis (ICA) has been
investigated in the last few years to handle the problem
of monitoring non-gaussian processes. The ICA technique,
originated initially from blind source separation problems,
has progressed very well over the time to find itself in
many applications that also include process fault detection
[17,18]. ICA represents data using higher-order statistics,
thus enabling it to capture non-gaussian features in the pro-
cess data. In ICA, the data is decomposed into a linear
combination of latent variables or Independent Compo-
nents(ICs) which are independent. The model development
in ICA strategy requires maximizing non-gaussianity or
minimizing themutual information. The ICAmodeling tech-
nique has been combined with I2d , I

2
e and squared prediction

error (SPE) as fault indicators to detect abnormalities in
process data. Many variations of conventional ICA strategy
have been proposed in the literature including dynamic ICA,
multi-way ICA, modified ICA, Kernel ICA and noisy ICA
strategies [19–22].

Most process monitoring problems face the issue of han-
dling measurement noise since it degrades the performance
of an FD strategy. The noise masks important features in the
data, thus reducing the task of extracting information from
process data. The industrial data acquired fromaprocess con-
sists of information (features) occupying different regions on
a time-frequency scale [23,24]. The measured data is termed
multi-scale since it is a blend of infectious noise as well rich
data that is concentrated in the time and frequency domain.
The best way to achieve multi-scale data representation is
through the application of wavelets that possesses ability to
separate deterministic from stochastic features. Wavelets are
mathematical functions having multiple scale features with
the ability to synchronize their scale with the nature of sig-
nal [25]. The biggest advantage of wavelets is their capacity
in discriminating measurement noise from useful data fea-
tures by applying low pass and high pass filters to data during
the multi-scale decomposition stage. In the early years when
multi-scale filteringwas proposed for fault detection domain,
it was integrated with PCA to have an MSPCA strategy [26].
In the work by [26], the PCA strategy was developed at each
scale followed by combining the results at individual scales
where significant eventswere present. This enabledwavelets’
ability to detect deterministic changes and capture those fea-
tures where abnormal operations were evident.

The advantages of multi-scale filtering were used to
enhance the monitoring capabilities of Shewart chart, expo-
nentially weighted moving average (EWMA) chart and
cumulative sum (CUSUM) chart depending on the type
of wavelet selected [27]. A multi-scale PCA algorithm
(MSPCA)was proposed in which the contributions were col-
lected from each scale in separatematrices and then, the PCA
modelwasdeveloped to capture correlation at each scale [28].
The multi-scale partial least squares (PLS) was combined
with multi-block PLS to have a novel FD strategy which
enhanced monitoring performance [29]. The advantage of
wavelet based de-noising was used to enhance the predic-
tion capability of linear variable regression (LVR) models
such as partial least squares (PLS) and principal component
regression (PCR) in inferential model development [30]. In
recent years, multi-scale PLS andmulti-scale PCAhave been
combined with a new fault detection index based on gener-
alized likelihood ratio (GLR) to have improved detection of
faults [16,31,32]. In our earlier research, the MSPCA strat-
egy was combined with dynamic PCA to have multi-scale
dynamicPCA (MSDPCA) strategy that enhanced fault detec-
tion in benchmarkTennessee Eastman process [33]. Contrary
to the eminent advances in MSPCA and MSPLS fault detec-
tion methods, ICA has received significantly less attention
in the field of wavelet-based process monitoring despite ICA
being a better choice for monitoring non-gaussian data. The
ICA strategy was integrated with wavelet analysis to have a
wavelet-ICA strategy where the Daubechies-3 wavelet was
used with three levels of decomposition for the Tennessee
Eastman process [34]. In the work proposed by [34], the
decomposition depth was fixed to three without a specified
criteria.

The conventional ICA FD strategy fails to provide good
monitoring results in presence of heavy measurement noise.
Hence, if the data is de-noised before developing an ICA
model, better extraction of detailed non-gaussian features
is possible. Hence, this work aims to develop an FD strat-
egy by demonstrating the ability of wavelets in de-noising
and capturing essential non-gaussian features from process
data through ICA modeling technique. The proposed tech-
nique is expected to enhance FD capability of ICA strategy
when applied to data in noisy environment. Noise realiza-
tions are carried out where noise with specified SNR (signal
to noise ratio) is introduced in the data. The SNR is defined
as ratio of variance of the signal to variance of the noise. In
the present work, noise with a defined SNR, i.e. SNR=20,
SNR=10 and SNR=5 are used to perform noise realizations.
The data with SNR=20 corresponds to a quality data with
less amount of noise, the data with SNR=10 corresponds to
medium level of noise andSNR=5 indicates a very noisy data.
As the noise levels in the data increases, performance of the
MSICA strategy is expected to be superior to other conven-
tional strategies.One of themajor challenges in thiswork is to
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compute optimum decomposition depth for multi-scale rep-
resentation. Decomposing the data too deep over-smoothens
the data and decomposing it too fewer results in noise being
retained.Also, a fixed level of decomposition depth cannot be
used for all process applications and hence, a novel method
is proposed in this work. In the proposed method, ICA mod-
els are developed at each decomposition depths and the depth
that gives best prediction capability is chosen as the optimum
level of decomposition.

