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Abstract
In this research, a feasible mechanism is developed to determine the optimum number of bus rapid transit (BRT) stations 
as well as their respective locations along the service corridor. To accomplish this, a mathematical model is developed and 
optimized by using three different evolutionary algorithms, namely particle swarm optimization (PSO), genetic algorithm 
(GA), and differential evolution (DE), and the results are compared. The total cost function is composed of two main costs 
namely the operator’s cost, i.e., related to costs on service provider’s end, and the user’s cost, i.e., related to costs on commut-
ers’ end. A functional numerical example with the commuters’ demand is worked out by minimizing the cost function, which 
demonstrates the applicability of the framework. In our case study, PSO outclassed GA and DE on the basis of convergence 
rate. Since our work has proved the robustness of PSO as compared to GA and DE, we conducted our sensitivity analysis 
keeping PSO as our benchmark algorithm to study the influence of various parameters on the optimal cost. The computational 
experiments reveal that the optimal cost is substantially affected by the variations in the commuters’ demand, commuters’ 
walking speed, and value of the users’ access and in-vehicle time. On the contrary, the acceleration/deceleration delays at a 
bus station, bus operating cost, and headway have an inconsiderable impact on the optimal cost.

Keywords Bus rapid transit · Particle swarm optimization · Differential evolution · Genetic algorithm

1 Introduction

The bus rapid transit (BRT) system also known as Transit-
way or Metro is being used in different parts of the world as 
a public transportation system. It is reliable in terms of its 
capacity, time efficiency, and affordability, as compared to 
that of the conventional bus system. For several years, the 
urban rail transit system has remained the only system to 
efficiently tackle the emerging transport problems in high 
urban areas; however, the BRT systems have outshined it 

in terms of construction, operation and maintenance cost of 
the system, the time required to develop the system, greater 
flexibility, and the comparatively high throughput capacity 
[1]. Another study is conducted by developing a model to 
contrast BRT, light rail, and heavy rail system, and it sug-
gested that the high standard BRT is the most cost-efficient 
system in terms of users’ and operators’ cost, while the rest 
can only be superior if the operating speed kept faster than 
the BRT [2]. Thus, for the ever-increasing urban popula-
tion, the BRT system appears to be a quite useful mode of 
transport in the future’s aspect due to its merits over other 
modes of transport.

A very important and key component in the design-
ing phase of the BRT system is the determination of the 
density and the locations of the stations, along with the 
intended route, where the facility has to be provided. 
The density and the locations of the BRT stations play a 
crucial part in determining the accessibility of the BRT 
system, whereas the accessibility factor is very important 
to be considered, as the efficiency and the Level of Ser-
vice (LOS) of the BRT system primarily depends on the 
accessibility [3]. Accessibility for the passengers can be 
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improved by increasing the number of stations; however, 
it would possibly increase the delays due to the excessive 
accelerations and decelerations at all stations. These addi-
tional delays would eventually affect the total in-vehicle 
time as well as the operator’s cost due to the requirement 
of additional buses to serve every station [4].

Thus, the objective of this study is to provide with a com-
plete framework that is useful in determining the density and 
locations of the BRT stations by optimizing the users’ and 
operator’s cost. The user’s cost composed of users’ in-vehi-
cle cost is mainly depending on the time users spend in the 
vehicle and the value associated with that time. To minimize 
this cost, there should be a minimum, collective in-vehicle 
time spent by the users. Similarly, the users’ access cost is 
also a part of the user’s cost and it depends on the time users 
required to reach the BRT system and the value associated 
with that time. This time should be as minimum as possible 
in order to minimize the users’ access cost. Lastly, the opera-
tor’s cost fundamentally depends on the fleet size that should 
involve the minimum optimal number of buses to avoid the 
soaring in the total cost.

Similar work has been carried out by Chien and Qin 
[3], who developed and optimized the mathematical model 
using the genetic algorithm (GA). The GA can optimize 
both continuous and discrete functions as well as multi-
objective problems. However, besides advantages, one major 
disadvantage of GA is that an unfavorable choice of GA 
parameters might affect the outcome of the application. The 
choice of vital GA parameters such as crossover and rate of 
mutation as well as selection criteria of the new population 
should be carried out carefully. Any inappropriate choice of 
these parameters will make it difficult for GA to converge or 
it will simply produce meaningless outcomes [5, 6]. Inspired 
from the work done by Chien and Qin [3], in our paper, we 
have modified the total cost function and determined the 
optimal BRT stations’ density and locations along the ser-
vice corridor. The BRT operating in-vehicle cost is modified 
and the BRT personal and maintenance cost is embedded 
into it. Addition of a new station on BRT service corridor 
may considerably affect the personal and administrative cost 
and influence the cost at operator’s end. Similarly, number 
of stations on the service corridor causes buses to accelerate 
and decelerate, which has influence on the maintenance of 
bus. Moreover, we have also used three different evolution-
ary algorithms (EA) which are particle swarm optimization 
(PSO), differential evolution (DE), and GA for the optimiza-
tion of total cost function. In contrast to the previous study, 
a comprehensive sensitivity analysis is done for in-depth 
analysis of various independent variables used in the total 
cost function, also, the framework provides with the single 
optimal solution against the particular number of stations 
as compared to the multiple combinations presented in the 
previous study. Consequently, these advancements result in 

developing the new framework that is simple, efficient, and 
scientifically reliable in policy making.

EAs which have been used for optimization problems 
now became very famous among most of the researchers in 
the recent past decades. These algorithms have been applied 
to many engineering and applied sciences fields for finding 
out the optimized solutions due to their simple framework 
and applicability. Amidst the various techniques proposed, 
the three algorithms that are very similar and famous are 
DE, GA, and PSO. As the genetic algorithm is most con-
formist and well established among the other due to its ear-
lier introduction [7], relatively recent DE and PSO became 
widely known due to their ability for finding out the opti-
mized solutions for continuous and discrete problems. GA 
is a population-based meta-heuristic optimization technique 
which employs a mechanism that is inspired by the living 
organisms like the processes of selection, reproduction, and 
mutation, which works on the principle of “survival of the 
fittest” [8].

Almost all the EAs share the relatively same processes 
and operations. There are three main operation and pro-
cesses in all the EAs, where the first step is the initialization 
in which the randomly generated initial population of indi-
viduals is produced with respect to some specified solution 
representation, as solution representation is the most criti-
cal part in any evolutionary algorithm that in which way it 
should be represented. It should be represented with respect 
to the elements of some specific evolutionary method as 
it is responsible for producing the feasible solution. If the 
solution representation is not done in a good way, then it 
may lead to an infeasible solution. Besides solution repre-
sentation, two more critical parameters must be taken into 
account before getting into the program (i.e., size of the pop-
ulation and the maximum number of iterations), It should 
be determined initially, as these two parameters have a great 
influence on solution’s time and quality. After the initializa-
tion, the next step is to evaluate each solution present in the 
population with respect to the fitness values. The purpose 
of evaluating the solution is to find out the average fitness 
population or to rank each solution in the population for the 
sake of selection. At last, the generation of the new popula-
tion is created using perturbation of solutions in the current 
population. Figure 1 shows these three processes of the EA. 
For a novel comprehensive discussion of EA, see [9, 10].