In sect. 2 of this paper, the PCA- and ICA-based fault
detection strategies are presented. This is followed by dis-
cussion on wavelets, multi-scale representation of data and
proposed MSICA fault detection strategy in sect. 3. Sec-
tion 4 demonstrates the effectiveness of the proposedMSICA
FD strategy through three case studies, namely: dynamic
multi-variate process, quadruple tank process and distilla-
tion column (DC) process. The performance of the proposed
MSICA strategy is compared with ICA, PCA and MSPCA
fault detection strategies. Finally, sect. 5 provides a conclu-
sion of the work.

2 Data-DrivenModel Development

This section provides brief overview of PCA and ICAparam-
eter estimation strategies. The various steps pertaining to
off-line model development and process monitoring for both
the strategies are presented in detail.

2.1 Principal Component Analysis

The PCA is a traditional dimension reduction technique
where large correlated variables are decomposed into lesser
number of latent variables (LV) while maintaining original
information present in the original data. Consider a multi-
variate data, X = [x1, x2...., xn] ∈ �n×m where m and n
represents number of variables and observations in X. The
PCA model can be expressed mathematically as [35]:

X = TPT (1)

where T=[t1, t2......tm] is latent variable matrix and P =
[p1,p2.....pm] is loading matrix. The off-line monitoring of
PCA consists of three stages:

1. Each variable of X is centered to mean of zero and unity
variance and then, singular value decomposition (SVD)
is performed:

1

n − 1
XTX = P�PT (2)

where � = diag(λ1, λ2, ...λm) is eigenvalue matrix.

2. The optimum principal components (PCs) p are selected
using cumulative percentage variance (CPV) technique:

CPV (p) =
∑p

i=1 λi
∑m

i=1 λi
∗ 100 (3)

3. Next, the threshold limits are determined for T 2 statistics
and SPE fault indicators - T 2

α and SPEα .

The online monitoring of PCA consists of three stages:

1. A new data Xnew is centered to zero mean and unit vari-
ance.

2. The following fault indicators are computed for Xnew

using developed PCA model parameters [35]:

T 2 = XT
newP̂�−1P̂TXnew (4)

SPE = XT
new(I − P̂P̂T)Xnew (5)

where P̂ and Λ−1 are matrices corresponding to p opti-
mum PCs.

3. A fault is declared if fault indicators exceed the threshold:

– T 2 ≥ T 2
α

– SPE ≥ SPEα

2.2 Independent Component Analysis (ICA)

The ICA is a multi-variate statistical strategy for extract-
ing non-gaussian independent components (ICs) from the
data by employing higher order statistical parameters [36].
An industrial multi-variate data, X = [x1, x2...., xn]T with
X ∈ �m×n is a combination of k(≤ m) unknown indepen-
dent components (ICs). The ICA model can be represented
mathematically as:

X = AS + F (6)

where A=[a1.....ak]T ∈ �m×k is a deterministic mixing
matrix, S=[s1, s2.....sn]T ∈ �k×n is a matrix with ICs, k rep-
resents the ICs, and F ∈ �m×n is residual matrix. The task
of ICA is focused on finding a separating matrixW such that
reconstructed matrix is given by:

Ŝ = WX (7)

The off-line monitoring of ICA consists of following stages:

1. The normalized data Xc undergoes whitening where
Z = QXc is computed with Q = Λ−1BT , Z is whiten-
ing matrix, Λ is diagonal matrix and B is eigenvector
matrix calculated from the covariance of Xc. The trans-
formation obtained post whitening stage is expressed as
Z = QXc = QAS = VS
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2. The following iteration is computed (i=1,2....m):

vi = argmax(J (y)) (8)

subject to

vi , E(yyT ) = I (9)

J(Y) ≈ [E{G(y)} − E{G(b)}]2 (10)

where

y = vTi z (11)

Maximizing non-gaussianity by negentropy approxima-
tion is a preferred choice for extracting the IC’s [37]. In
Eq. (10), J(Y) is the negentropy function, b is a gaus-
sian variable with zero mean and unit variance and G
is a non-gaussian function used to compute indepen-
dent components. After performing the iteration m times,
V = [v1....vm] ∈ �m×m and separatingmatrixW = VTQ
are determined.