To illustrate the EA operations as shown in Fig. 1, the 
steps for basic EA are listed below:

1. Generating the initial population.
2. Evaluating individual fitness values
3. Check that either all the stopping criteria met or not? If 

yes, then the program will be stopped and the required 
solution is accomplished. If it is no, then it will go to the 
next step.
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4. Generating the new population and go up for evaluating 
the fitness values. This loop will continue to run until all 
the required stopping criterion is met.

Many researchers have successfully employed EAs in the 
field of transportation engineering, Saeidi [11] worked on 
improving the efficiency of the public transportation system 
by optimizing the routes using the GA, Koh [12] used DE 
in the field of transportation planning for solving bi-level 
programming problems. Wu et al. [13] comprehensively 
reviewed the applications of PSO in the railway engineer-
ing domain. It was concluded that the PSO has seen ever-
increasing applications in the field of railway engineering, 
whereas network layout planning, scheduling, and active 
controls are the main research areas. Moreover, many 
researchers claimed that PSO is a viable method and its 
computational efficiency is better than GA and DE [14–17]. 
Also, there is a cluster of studies that used PSO in solving 
the BRT route optimization problem and the Transportation 
Network Design Problems (TNDP) in high-density urban 
areas [18–21]. Many studies focused on the bus stations’ 
spacing in urban areas. Saka [22] proposed a model to opti-
mize the bus stations’ spacing and concluded that right spac-
ing of the bus stations can cause a reduction in the headway 
and travel time which would ultimately create an impact in 
lowering the operator’s cost. Moreover, the optimized spac-
ing of the bus stations results in a smaller number of buses in 
the fleet which reduces the operator’s cost. Moura et al. [23] 
presented a two-stage model to find the optimal locations of 

the bus stations. At the first stage, the associated cost with 
the system was minimized by strategically locating the bus 
stations, while the second stage maximized the operating 
speed by tactically locating the bus stations. Thus, concluded 
that the locations of the bus station influence the commercial 
operating speed of the buses. Ceder et al. [24] designed a 
model to optimize the bus stop locations in a given route 
for uneven topography. Some other studies also carried out 
particularly focusing on urban areas [25, 26].

Besides presenting the models and solutions to the sta-
tion spacing problem, numerous researchers also studied 
the relationship between stations’ spacing and influencing 
parameters, for instance, headway and speed. Chien et al. 
[27] specifically studied the relationship between bus head-
way and the spacing of the bus station. They developed the 
mathematical model and have taken the travel time of users 
as an objective function. It is also important to note that a 
realistic wait time was considered during the study. It was 
observed that there is an inverse relationship between the 
fleet size and the optimal headway & stations’ spacing, while 
there is a direct relationship between passenger demand and 
travel time. Chang and Schonfeld [28] also worked on the 
optimization of headway in their study and developed the 
analytic model for optimizing the BRT. Apart from head-
way, Tirachini [29] conducted a comprehensive study on 
the relationship between the bus operating speed and bus 
stations’ spacing. He concluded that if the bus operating 
speed is constant and the passenger’s demand is increasing 
then there should be decreased spacing among the bus sta-
tions, while on the other hand if the bus operating speed is 
increasing then the bus stations should be spaced at large 
distances despite the rise in demand.

There are several studies where the researchers efficiently 
used various tools and techniques to undergo the study on 
optimal stations’ spacing problem. Dell’Olio [30] proposed 
a model that can locate the bus stations and carry out the 
optimization of bus frequencies by taking into account the 
cost pertaining to the construction of the bus stations, ser-
vices’ provision, and operation of the bus system. Two levels 
are defined, the first level is about the systems’ cost and the 
other is about the behavior of the user considering the public 
transport assignment model. The model reduced the access, 
travel, and wait times of the users, while on the operator’s 
end, it was noted that the good services were provided with 
the small increase in the cost of operation. The model was 
also applied to a case which shows that if the practical situ-
ation criteria are to be considered then there is less cost 
saving as compared to considering the scientific criteria of 
the applied model. Overall, the model showed satisfactory 
results when applied to practical problems. Li and Bertini 
[31] considered two cost components: the first one is pas-
sengers access cost and second is the in-vehicle passenger 
stopping cost using the high-resolution archived stop-level 

Start

Generate initial population

Evaluate fitness value

Condition
Satisfied?

Generate New 
Population

StopYes

No

Fig. 1  Flowchart representing the basic steps for evolutionary algo-
rithms
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data and used in the model to find the optimal spacing of bus 
stations. Furth and Rahbee [32] used geographic modeling 
and dynamic programming approach to find the optimal 
location and spacing of the bus stations. Furth et al. [33] 
have done an improved analysis of bus stations’ spacing by 
using the Geographic Information System (GIS).

The notations to be used throughout our paper are enlisted 
in Table 1. The forthcoming sections are enumerated as fol-
lows: The description of the BRT service line is stated in 
Sect. 2, whereas Sect. 3 explains the model formulation and 
preparation of total cost function. Then, the concept and 
application of DE, GA, and PSO are explained in Sect. 4. 
Then, the computational experiments, i.e., the designed 
numerical example and sensitivity analysis are presented, 
and subsequently, the conclusion is summarized in the last 
section of this paper.

2  Description of BRT Service Corridor

Figure 2 illustrates the configuration of the BRT service cor-
ridor. The transit bus can be provided at the desired routes 
as the figure shows that there are several access points to 
which the service corridor can be connected. To locate any 
access point at the service line, the first access point is taken 
as a benchmark, thus the distances of all the access points 
are considered with respect to the first access point as rep-
resented in Fig. 2.

3  Cost Function Formulation

The development of a cost function is discussed in this 
section. Few assumptions are made in order to support the 
formulation process and the framework. Following are enu-
merated the assumptions that are taken into account while 
developing the mathematical model and framework:

3.1  Assumptions

1. There can be no more than one bus station located 
between the two consecutive access points, whereas if 
the minimum cost is coming against the number of sta-
tions that are equal to the number of access points, i.e., 
e = f  , then all the BRT stations will be located exactly 
at the access points. In such a case, the users’ access 
distance would become zero and so the users’ access 
cost.

2. Users will always use the nearest bus station from the 
concerned access point; thus, the access cost can be 
determined as the ratio of access distance to the nearest 
station and the commuter walking speed.

3. Buses are not skipping any station and serving each sta-
tion; hence, the acceleration and deceleration delays are 
assumed to be the same at all stations. Moreover, the 
bus headway is also assumed to be constant and the wait 
time is assumed to be half of the headway. Thus, the wait 
time does not affect the optimization and Ed , the wait 
cost is not considered in the total cost function.