3. TheCPVmethod described byEq. (3) is used to determine
optimum ICs [38]. For training data, the fault indicators
are constructed the following way [39]:

I2d = XT
c W

T
kWkXc (12)

I2e = XT
c W

T
m−kWm−kXc (13)

SPE = e.eT (14)

where Wk ∈ �k×m represents matrix with retained ICs,
Wm−k ∈ �(m−k)×m represents matrix with ignored IC’s
and SPE represents residual part where e is the residual
error with e = Xc(i) − X̂c with X̂c = Q−1VkWkXc.

4. Next, thresholds Th1, Th2 and Th3 are developed for
fault indicators in Eqs. (12), (13) and (14) using Kernel
density estimation (KDE) approach [19].

The online monitoring of ICA fault detection strategy con-
sists of following steps:

1. A new process data Xnew is centered to zero mean.
2. Fault indicators in Eqs. (12), (13) and (14) are computed

for Xnew.
3. A fault is declared if the value of fault indicators exceeds

the threshold:

– I2d ≥ Th1
– I2e ≥ Th2
– SPE ≥ Th3

3 Multi-Scale ICAModeling UsingWavelets

The data from most industrial processes is correlated in time
due to the presence of measurement noise and its effect has
to be nullified to extract useful information from the data.
Many filtering methods like mean filter, EWMA filter, and
median filter have been applied in practice. The data vari-
ables extracted from the industrial process have different
time-frequency localization and this requires multi-scale fil-
tering. It has been observed that wavelet functions are useful
in capturing multi-scale features present in the process data.
An advantage carried by wavelets is that they can separate
useful features of data from the noise through the applica-
tion of high pass and low pass filters. The other advantage of
wavelets is that they decorrelate noise at individual decom-
position depths [31]. In this paper, multi-scale representation
using wavelets are integrated with the ICA strategy to have
MSICA FD strategy.

In multi-scale representation, the wavelet transform is
used to transform original process data into multi-scale com-
ponents based on time and frequency attributes. The wavelet
transform is used to project data x(t) on mathematical basis
functions which is described as follows:

(x, Ψe,d) = 1√
e

∫ ∞

−∞
x(t)Ψ ∗( t − d

e
)dt (15)

where e and d represent dilation and translation parameters
and * represents complex conjugate of the mother wavelet
Ψ (t). The dilation parameter e describes scaling property
of the wavelet where wavelet can be either compressed or
expanded in frequency domain to extract sharp changes or
slow varying behavior of data. The translational parameter
d describes the shifting property where the wavelet is either
delayed or advanced along the length of the signal to align
with useful features in the data. Different class of wavelet
basis functions are available that includesHaar basis function
and Daubechies filters [40,41].

The expression in Eq. (15) is described based on con-
tinuous wavelet transform (CWT) which gives redundant
information since the parameters e and d are continu-
ously changing. In most practical applications, multi-scale
decomposition is performed using discretewavelet transform
(DWT)which also provides an additional benefit of computa-
tional efficiency [24]. In wavelet-based data-representation,
an input signal can be decomposed into two parts, namely:
the scaled or approximation coefficients that captures low-
frequency components of the signal and detailed coefficients
that captures high-frequency components of the signal. A
signal can be decomposed into multi-scale components that
consist of scaled coefficient vector at depth L and L detail
coefficients at all the scales (finest to coarsest). Some advan-
tages of multi-scale filtering are summed up below:
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1. The presence of auto-correlatedmeasurement noise in the
data degrades the detection capability of an FD strategy.
The wavelet-based data representation involves decom-
posing the data at multiple scales and wavelet coefficients
at each scale L would decorrelate the noise component
present in the original data.

2. Most filtering techniques like mean, EWMA and median
filters represent data at either time or frequency scale,
thus making them inefficient to be used in complex pro-
cess data. In contrast, the multi-scale representation using
wavelets can separate noise from information-rich data by
applying low and high pass filters during the multi-scale
decomposition process.

3. Malfunctioning sensors generate sudden skewness and
added to this, modeling errors introduce lots of variations
that deviates towards non-gaussianity. Few data-driven
FD methods assume that the data is gaussian in nature
and the effectiveness reduces as the data deviates from
gaussianity. However, multi-scale decomposition using
wavelets causes data to be gaussian at multiple levels
and this unique property of wavelets can improve the per-
formance of FD methods when non-gaussian errors are
present in the data.

To have an efficient MSICA strategy, the scaled data is
decomposed to different depths and represented in multi-
scale matrix Xd ∈ �m×n(L+1) using DWT [29]:

Xd = [X1,X2, · · ·XL ,XL+1] (16)

where the componentsX1,X2 · · ·XL contain detailed coeffi-
cients at each scale, while the last componentXL+1 contains
the scaled or coefficients at the coarsest scale L. The above
representation using wavelet coefficients helps in capturing
localized features at each scale which can enhance monitor-
ing performance of the proposed FD strategy.