4. A fixed BRT service corridor with an elevated signal-
free corridor is considered, whereas the demand can 
only access it from the access points. The boarding and 
alighting demand are distributed uniformly over a time 
period, but this demand can be different for each access 
point.

5. The commuters’ demand coming from the access point 
k in the direction x , is known as the boarding demand 
in direction x at the access point k and denoted as axk , 
while the commuters’ demand bounded for the access 
point k in the direction x , is known as alighting demand 
in direction x at access point k denoted as dxk . Moreover, 
commuter demand in both directions is considered to 
be identical, so a1k in direction 1 is equal to the d2k in 
direction 2. This assumption is taken into consideration 
so that the optimal density and locations of the stations 
would remain similar for both service direction, other-
wise, it could be neglected but the results for both direc-
tions would be different.

6. To estimate the user cost which is a nonlinear function 
of time, a quadratic function of time is assumed to esti-
mate the user cost. Let’s assume that, if the user travel 
time is t  , the user cost would be t2 multiplied by the 
value of time and the commuters’ boarding and alighting 
demand.

3.2  The Total Cost Function 
(

E
TC

)

The total cost function is the sum of all costs, and this is our 
objective function that is to be minimized to get the optimal 
density and locations of the BRT stations. The BRT system 
is associated with the service providers, i.e., the operator, 
and the service utilizers, i.e., the users, and both are an inte-
gral part of any BRT system. The operating cost is incurred 
by the parameters, for example, consumption of fuel, and 
the maintenance of the bus fleet. It is worth noting that the 
density and location of stations affect the operators’ cost 
as the non-optimized number of stations can increase the 
acceleration and deceleration delays hence can also affect 
the extra fuel consumption due to additional buses required 
to fulfill the requirement. On the other hand, stations’ spac-
ing and locations, proportionally influence the riding and 
access time of users. If the number of stations increases, the 
users’ average access time decreases and if the number of 
stations decreased, the user riding time decreases, whereas 
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Table 1  Variable definitions Symbol Description Units

x Index of traffic direction –
z Index of the service corridor –
zl Length of the service corridor z miles
k Index of access point –
axk Commuters’ boarding demand at access point k cph
Bf Bus frequency vehs/h
Bh Bus headway h
C Fleet size vehicles
cph Commuters per hour –
Dz Boarding and alighting demand on link z cph
dxk Commuters’ alighting demand at access point k cph
e Total number of BRT stations entries
Ed Users’ wait cost USD/h
EOC Operator’s cost USD/h
Eo-inc Bus operating in-vehicle cost USD/h
Eo-mpc Bus maintenance and personal cost USD/h
ETC Total cost USD/h
EUC User’s cost USD/h
Eu-ac Users’ access cost USD/h
Eu-inv Users’ in-vehicle cost USD/h
f Total number of access points entries
hl Distance from station l to the first access point miles
Hda Boarding/alighting commuters from stations comm
itk Access time per commuter at access point k h
l Index of BRT station –
LL Lower limit of decision variable miles
Mx Through flow in direction x cph
�Mx Through flow attracted by new station in direction x cph
Nz Number of access points on service corridor z –
OB Bus operating cost USD/veh-h
Ompc Maintenance and personal cost per bus USD/veh
ps Commuter walking speed mph
sk−1 Distance from access point k to the first access point miles
S Length of the study section miles
tl Layover time h
tz Travel time on the service corridor z h
Ta Total acceleration/deceleration delay h
Tb Total dwell time h
Ts Travel time along the length of the segment h
UL Upper limit of decision variable miles
va Vehicle acceleration rate m/s2

vb Vehicle deceleration rate m/s2

vos Average vehicle operating speed mph
Vi Users’ access time value USD/cph
Vm Users’ in-vehicle time value USD/cph
wda Mean boarding and alighting time per commuter h
wt Delay time due to acceleration and deceleration at a station h
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there is a cost associated with both vital times, in terms of 
the values of users’ access time and riding time.

Therefore, to make a trade-off between the interest of 
users and operators, we need to find an optimum cost that 
alleviates the costs associated with both parties. Thus, an 
optimal number of stations is found out by minimizing the 
objective function comprising of users’ and operators’ cost. 
Numerous researchers in the past studies have also consid-
ered the users’ and operators’ cost as an objective function 
[34–36]. The breakdown of the total cost function is illus-
trated in Fig. 3.

3.2.1  Operator’s Cost 
(

E
OC

)

It is the cost related to the service provider and basically the 
sum of all bus operation costs, i.e., bus operating in-vehicle 
cost, bus maintenance, and personal costs.

Bus Operating In-Vehicle Cost 
(

EO-inc

)

It depends on the fleet size and the operating cost of the 
bus. The total bus operating in-vehicle cost is basically the 
product of the fleet size, (C) and in-vehicle operating cost 
per vehicle 

(

OB

)

, i.e.,

(1)EO-inc = COB.

The bus fleet size can be obtained through the ratio of 
round-trip time to the bus headway 

(

Bh

)

 . The round time 
of bus consists of the travel time 

(

Ts
)

 along the service 
corridor and the layover time 

(

tl
)

 at each station. To for-
mulate the numerical expression for fleet size, the equation 
derived by Chien [37] is applied. Thus:

where travel time 
(

Ts
)

 is function of travel distance and the 
bus operating speed 

(

vos
)

 . Thus, it can be calculated as:

where hl and hl−1 represent the distance of station l from the 
first access point, and the distance of the station, previous to 
the station l , from the first access point, respectively. Thus, 
the final expression to calculate the in-vehicle operation cost 
is represented by Eq. (4).

(2)C =
2
�

Ts +
∑e

i=1
tl
�

Bh

,

(3)Ts =

∑e

i=1

�

hl − hl−1
�

vos
,

1 2 3 f

s2-1
s3-1

Sf-1

Legend
Bus station
BRT track
Entry Point
Terminal Station

Fig. 2  Configuration of the BRT service line with “f” access points and “e” number of stations
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BRT Personal and Maintenance Cost 
(

EO-mpc

)

The bus personal and maintenance cost 
(

EO-mpc

)

 constitute 
maintenance, repair and tire costs of buses as well as driv-
ers and administrative cost. This cost basically depends on 
the round-trip distance (two times the total length of the 
service corridor) and the bus fleet size. The dwell time of 
buses at each station has an effect on personal cost, there-
fore, total dwell time as well as boarding and alighting 
demand at each station is also incorporated in bus main-
tenance and personal cost and can be written as Eq. (5)

3.2.2  User’s Cost 
(

E
UC

)

The user’s cost 
(

EUC

)

 is the cost that is induced by the transit 
patrons using the BRT service. It is the sum of the two con-
stituent costs, i.e., user’s access and in-vehicle cost, and can 
be represented as Eu-ac and Eu-inv , respectively.

(4)

EO-inc =

2OB

⎡

⎢

⎢

⎢

⎣

⎧

⎪

⎨

⎪

⎩

e
∑

i=1
(hl−hl−1)

vos

⎫

⎪

⎬

⎪

⎭

+
e
∑

i=1

tl

⎤

⎥

⎥

⎥

⎦

Bh

.

(5)EO-mpc = 2Ompc

[

(

Bfzl
)

+

f
∑

k=1

{(

axk + dxk
)

Tb
}

]

.

(6)EUC = Eu-ac + Eu-inv.

We use the numerical expressions developed by Chien 
and Qin [3] to determine the total users’ cost as mentioned 
in Eq. (6).

Users’ Access Cost 
(

Eu-ac

)

The users’ access cost is basically the expense, which is 
imposed on commuters using the bus transit system. The 
commuters who have access to the transit stations mainly 
incur the access cost. It is the cost associated with the time 
of accessing the bus stations from the access points, hence 
it can be obtained as the access time of the commuters, itk , 
multiplied with the value of access time of commuters, Vi . 
Numerically, it can be estimated by using Eq. (7)

As per assumption 2, the commuters will go to the near-
est station from the particular access point. So, the user’s 
access time,itk , can be calculated from Eq. (8):

where sk−1 is the distance of the access point k to the first 
access point. The equation shows that access time is the ratio 
of distance to the nearest bus station from the access point k 
and the commuter walking speed.

Users’ In-Vehicle Cost 
(

Eu-inv

)

Users’ in-vehicle cost is incurred by the time users spend 
in the vehicle, the value associated with that and the total 

(7)Eu-ac = 2Vi

f
∑

k=1

[(

axk + dxk
)

i2
tk

]

.

(8)itk =
min

[

|

|

sk−1 − h1
|

|

,… , |
|

sk−1 − he
|

|

]

ps
,

Fig. 3  Components of the total 
cost function

Bus Maintenance and Personal Cost

( )O mpcE −

Bus Operating In-Vehicle Cost

( )O incE −

Operator’s Cost

( )OCE

User’s Cost

( )UCE

Total Cost Function

( )TCE

User’s Access Cost

( )u acE −

User’s In-Vehicle Cost

( )u incE −
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demand. It is the product of the aforementioned param-
eters. It consists of two costs components:

If the extension is to be made in an existing BRT system 
then the first component, Em1

 is used. It represents the in-
vehicle cost incurred by through flow in direction x,Mx and 
it can be determined by using Eq. (10). Moreover, in this 
scenario, Mx is to be determined beforehand, while for a 
new BRT system, its value is zero and the cost component 
would consist of:Em2

 only. Em2
 represents the cost incurred 

by the commuters that are boarding and alighting along 
the new route.

The total acceleration/deceleration delay, Ta can be deter-
mined using Eq. (11)

In Eq. (11), e represents the number of stations, and accel-
eration/deceleration time at a single station,wt can be calcu-
lated by using Eq. (12) derived by Chien [38]. Therefore,

In Eq. (10), total dwell time, Tb depends on, boarding 
and alighting commuters on new stations, Hda , and average 
boarding and alighting time per commuter, wda . Tb can be 
determined by using Eq. (13):

In Eq. (13), Hda can be determined by using Eq. (14) as:

From Ta and Tb , the size of the fleet, required to serve 
the demands for new bus stations can be determined using 
Eq. (15):

Subsequently, for determining the second component 
of the total users’ in-vehicle cost 

(

Em2

)

 , the service line is 
divide into three segments in terms of the service corridors, 
each segment is contributing its cost that is resulting in mak-
ing the respective costs Em21

 , Em22
 and Em23

 as represented in 
Eq. (16). The entire service line with f  access points can 
be divided into the total number of stations plus one, i.e., 
e + 1 service corridors. Thus, Em21

 is the round-trip users’ 

(9)Eu-inv = Em1
+ Em2

.

(10)Em1
= 2VmMx

(

Ta + Tb
)2
.

(11)Ta = ewt.

(12)wt =
vos

2va
+

vos

2vb
.

(13)Tb = Hdawda.

(14)Hda = Bh

f
∑

k=1

(

axk + dxk
)

.

(15)
2
(

Ta + Tb
)

Bh

.

in-vehicle cost occurring on the first segment that is com-
posed of service corridor 1, where service corridor 1 is for 
serving the demand from the first access point to the first 
station.

Em21
 can be determined by using Eq. (17):

where Em21
 is the product of the value of in-vehicle time, 

Vm the weighted round-trip travel time on the service cor-
ridor z,2t2

1
 , and the updated or increased hourly demand that 

is �Mx + D1 . The travel time on the service corridor z and 
the increased hourly demand can be determined by using 
Eqs. (18) and (19).

where z1 is the distance of the first bus station to the first 
access point and it is equal to h1 . For i ≥ 2 , zi = hi − hi−1 . 
Now, Em22

 is the round-trip user in-vehicle cost occurring on 
the second segment of the BRT service line. It comprises all 
the service corridors between the first and the last service 
corridor, i.e.,2 ≤ z ≤ e , the service corridor z connects sta-
tions z − 1 and z . The value Em22

 can be determined by using 
Eq. (20):

where the through demand for the service corridor z , Dz , can 
be obtained by Eq. (21):

where the total travel time on the service corridor z is rep-
resented by Eq. (22)

where zl represents the length of the service corridor z . It 
is measured from the station z − 1 to station z . For all the 
service corridors falling under the segment two, acceleration 
and deceleration delays are considered as shown in Eq. (22). 
The third and the last segment is composed of only one ser-
vice corridor that is the last: ( e + 1 ). Now, the round-trip 

(16)Em2
= Em21

+ Em22
+ Em23

.

(17)Em21
= 2Vm

(

�Mx + D1

)

t2
1
,

(18)�Mx + D1 =

f
∑

k=1

dxk

(19)t1 =
z1

vos
+

vos

2vb
,

(20)Em22
= 2Vm

e
∑

z=2

(

Dzt
2
z

)

,

(21)Dz =
(

�Mx + D1

)

+

Nz
∑

k=1

(

axk − dxk
)

,

(22)tz =
zl

vos
+

(

vos

2va
+

vos

2vb

)

,
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user in-vehicle cost occurring on the third segment of the 
BRT service line Em23

 can be determined by Eq. (23):

where De+1 is the increased demand on the service corridor 
e + 1 and can be obtained by using Eq. (24):

and the total travel time on the service corridor e + 1 can be 
calculated by Eq. (25):

where S −
∑e

z=1
zl is the length of the service corridor e + 1 . 

For the last station (e) , the deceleration delay is not consid-
ered. Now, substituting Eqs. (17), (20) and (23) in Eq. (16) 
provides with the total users’ in-vehicle cost as Eq. (26):

As we discussed earlier, the total cost consists of users’ 
cost and operator’s cost, whereas the wait cost in the total 
users’ cost is constant. Therefore, the total cost function 
can be estimated by summing up Eo-inc , Eo-mpc , Eu-ac and 
Eu-inv by using Eqs. (4), (5), (7) and (26), respectively, 
to determine the optimal BRT, bus rapid transit, stations’ 
density and locations.

Equation (27) represents the total cost function that is 
the objective function in this study.