3.1 Multi-Scale ICAModeling

The selection of optimum decomposition depth or scale L is
an important factor in multi-scale de-noising using wavelets.
Decomposing the data too deep on different coefficients
results in information being lost. In contrast, if data is not
decomposed too deep, unwanted noise is retained in the data
and this masks important information in the data. Hence, the
level of decomposition has to be decided cautiously for ensur-
ing that the noise is removed and information is retained.
In this work, a novel technique is proposed that involves
development of ICA model at individual scales followed by
performing prediction to compute MSE at individual scales.
The scale at which the MSE is minimum is regarded as the
optimum scale [31].

The proposedmethod for computing decomposition depth
is presented in Fig. 1. Initially, the data is split into training
and testing data groups, namely: Xtr and Xte. The training
data is decomposed to different depths using wavelets and
the ICA model is developed at each decomposition depth L.
Next, the MSE is computed on testing data at depth L using
the ICA model:

MSE = 1

n
[eT e] (17)

where,

e = Xte − X̂te (18)

X̂te = Q−1VkWkXte (19)

where Q is the whitening matrix, V and W are model
parameters corresponding to k retained optimum IC’s. In this
proposed method, the ICA model is developed at each scale
L and prediction capability of developed model is utilized at
each scale. This leads to improved de-noising and extraction
of features in process data which enhances detection of faults
in the process.

3.2 TheMSICA Fault Detection Strategy

This paper aims to develop a robust MSICA FD strategy
that amalgamates ICA strategy with multi-scale wavelet fil-
tering. Since data from petro-chemical and other process

Fig. 1 MSICA modeling algorithm for calculating decomposition
depth
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industries is nonlinear and non-gaussian, the data-driven
methods based on PCA and PLS fail to perform fault
detection efficiently. The ICA technique is preferred over
the other data-driven methods since it has a meaningful
representation of non-gaussian data. Due to harsh envi-
ronments in petrochemical process plants, a large amount
of noise is embedded into the measurements. If the noisy
data is used directly for model development stage with-
out any pre-treatment, important features in the data will
be masked by noise, resulting in an information-poor ICA
model. The parameters of ICA model would not be able
to capture information related to faults in a new pro-
cess data precisely. Hence, the process data is pre-treated
where it undergoes simultaneous extraction of information
in time-frequency region through wavelet functions. The
de-noised data will be used to construct the ICA model.
This would lead to the development of information rich
model and eventually enhances fault detection capabil-
ity.

The block diagram of the proposed MSICA-based fault
detection strategy is presented in Fig. 2. The task of fault
detection is divided into offline monitoring and online mon-
itoring stages. In offline monitoring stage, once the data
under normal process operation is acquired from a process, it
undergoes pre-treatment of scaling to zero-mean. This is fol-
lowed by decomposing the data to different scales using the
wavelet functions and reconstruction to get filtered data. This
is followed by developing an reference ICA model. From
the ICA model parameters, thresholds are computed for the
three fault indicators using KDE approach. In online moni-
toring stage, the new data is processed to mean of zero and
fault indicators described in Eqs. 12, 13 and 14 are com-
puted. Next, the value of fault indicators is compared with
the thresholds computed in offline monitoring stage. If the

value of fault indicators is lesser than the threshold, the new
data is fault-free. However, if the value of fault indicators
exceeds the threshold, it indicates presence of fault in the
data.

4 Case Studies

Three case studies are considered to illustrate the potentiality
of the proposed MSICA FD strategy in monitoring the sen-
sor faults: (i) dynamic multi-variate process (ii) simulated
quadruple tank process and (iii) simulated distillation col-
umn process. The fault detection rate (FDR) and false alarm
rate (FAR) indices are used to evaluate the performance of
each fault detection strategy and they are calculated in per-
centage using the below representation:

FDR = Total samples (J > Jth)| abnormal condition

Total samples in faulty region
(20)

FAR = Total samples (J > Jth)| normal condition

Total samples in non-faulty region
(21)

The proposed MSICA monitoring strategy is compared
against PCA, ICAandMSPCAmonitoring strategies through
FAR and FDR indices.