4  Application of Evolutionary Algorithms

The three evolutionary algorithms (i.e., DE, GA, and PSO) 
are applied to optimize our objective function (total cost 
function) to compute the optimal locations of BRT stations’ 

(23)Em23
= 2VmDe+1t

2
e+1

,

(24)De+1 =

f
∑

k=1

qxk

(25)
te+1 =

S −
e
∑

z=1

zl

vos
+

vos

2va
,

(26)

E
u-inv

= 2VmMx

(

Ta + Tb

)2
+ 2Vm

(

�Mx + D
1

)

t
2

1

+ 2Vm

e
∑

z=2

(

Dzt
2

z

)

+ 2VmDe+1t
2

e+1
.

(27)

ETC = 2VmMx

�

Ta + Tb
�2

+ 2Vm

�

�Mx + D1

�

t2
1
+ 2Vm

e
�

z=2

�

Dzt
2
z

�

+ 2VmDe+1t
2
e+1

+ 2Vi

f
�

k=1

��

axk + dxk
�

i2
tk

�

+ 2Ompc

�

�

Bfzl
�

+

f
�

k=1

��

axk + dxk
�

Tb
�

�

+ 2OBB
−1
h

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎧

⎪

⎪

⎨

⎪

⎪

⎩

e
∑
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�

hl − hl−1
�
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⎫

⎪

⎪

⎬
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⎪

⎭

+

e
�

i=1

tl

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

and their density. The subsections of evolutionary algo-
rithms comprise of explanation and implementations of 
DE, GA, and PSO. Each algorithms’ implementations are 
discussed individually with the help of flowchart for better 
understanding.

4.1  Optimization by Differential Evolution

The differential evolution (DE) is a well-exploited heuris-
tic technique that is a population-based stochastic search 
method for solving optimization problems over continuous 
space like the genetic algorithm. It was first proposed by 
Storn [39] for global optimization. Its framework and appli-
cability are quite simple and easy, also it requires a smaller 
number of control variables which can lead someone to think 
that its convergence property might not be good, but it per-
forms well in convergence. Figure 4 shows the flowchart of 
the DE algorithm.

Differential evolution is an efficient yet powerful technique 
which became widely famous due to its new form of solution 
and used in many engineering fields as well as in many other 
scientific fields. A vector population-based stochastic algo-
rithm is like GA as it also works on the three operators name 
as selection, crossover, and mutation, but it uses the randomly 
sample pairs object vectors in the process of mutation which 
makes it relatively recent and new algorithm when comparing 
other evolutionary techniques, for example, GA, it produces 
the randomly generated initial population, then three random 
individuals are selected for each individual and a new vector is 
produced by adding the weighed difference of two individuals. 
As in GA, crossover operator was one of the main operators 
but it is complementary in the DE algorithm. When this whole 
process is accomplished using all the individual, then fitness 

is evaluated. As a result, if the new fitness value is better than 
that of old fitness value, then it simply replaces the old indi-
vidual with a new one. This whole process is repeated until 
the convergence is reached or the maximum number of genera-
tions is accomplished. DE produces a new solution by merging 
various solutions with the candidate or standard solution.

To illustrate the DE operations as shown in Fig. 4, the step 
for basic DE are listed below:
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Fig. 4  Optimization by using 
differential evolution
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Step 1 Initialization

DE algorithm generates in D dimensional search space a 
population of NP called individuals. In our case study, indi-
viduals are spacing of stations from the first access point to 
the station. In generation G population of individuals can be 
written as:

Xi,G =
{

x1,G, x2,G,… , xDi,G
}

where i = 1, 2,… , NP.

The entire search space is covered by the initial population. 
The initial value of jth parameter when G = 0 is:

xji, 0 = rand(0, 1)
(

xUL
j

− xLL
j

)

+ xLL
j
,  w h e r e 

i = 1, 2,… , NP and j = 1, 2,… ,D . The values generated ran-
domly are uniformly distributed with the range (0, 1); xUL

j
 , and 

xLL
j

 are the upper and lower limits of jth parameter.

Step 2 Mutation

For each target vector Xi,G , mutation operation is performed 
by DE to generate a mutant vector Vi,G =

{

v1,G, v2,G,… , vDi,G
}

 . 
The DE strategy used in our work is: DE∕best∕1∕bin which 
is best defined as:

Vi,G = Xbest,G + F
(

Xr1,G − Xr2,G

)

, where r1, r2 ∈ [1, NP] 
and r1 ≠ r2 ≠ i . F satisfies F ∈ [0, 2] and is a constant and a 
real factor. For Gth generation, Xbest,G is the best fitness vector.

Step 3 Crossover Operation

Trial vector: Ui,G =
{

u1,G, u2,G,… , uDi,G
}

 is generated in 
this operation from mutant vector Vi,G and target vector Xi,G . 
The crossover strategy is expressed as:

Step 4 Selection

In this operation, at each target vector f
(

Xi,G

)

 and trial vec-
tor f

(

Ui,G

)

 , objective function values are compared for smaller 
fitness function values. These values remain in the next genera-
tion, while others are disregarded. The strategy for selection 
is as follows:

Step 5 Termination

Mutation, crossover and selection are repeated generation 
by generation until the stopping criteria are reached. For the 
optimization problem’s solution, the best vector 

(

Xbest,G

)

 of 
the current population is returned as the answer.

uji,G =

{

vji,G

xji,G

if rand (0, 1) ≤ CR

otherwise
.

Xi,G+1 =

{

Ui,G

Xi,G

if f
(

Ui,G

)

≤ f
(

Xi,G

)

otherwise
.

4.2  Optimization by Genetic Algorithm

The genetic algorithm (GA) is a well-exploited heuristic 
technique that mimics the natural or genetic selection. It 
was proposed by J. Holland’s and became widely known in 
the coming years due to its ability for finding out the global 
optimal solutions effectively without any prior information. 
It is an evolutionary heuristic technique which is typically 
population-based search method. This global optimal tech-
nique works on the principle of “survival of the fittest” and 
motivated by Darwin’s theories of evolution [40]. It repre-
sents the solution set as chromosomes (population). Figure 5 
shows the flowchart of GA.

A genetic algorithm technique is an iterative process 
which is based on the schema theorem [41]. The solutions 
here represent the chromosomes which are first evaluated 
for the best fitness value, then the very next task is that they 
are ranked from the best to worst with respect to that fit-
ness values. In GA, it mimics the natural selection to pro-
duce new solutions, this whole process can be carried out 
by employing the three genetic operators (i.e., selection of 
better chromosomes, crossover to produce new offspring, 
and the mutation to inject or employ the diversity), and the 
continuous application of these three operators can give an 
optimal solution. First of all, what does the selection of chro-
mosomes mean? It means to pick better chromosomes and 
make them parents to generate or produce the new chromo-
somes (new offspring) with better fitness value along with 
higher probabilities rather than poorer fitness value along 
with lower probabilities. Fitness values are typically used 
as a benchmark to decide either the individuals or chromo-
somes are elitist or not, based on the method proposed. As it 
is described above that this algorithm works on the principle 
of “survivor of the fittest,” so, the chromosomes with better 
fitness are selected. Now, what does crossover means in GA, 
once a selection phase is done, the operator of the crossover 
amalgamates that chromosomes to generate new offspring. 
As the fittest individual or chromosomes are picked often, 
so there is a probability that the new solution that we have 
achieved become nearly identical after various generations, 
so the diversity may drop or fall and this process can lead 
to a phenomenon known as population stagnation, so, as to 
avoid the stagnation in population, we use the mechanism 
name as mutation, which adds diversity to reduce the effect 
of population stagnation.

As the size of the population and the number of iterations 
are the most important factors in this algorithm, similarly, 
there is a need to observe a different set of decisions that 
must be adopted beforehand. The first set can be the selec-
tion method and the mechanism for probability assignment, 
which should be based on fitness. Various selection methods 
are used in literature, but the three very popular methods 
are Roulette Wheel Selection, rank selection, and elitism 
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selection [42] Likewise, the second set can be crossover 
method and crossover probability, many crossover methods 
are used in literature, but the three very popular methods 
are single-point crossover, two-point crossover, and uniform 
crossover. The mutation method and mutation probability 
is the third set of decision, as it can help in balancing the 
diversity by adding the new chromosomes in the population.

To illustrate the GA operations as shown in Fig. 5, the 
steps for basic GA are listed below:

Step 1 Chromosomes Representation

In our case of study, the chromosomes represent the spac-
ing of stations from the first access point to the stations. 
The chromosome of each solution is made of m genes. 
X =

[

x1, x2, . . . , xm
]T , where x1, x2, . . . , xm are m number 

of decision variables. The m dimensional discrete vector 
represents a solution.

Step 2 Initialization

N  number  o f  so lu t ions  a re  gene ra t ed  fo r 
Xi =

[

xi1, xi2, . . . , xim
]T , i = 1, 2, . . . , N  randomly within 

the defined boundaries of each variable so that Xi satisfies 
the problem constraints. A N number of integers are gener-
ated between 0 and 7 using rand () function of MATLAB.

Step 3 Fitness Value

In general, objective function has a relationship to fitness 
function to a certain degree. To find fitness of each solution 
of P(T) , we evaluate (P(T)).

Step 4 Selection Process and Crossover Operator

The parent solution set P(T) is selected to form n number of 
offsprings by one-point crossover operator, and the enlarged 
population space set P�(T) is now composed of (N + n) solu-
tions. The roulette_wheel 

(

P�(T)
)

 operator is used to gener-
ate the next generation solution set P1(T) . Chromosome’s 
selection probability of being proportional to its fitness value 
compared to the other chromosomes in the population is by 
means of this method.

Step 5 Reproduction

The best individuals are selected and copied to the next gen-
eration from the current generation. This strategy is known 
as elitist, which means that the population is led by individu-
als with the best fitness value, hence, they are termed as elite 
individuals. By reproduction, the best solution improves 
from one generation to the next monotonically.
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Step 6 Mutation

The mutation operator is used to prevent premature conver-
gence of the population. Instead of mutating gene-to-gene, 
new individuals are introduced into P1(T) . Generation of the 
new mutants is random like the generation of the original 
population and therefore current population’s genetic mate-
rial is not brought in.

Step 7 Stopping Criterion

This evolutionary process, when the best solution is found 
or when the total iterations have been run, is halted. In our 
case, the stopping criterion is when total iterations have been 
completed.

4.3  Optimization by PSO Algorithm

Particle swarm optimization (PSO) is an intelligent optimi-
zation algorithm which is based on the paradigm of swarm 
intelligence developed by Kennedy and Eberhart [43]. PSO 
is inspired by the social behavior of animals like fish and 
birds, in which the individuals are termed as particles and 
population is termed as a swarm. In a defined space, each 
particle is assigned a position and a velocity. All the par-
ticles then search individually for food. When a favorable 
location of the food is discovered by a particle, the informa-
tion is then relayed to all other particles, in that space, who 
then rush toward that particle immediately. The particles 
wander around in the given space, conveying favorable loca-
tions to others, and alter their velocities and positions based 
on these favorable locations [44].

PSO belongs to a class of algorithms called meta-heu-
ristics. It is similar to other evolutionary algorithms, like 
genetic algorithm, in a way that it uses a population bases 
approach to retain and refine numerous possible solutions, 
frequently using population attributes in conducting the 
exploration. Unlike GA, the evolutionary procedure in PSO 
only develops locations of the particles, rather than generat-
ing new particles.

The total cost function formulated in Eq. (27) is to be 
minimized, to find the optimal number of stations and their 
respective locations. The optimization algorithm is to be run 
for the different numbers of stations, starting from e = 1 to 
e = f  , separately and, the particular minimized cost for each 
number of stations is to be found. The decision variable hl 
used in the total cost function ETC will determine the loca-
tion of the bus stations. Figure 6 shows the flowchart of the 
PSO algorithm.

PSO is initialized with a variety of possible solutions as a 
swarm of particles. Each particle explores the new possible 
solutions repetitively by its motion in defined space with an 

altered velocity according to both the preceding finest solu-
tion of itself and the swarm. The finest solution observed by 
the current particle is termed as local best, while the finest 
solution explored by the swarm is termed as global best. All 
the particles are connected through global best, that is, each 
particle is guided by the finest solution of the whole swarm; 
the local best is used to consider the capacity of each particle 
to recall its previous individual successes [45].

Consider the dimension of the defined space as a positive 
integer D . The location of ith particle is denoted by 
(

xt
ij

)

j=1,…,D
 , where xt

ij
 is the location of ith particle in the jth 

dimensional value at the tth iteration. The rate at which the 
location change (velocity) is denoted by 

(

vt
ij

)

j=1,…,D
 , where 

vt
ij
 being velocity in jth dimension of ith particle at the tth 

iteration. The fitness function which computes the quality 
for the location of the particle i . Every particle recollects its 
own finest location achieved so far (the location correspond-
ing to the finest function) as Pt

best,i
 , where Pt

best,i
 is the finest 

location of ith at the tth . The finest location observed so far 
by the population is denoted as Gbest . During the tth iteration, 
velocity for jth dimension of every particle i is updated by 
[44]

where w is the inertia weight, c1 and c2 are constant values 
multiplied by randomly generated numbers r1 and r2 , respec-
tively. These random numbers are used to retain heterogene-
ity of the swarm and are allocated consistently in the interval 
[0, 1] [45]. Based on its current direction 

(

vt
ij

)

 , its personal 

best memory 
(

Pt
best,i

)

 and its inclination to like the finest 
particle in the swarm, each particle moves. The ith particle 
location is updated by the addition of its preceding location 
and the new velocity as;

Every particle i hunts in the defined space for the solution 
xt
ij
 . We define this search space by defining the limits: upper 

limit (UL) and lower limits (LL), in which we want the 
desired outcome in the form of the optimum solution. In the 
scenario of this research, S , the length of the study segment 
will be the defined search space such as 0 be the LL and S 
be the UL. The particles will converge to the optimum solu-
tions within this defined search space and the optimum 
results will be coming in the form of the optimum location 
of the stations along the length of the study segment. To lead 
the particles productively, the moving distance, in the 
defined space with a range [UL, LL] in any iteration, must be 
clamped in between the maximum range [−vmax, vmax] . If we 
do not clamp the velocity, it would result in the rapid 

vt+1
ij

= wvt
ij
+ c1r

t
1,j

[

P0
best,i

− xt
ij

]

+ c2r
t
2,j

[

Gbest − xt
ij

]

,

xt+1
ij

= xt
ij
+ vt+1

ij



5192 Arabian Journal for Science and Engineering (2021) 46:5179–5202

1 3

Fig.6  Optimization by using 
particle swarm optimization 
algorithm
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position changing of the particles in the search space, so 
clamping results in providing the efficient results by creating 
the balance between the global exploration and the local 
exploration.