4.1 Dynamic Multi-Variate Process

Here,wepresent themonitoring of proposedMSICAstrategy
on a dynamic multi-variate process which is represented as:

Fig. 2 A schematic depiction of MSICA fault detection strategy
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za(i) =
⎡

⎣
0.118 −0.191 0.28
0.847 0.264 0.94

−0.333 0.514 −0.21

⎤

⎦ × za(i-1)

+
⎡

⎣
1 2
3 −4

−2 1

⎤

⎦ × ua(i-1) (22)

ya(i) = za(i) + va(i) (23)

ua(i) =
[
0.811 −0.226
0.477 0.415

]

× ua(i-1)

+
[
0.193 0.689

−0.320 −0.749

]

× wa(i-1) (24)

Based on parameter values described in [42], a dynamic
simulator is used to generate data of 2000 samples involv-
ing five variables [ya1, ya2, ya3,ua1,ua2]. The data is then
split into 1000 samples each of training and testing groups.
After normalization of training data, PCA, MSPCA, ICA
and MSICA models are developed using the CPV approach.
For PCA and MSPCA models, four optimum PCs are
retained while three optimum ICs are retained for ICA and
MSICA models, respectively. The optimum decomposition
depth was found to be four for both MSPCA and MSICA
strategies.

The effectiveness of the MSICA FD strategy is illus-
trated on three types of faults, namely: sustained bias,
drift, and intermittent fault. In the first case, a bias is
injected in variable ya1 of the testing data for sampling
times ranging from 400 to 1000. Next, a sensor drift

fault is considered where a ramp signal with a slope of
0.075 is introduced in variable ua2 between samples 400
to the end of testing data. Finally, an intermittent fault
is introduced in variable ya2 at sampling times [80,170],
[475,565] and [850,940] respectively. To provide clarity to
the reader, performance of the proposed strategy in mon-
itoring an intermittent fault is presented for the case with
SNR=5. The results can be observed in Figs. 3 and 4.
From Fig. 3, the PCA-T 2 and MSPCA-T 2 strategies fail
to detect this fault. While the PCA-SPE method detects
the fault partially with small number of false alarms, the
MSPCA-SPE technique has better detection ability. From
Fig. 4, ICA-I 2d and ICA-I 2e detect the fault better than
ICA-SPE. In contrast, the proposed MSICA-I 2d , MSICA-
I 2e and MSICA-SPE strategies detect the fault clearly with
minimum missed detections. The performance of the pro-
posed MSICA FD strategy for different noise realizations
is presented in Tables 1 and 2. The results indicate that
at lower noise levels, the performance of all the strate-
gies is very good. As the level of noise is increased in
the data, the performance of MSICA strategy is superior to
other strategies. This is because the multi-scale representa-
tion in the MSICA strategy captures important non-gaussian
features from the noisy data, which enhances monitoring
performance.

4.2 Quadruple Tank Process

The quadruple tank is a simple process that has been widely
used in control system related researchover the last fewyears.

Fig. 3 Dynamic multi-variate process: Monitoring results of PCA and MSPCA techniques for intermittent fault
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Fig. 4 Dynamic multi-variate process: Monitoring results of ICA and MSICA techniques for intermittent fault

Table 1 Dynamic multi-variate
process: False alarm rate for
different noise realizations

Fault 1SNR PCA MSPCA ICA MSICA

T 2 SPE T 2 SPE I2d I2e SPE I2d I2e SPE

Bias 5 3.25 3.75 0 1.75 1.5 1.5 1.5 0.9 1.1 1.5

10 2 2 0 1.75 1.5 1 1.25 0.75 0.8 0.5

20 1.5 1.75 0 1.5 1.25 0.5 0.25 0.5 0.5 0.2

Intermittent 5 3 4.25 0 0 1.2 1.64 0.84 2.6 2.1 2.5

10 1.43 2.79 0 0 1.03 0.93 0.48 1.98 1.62 1.1

20 1.27 1.27 0 0 0.32 0.75 0.27 0.98 0.79 0.51

Drift 5 1.5 6.5 1.35 1.45 2.75 2.5 3.25 0.85 1.25 0.75

10 1 2.75 0.95 1.25 1.85 1.75 1.75 0.65 0.95 0.3

20 1 2.33 0.5 0.65 1.3 0.85 0.95 0.2 0.5 0.15

Table 2 Dynamic multi-variate
process: Fault Detection Rate
for different noise realizations