Step A Derivation of Total Cost Function

To begin, take e = 1 and derive the total cost function 
using Eq. (27). The function will have only one decision 
variable hl that will determine the location of a single bus 
station. The total number of stations e cannot exceed the 
total number of access points f  . Therefore, the equations 
for all the stations: e ≤ f  will be derived.

Step B Minimizing the Total Cost by PSO

Minimize the total cost Ew,e for the e number of stations 
using the PSO approach. The optimized cost function will 
give the minimum cost, as well as the optimal location of 
bus stations. The PSO algorithm is coded into the MAT-
LAB programming environment for minimizing the func-
tion using the distance of BRT station from the first access 
point as a decision variable. The following steps show the 
implementation of PSO in our work.

Step 1 Initialization

Define parameters such as decision variable xt
ij
 , velocity 

vt
ij
 , upper limit ( UL ) and lower limit ( LL ) of the decision 

variables, no of maximum iterations N  , max no of parti-
cles P , define max velocity vmax = 0.2 ∗ [UL − LL] and 
min velocity vmin = −vmax , the set value of global best 
Gbest = inf and iteration counter t = 0.

For i = 1 to n : randomly generate the position of the 
decision variable x0

ij
 in [UL, LL] with a population size of 

P particles.

Step 2 Updating Position and Velocity of Each Particle

For i = 1 to n : generate randomly rt
1,j

 in [0, 1] and rt
2,j

 in 
[0, 1] and update vt+1

ij
← vt

ij
+ c

1
rt
1,j

[

P0

best,i
− xt

ij

]

+ c
2
rt
2,j

[

G
best

− xt
ij

]

 ; update xt+1
ij

← xt
ij
+ vt+1

ij
.

Step 3 Calculating Position of Each Particle

For i = 1 to n : run the algorithm on the total cost function 
f t
ij
 using xt

ij
 and other given inputs in Step 1 and Step 2. 

Select min cost value from f t
ij
 and its corresponding xt

ij
 

from the results generated.

Step 4 Updating of Local Bests and Global Bests

For i = 1 to n : using the results from Step 3, if f t
ij
≤ fbest,i then 

update fbest,i ← f t
ij
 and Pt

best,i
← xt

ij
 ; if f t

ij
≤ fgbest then update 

fgbest ← f t
ij
 and Gbest ← xt

ij
.

Step 5 Ending Condition

Set value of t = t + 1 . If the ending condition is not met then 
go to Step 2. If not then Gbest is the best possible position of 
the particles with the total cost function fgbest . Extract the 
necessary information and stop.

Step C Finding the Optimal Solution

Once, the minimized total costs for e = 1 to e = f  are deter-
mined, search for the number of stations with the minimum 
total cost. The values of the decision variables resulting from 
the optimized cost function of that particular number of sta-
tions will determine the optimal locations of stations.

5  Computational Experiments

To practically demonstrate the applicability of the developed 
model, a numerical example is designed, and the supposed 
scenario imitates the real-life conditions. For demonstration 
purpose, the values of different variables are assumed.

5.1  Numerical Example

Let assume, an extension is to be made on the existing BRT 
route, to provide the facility to the residents of a newly 
developed suburb. A different number of stations can be 
situated along the BRT track, whereas the commuters can 
access the facility from five different access points. Figure 7 
illustrates the distances between consecutive access points 
as 1.7, 2, 1.5, and 1.8 miles, respectively.

Now, taking into account the key parameters, i.e., the 
users’ in-vehicle time, users’ access time, and the opera-
tor’s interest, various numbers of stations can be added to 
the BRT system as discussed. The boarding and alighting 
demands at the five access points are enumerated in Table 2. 
The optimization algorithms are used and the optimal results 
are worked out.

After applying PSO, GA, and DE on our total cost func-
tion for stations one to four in MATLAB programming envi-
ronment, the results of the number of iterations versus best 
costs, as shown in Fig. 8, are plotted. The graphs show that 
among these three algorithms PSO clusters rapidly and also 
its swarm becomes stagnant. In the case of GA, clustering 
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is not very obvious, but the reinitialization process shows 
randomness being injected to improve the diversity toward 
an optimal solution. While in the case of DE, it can be seen 
that clustering is least and reinitialization has the least effect 
in DE. The robustness of PSO as it converges to the best 
optimal solution way before DE and GA can be clearly seen 
in the figure.

Since the scope of our work revolves around PSO and 
in proving its efficiency over GA, which we have set as our 
benchmark, therefore, in the upcoming sections, the work 
done is mainly through the use of PSO.

Figure 9 illustrates the optimal distance and cost against 
the number of BRT stations. The highest achieved optimal 
cost is 43,085 USD/h against 1 station with the optimal loca-
tion at 3.60 miles at the 7-mile-long track. On the other hand, 
the lowest achieved optimal cost is. 2536.3 USD/h against 
the four stations, with the optimal locations at 0.07, 1.76, 
4.44, and 6.90 miles. Furthermore, the cost against 2 sta-
tions is 20,621 USD/h and the optimal locations are 0.91 and 
5.49 miles. For 3 stations, the optimal cost is 4550.8 USD/h 

and the optimal locations are 0.97, 4.43, and 6.90 miles. 
The locations for the 5 stations would be the same as the 
locations of the access points due to the assumption (1), 
whereas the optimal cost is 14,295 USD/h. Consequently, 
the aforementioned density and locations of the BRT sta-
tions against the total optimal cost of 2536.3 USD/h would 
be considered as the optimal solution of the numerical exam-
ple under consideration.

Moreover, the optimal density and locations of the sta-
tions, lead to the average access distance of 0.31 miles per 
commuter and, the average access time of 7.44 min, consid-
ering the commuter access speed at 2.5 mph. Additionally, 
the dwell time, Tb and, the increased travel time due to the 
acceleration and deceleration of the Bus, Ta , results at 0.14 h 
and, 0.16 h, respectively. Consequently, the increased travel 
time of the Bus, in the result of serving commuter at each 
station is 0.6 h. Assuming the headway at 0.2 h, Eq. (15) 
suggests that two additional buses are required to serve the 
demand at the new stations of the BRT system. The optimal 
locations of the stations along the BRT track are shown in 
Fig. 10.

5.2  Sensitivity Analysis

Sensitivity analysis is the process that determines how the 
variations in the independent variables used in the objec-
tive function can impact the dependent variable that is the 
optimal cost in this study. A comprehensive sensitivity 
analysis is carried out in order to observe the effects of 
various variables used in the objective function, as derived 
in Eq. (27), on the optimal cost. The optimal costs against 

1 2 3 4 5

1.7 miles 2 miles 1.5 miles 1.8 miles

Legend BRT Service Corridor
Access Point
Terminal Station

Fig. 7  Configuration of BRT service line in numerical example

Table 2  Commuters demand distribution for access points

Index of 
access point 
( k)

Commuters’ boarding 
demand at access point k
(axk)  (cph)

Commuters’ alighting 
demand at access point k
(dxk)  (cph)

1 110 80
2 125 100
3 80 95
4 105 70
5 130 110



5195Arabian Journal for Science and Engineering (2021) 46:5179–5202 

1 3

the multiple values of different parameters are checked and 
the results are elaborated in this section.

Figure 11 shows the optimal cost for the different num-
bers of stations against multiple values of users’ in-vehicle 

time, Vm . It can be seen that the optimal cost increases 
with the increase in Vm and vice versa. Furthermore, it is 
important to note that for all the values of the Vm , optimal 
cost remained minimum at the 4 stations which shows that 

(a)

(b)

Fig. 8  Plot of PSO versus GA and DE showing number of iterations versus best costs for a one station, b two stations, c three stations, d four 
stations
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changes in Vm can alter the optimal cost but does not impact 
the density of stations. Similarly, Fig. 12 shows the optimal 
cost for the different numbers of stations against different 
values of users’ access time, Vi.

The general trend shows that an increase in the values of 
users’ access time, Vi , increases the optimal cost. However, 
another important feature is the reduction in the variation 
of the optimal cost with the increment in the number of 

(c)

(d)

User’s Cost

User’s Access Cost User’s Wait Cost User’s In-Vehicle Cost

Fig. 8  (continued)
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0.07 miles

1.74 miles
4.45 miles

6.91 miles

1 2 3 4 5

Legend
BRT Station
BRT Service Corridor
Access Point
Terminal Station

Fig. 10  Configuration of BRT service lines with optimal spacing
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stations. At the start with 1 station, the optimal cost against 
different values of Vi varying a lot but as the number of sta-
tions increases, for example, station 4 and 5, there is very 
less difference among the optimal costs.

Figure 13a, b illustrates that the optimal cost slightly 
decreases with the increase in the bus headway,Bh , and aver-
age vehicle operating speed, vos . On the other hand, change 
in these parameters do not affect the optimal number of sta-
tions as the 4 stations, acquire all the minimum costs against 
different values.

It can be observed from Fig. 14a–c, that variation in the 
bus operating cost, EOC , through flow in the direction x , Mx , 
and the acceleration and deceleration delay at a station have 
a negligible impact on the optimal cost. Therefore, the bus 
operating cost that is comprised of many factors, for exam-
ple, fuel consumption, bus maintenance cost, and the wages 
of bus operators do not impact the optimal density or loca-
tions of the BRT stations. Moreover, the flow of commut-
ers already bounded to the news stations from the existing 
stations, and the acceleration/deceleration delay also play 
no important role in determining the optimal density and 
locations of new stations.

Figure 15 of the demand multipliers versus the optimal 
cost shows about the most striking relation of sensitivity 
analysis. It is worth noting that the variations in the demand 
can dramatically change the optimal costs. Unlike the other 
variables, the demand is the only variable that impacts the 
objective function most as both of the cost: user and opera-
tor, are directly influenced by the demand. Therefore, an 
increase in demand will increase the optimal cost. However, 
it does not affect the optimal quantity of stations as even 
with the variations, 4 number of stations have the minimum 
costs against different demands.

The walking speed of commuters also influences the 
optimal cost as shown in Fig. 16. Increment in the walk-
ing speed reduced the optimal cost which means that if the 
commuters mostly consist the young people whom walking 
speed is more would lead to low optimal cost as compared 
to the commuters consists of elderly or children. However, 
this variation converges with the increase in the number of 
stations, for example, the variation in optimal cost against 
the different walking speed at 4 stations is less than the vari-
ation at 3 stations and so on.

6  Conclusion and Recommendations

This paper has studied the problem of optimal locations 
and densities of BRT stations, by using PSO, GA, and 
DE algorithms and presented a complete framework in 
order to determine them. First, a mathematical model is 
developed by considering the realistic demand patterns. 
The model composed of the operator’s cost and the users’ 
cost, i.e., in-vehicle cost, access cost, while the wait cost 

Fig. 11  Optimal cost versus number of stations for varying values of 
user’s in-vehicle time

Fig. 12  Optimal cost versus number of stations for varying values of 
user’s access time
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is considered as constant. Secondly, the model is applied 
to a designed numerical example with five access points 
and the total objective function is minimized. Thirdly, as 
our results show that the PSO has outclassed the GA and 
DE, therefore, the sensitivity analysis is carried out using 
only PSO algorithm to analyze the behavior of optimal 
cost with the variations in different independent variables 
used in the objective function.

The computational experiments reveal that:

1. The model can be applied to any scenario consisting 
of an elevated and a signal-free corridor with multiple 
access points, varying distances among the access points 
and for any boarding and alighting demand distribution.

2. The optimal density of the bus rapid transit stations 
along the new track or the extension in the existing track 
can be determined.

3. In addition to the optimal density, the optimal locations 
of stations minimizing the users’ in-vehicle, access time, 
and the fleet size for catering the demand can be found 
out.

4. The optimized cost can be varied the most by the fluc-
tuation in the demand, more the demand more is the 
optimal cost and vice versa.

5. Value of users’ in-vehicle time and access time directly 
influences the optimal cost, while the commuters’ walk-
ing speed inversely impacts the optimal cost. Moreover, 
variations in the bus operating speed and its headway 
slightly affects the optimal cost. On the other hand, bus 
operating cost, through flow in direction d showed no 
influence on the optimal cost.

6. Variation in the value of any single value can affect the 
optimal cost but it can never alter the density of the sta-
tions.

7. Our results showed the robustness of PSO in terms of 
convergence rate as compared to GA and DE. Hence, our 
work proved that by using PSO we can reach the optimal 
solution with the same population size in a fewer num-
ber of generations as compared to the other two evolu-
tionary algorithms.

(a) (b)

Fig. 13  Optimal cost versus number of stations for varying values of a bus headway and b average vehicle operating speed
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(a) (b)

(c)

Fig. 14  Optimal cost versus number of stations for varying values of a bus operating cost, b through flow in direction x and c acceleration/decel-
eration delay time at a station
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