Fault 1SNR PCA MSPCA ICA MSICA

T 2 SPE T 2 SPE I2d I2e SPE I2d I2e SPE

Bias 5 13.57 80.67 14.5 84.37 40.67 70.77 22.83 89.13 97.83 97

10 14.25 97.83 4.33 98.33 43.83 85.57 37 98.83 98.5 99.5

20 15.23 99.83 7 99.85 84.5 97.83 63 100 100 100

Intermittent 5 10.74 87.87 5.19 87.3 64.81 71.85 27.04 97.78 95.93 98.52

10 11.37 94.57 8.52 96.41 76.78 90.74 71.04 98.5 95.44 99.15

20 13.52 97.52 9.19 98.52 80.15 98.19 87.15 99 98 99

Drift 5 81.33 83.17 77.5 86.33 81 81.33 81.83 91.17 90.17 89

10 82.87 86.83 78.67 89.67 87.83 88.33 82.13 92.03 90.75 90.83

20 84 88.33 81.17 91.03 89 90.5 86.33 92.63 91.5 91.67
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The process consists of four tanks which are interconnected
and they reveal an interesting multi-variable phenomena.
The two pump voltages v1 and v2 serve as the inputs
while h1, h2, h3 and h4 heights of the liquid in tanks.
The schematic of quadruple tank process is presented in
Fig. 5. The dynamic description of quadruple tank process
is represented through mathematical equations as follows
[43]:

dh1
dt

= q1k1V1
A1

+ a3
√
2gh3
A1

− a1
√
2gh1
A1

(25)

dh2
dt

= q2k2V2
A2

+ a4
√
2gh4
A2

− a2
√
2gh2
A2

(26)

dh3
dt

= (1 − q2)k2V2
A3

− a3
√
2gh3
A3

(27)

dh4
dt

= (1 − q1)k1V1
A4

− a4
√
2gh4
A4

(28)

where q1 and q2 are ratio of valves; k1 and k2 are pump con-
stants; g is gravity of earth ; a1, a2, a3 and a4 represent area of
outlet pipes and A1, A2,A3 and A4 are the area of individual
tank respectively.

MATLAB is used to perform dynamic simulations for
generating the data, which consists of 2000 observations
with six variables. Perturbation of the inputs around the
nominal operating point with pseudo random binary sig-
nal in the range of frequency [0 0.03 ωn] is carried out.
Here, ωn = π/T represents the Nyquist frequency. The

Fig. 5 A schematic of quadruple tank process

six variables in the case study include two pump voltages
and the height of liquids in the tanks. Next, the data is
split equally into training and testing data groups. After
normalization of training data, PCA, MSPCA, ICA and
MSICA models are developed. For PCA and MSPCA mod-
els, five optimum PCs are retained while four optimum ICs
are retained for ICA and MSICA models using the CPV
approach. The optimum decomposition depth was found to
be three in both MSPCA and MSICA monitoring strate-
gies.

This section describes the performance of the proposed
MSICA FD strategy in monitoring sensor faults in simu-
lated quadruple tank set up. First, a sustained bias is injected
into tank 2 height variable h2 for sampling times ranging
from 400 to 1000 of the testing data. Next, an intermittent
fault is introduced into tank 2 height variable h2 between
sampling times [150,250], [495,595] and [880,980] respec-
tively. Finally, a ramp signal resembling a sensor drift fault
is injected in tank 3 height variable h3 for sampling times
ranging from 450 to 1000. To provide clarity to the reader,
the results of proposed strategy in monitoring drift fault for
the case SNR=10 are presented in detail. Figure 6 suggests
that theMSPCA strategy has better detection capability com-
pared to PCA strategy. TheMSPCA-T 2 detects the fault with
a large false alarm rate while MSPCA-SPE detects smoothly
with a small delay. From Fig. 7, it is observed that fault indi-
cators of the ICA technique detect the fault with a small delay
and lesser false alarm rate. In contrast, the fault indicators of
MSICA strategy can identify the fault clearly by providing
a smooth transition. The performance of FD strategies for
different noise realizations are presented in Tables 3 and 4.
As the level of noise is increased, the proposedMSICA strat-
egy over-performs other methods as observed in the case of
data with SNR=5. The proposed MSICA FD strategy has
good advantage in terms of both FAR as well as FDR. The
multi-scale representation of data ensures efficient informa-
tion being captured from the process data and hence, the
proposed MSICA strategy can provide better detection of
faults in a noisy environment.

4.3 Distillation Column Process

Distillation column (DC) is a high energy-consuming unit in
a chemical process plant for separating components from the
mixture of components based on their difference in vapor
pressure. Proper monitoring of distillation column process
is necessary to avoid any accident and loss of product qual-
ity in the industry. The distillation column setup consists
of 32 plates and 10 resistance temperature detector sen-
sors to monitor the temperature at different location of the
process. The schematic of a DC process is presented in
Fig. 8.
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Fig. 6 Quadruple tank process: Monitoring results of PCA and MSPCA techniques for drift fault

Fig. 7 Quadruple tank process: Monitoring results of ICA and MSICA techniques for drift fault

TheAspen simulator is used for generating distillation col-
umn dynamic data [44]. To begin with, feed and reflux flow
rates are perturbed around their nominal operating ranges.
Once the system has reached steady state condition, these
perturbations would be used to generate data. The input
variables consist of temperatures corresponding to measure-
ments at ten locations of the column along with flow rates
of feed and reflux. A total data length of 1024 samples
with 14 variables (two input variables, ten measured vari-

ables and two output variables) is generated which is then
split equally into training and testing data groups. The PCA,
MSPCA, ICA and MSICA models are developed after the
normalization of training data. The CPV approach is used
to select optimum latent variables that results in seven and
six PCs for PCA and MSPCA techniques while seven and
seven optimum ICs for ICA and MSICA models, respec-
tively. The optimumdecomposition depth is found to be three
and two in the case of MSPCA and MSICA models. Fig-
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Table 3 Quadruple tank
process: False Alarm Rate for
different noise realizations

Fault SN R PCA MSPCA ICA MSICA

T 2 SPE T 2 SPE I2d I2e SPE I2d I2e SPE

Bias 5 37.25 8.25 22.5 11.5 14.75 13.45 5.5 3.5 6.5 4.15

10 32.5 5.5 20.25 9.5 12.45 11.5 5.25 2.65 4.7 3.35

20 30.25 4.35 16.75 6.25 8.5 7.75 2.7 0.95 1.75 1.3

Intermittent 5 44.86 11.71 29.71 14.71 28.57 17.43 26 8.86 12.12 14

10 40.57 10.43 29 12.85 24.57 13.57 22.13 5.71 10.71 9.58

20 32 7.35 22.43 9.14 19.33 9.59 17.43 4.75 8.5 5.86

Drift 5 29.11 9.7 23.56 1.9 3.22 6.22 9.66 2.44 1.7 1.8

10 25.89 8.67 21.89 1.45 2.75 4.75 6.5 1.2 0.6 0

20 22.12 7.73 18.07 1.17 2.04 2.88 4.55 0.73 0.57 0

Table 4 Quadruple tank
process: Fault Detection Rate
for different noise realizations

Fault 1SNR PCA MSPCA ICA MSICA

T 2 SPE T 2 SPE I2d I2e SPE I2d I2e SPE

Bias 5 42.67 55.17 45.5 92.5 54 74 63.67 97.17 97 95.67

10 47 61 51.83 93.83 65.83 84.17 69.93 100 100 100

20 50.17 61.33 59.83 99.53 73 82.67 79 100 100 100

Intermittent 5 79.67 27 77 95.33 80.33 74.3 70.67 98 97.33 94.33

10 80.67 51 81.67 96.85 81.67 88.33 73 99.12 99.5 96.88

20 81.37 85.67 81 99.75 94.33 93.33 92 100 100 100

Drift 5 43.45 82.45 66.36 88.74 77.82 71.33 65 88.36 90 87.18

10 47.45 84.09 70.17 91.73 83.09 81.73 72.45 93.45 92.64 92.13

20 49.82 85.73 71.37 92.27 85.64 88 80.55 92.73 92.27 93.17

Fig. 8 A schematic of Distillation Column process

ure 9 illustrates optimum decomposition depth computation
for MSICA strategy.

A bias is introduced in temperature variable 5 for sam-
pling times ranging from 150 to 350 of the testing data. The

monitoring results of PCA and MSPCA strategies are pre-
sented in Fig. 10 and monitoring results of ICA and MSICA
strategies in Fig. 11. The PCA-T 2 and PCA-SPE strate-
gies are unable to detect the bias fault introduced in the
testing data. While MSPCA-T 2 has slightly better perfor-
mance, the MSPCA-SPE strategy can detect the bias fault
in the given fault range, however, with few false alarms. As
observed in Fig. 11, the three fault indicators of the ICA strat-
egy cannot detect the fault clearly. Comparatively, the three
fault indicators of MSICA strategy detect the fault precisely
with very minimum false alarms, thus, displaying a clear
advantage.

Next, the performance of the MSICA FD strategy in
monitoring an intermittent fault is demonstrated. A sus-
tained bias is injected in temperature variable 5 for time
instants [100,200] and [350,450]. The monitoring results
of PCA and MSPCA strategies are presented in Fig. 12. It
is observed that PCA-based fault indicators are unable to
detect the fault. While MSPCA-T 2 detects the fault par-
tially, the MSPCA-SPE detects the fault with few false
alarms. Next, the performances of ICA and MSICA strate-
gies in monitoring this fault are presented in Fig. 13.
The ICA-I 2d , ICA-I

2
e and ICA-SPE based methods detects

the fault partially with few missed detections. In con-
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Fig. 9 Computation of optimum
decomposition depth for
simulated distillation column
process

Fig. 10 DC process: Results of PCA and MSPCA strategies in monitoring bias fault

trast, the MSICA-I 2d , MSICA-I 2e and MSICA-SPE based
fault indicators detect the fault clearly with minimum false
alarms.

The performance of FD strategies for different noise
realizations is presented in Tables 5 and 6. The results
indicate that all FD strategies provides good monitoring
results for the case of SNR=20. However, as the level
of noise is increased in the data, the MSICA strategy
over-performs other methods because of the powerful de-
noising scheme provided by the wavelets. Hence, it can
be concluded that the MSICA model captures useful pro-
cess information in presence of noise where as other
model structure fails to do so. This is because wavelet-
based data representation eliminates the effect of noise
and has better representation of data that enhances fault
detection.

5 Conclusion

The measured data from chemical processes are non-
gaussian in nature and this has led to frequent usage of
ICA FD strategy in process monitoring problems. How-
ever, the presence of measurement noise masks important
process information and degrades the monitoring efficiency
of ICA based strategy. Among various data-filtering meth-
ods available, multi-scale filtering using wavelets has found
to be useful owing to its ability to capture information
from the time-frequency scale. In this work, ICA FD strat-
egy was integrated with wavelet filtering to have a novel
MSICA strategy that can enhance detection of faults in
noisy process environments. The optimum decomposition
depth was obtained by using ICA model estimation at
each depth and selecting the depth that gives the mini-
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Fig. 11 DC process: Results of ICA and MSICA strategies in monitoring bias fault

Fig. 12 DC process: Results of PCA and MSPCA strategies in monitoring intermittent fault

mum MSE of model prediction. The performance of the
MSICA FD strategy was illustrated using three case stud-
ies, namely: dynamic multi-variate process, quadruple tank
process and distillation column process. A study was car-
ried to assess the performance of FD strategies for different
levels of noise. As the level of noise in the measured data
was increased, the proposedMSICAstrategy over-performed
other methods with a good FDR value. This is because the
multi-scale decomposition using wavelets filters noise and

extracts important process information that would enhance
fault detection. Hence, it can be concluded that the proposed
MSICA strategy satisfies the desired properties of a good
fault detection scheme. The proposed MSICA fault detec-
tion strategy is linear in nature and is restricted to linear
processes only. As a part of future work, the MSICA strat-
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Fig. 13 DC process: Results of ICA and MSICA strategies in monitoring intermittent fault

Table 5 Distillation column
process: False Alarm Rate for
different noise realizations

Fault 1SNR PCA MSPCA ICA MSICA

T 2 SPE T 2 SPE I2d I2e SPE I2d I2e SPE

Bias 5 4.23 11 2.17 15.5 7.33 7.33 3.83 3 5.3 1.9

10 2.65 8.25 1.95 10.5 4.33 6.67 2.33 2.33 3.37 1.47

20 2.33 7.67 1.4 9 3 6.5 3.67 2 2.96 0.93

Intermittent 5 3.67 17.33 6.67 15 1.93 1.67 9.33 3.33 3.75 1.67

10 3.13 15.67 5.75 14.5 1.65 5 5.33 2.33 2.45 0

20 2.33 14.33 3.67 6.67 1.67 4 4.87 1.75 1.7 0

Drift 5 4.5 10.9 11.5 8.5 3.75 5 5.33 1.25 4.5 5

10 4.5 9.75 9.5 6.25 1.45 3.33 2.33 1.15 1.5 3.75

20 4 9.15 8.5 5.95 1.25 2.33 2.67 0.75 0.95 2.5

Table 6 Distillation column process: Fault detection rates for different noise realizations

Fault 1SNR PCA MSPCA ICA MSICA

T 2 SPE T 2 SPE I2d I2e SPE I2d I2e SPE

Bias 5 7.00 31.25 59.00 98.50 44.50 55.50 35.00 97.50 98.50 86.00

10 7.50 33.00 93.89 99.75 88.00 29.00 26.50 99.25 100.00 100.00

20 40.00 99.50 94.50 100.00 93.50 91.50 72.00 100.00 100.00 100.00

Intermittent 5 14.50 76.00 72.50 97.50 34.50 57.00 40.50 97.00 97.50 93.50

10 15.50 81.00 74.50 99.25 38.50 81.50 67.00 99.25 100.00 99.50

20 65.50 98.50 98.50 100.00 69.50 95.00 88.50 99.50 100.00 100.00

Drift 5 87.68 94.56 87.88 96.49 88.93 85.88 91.75 96.33 96.66 94.37

10 90.84 97.71 93.89 96.17 91.60 91.46 92.37 96.95 99.24 98.47

20 94.66 98.21 97.47 98.55 92.84 95.05 92.60 98.12 99.62 98.33
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egy can be applied for industrial processes that are nonlinear
in nature.
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