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Abstract
This paper aims at developing a convolutional neural network (CNN)-based tool that can automatically detect the left-turning 
vehicles (right-hand traffic rule) at signalized intersections and extract their trajectories from a recorded video. The proposed 
tool uses a region-based CNN trained over a limited number of video frames to detect moving vehicles. Kalman filters are 
then used to track the detected vehicles and extract their trajectories. The proposed tool achieved an acceptable accuracy 
level when verified against the manually extracted trajectories, with an average error of 16.5 cm. Furthermore, the trajecto-
ries extracted using the proposed vehicle tracking method were used to demonstrate the applicability of the minimum-jerk 
principle to reproduce variations in the vehicles’ paths. The effort presented in this paper can be regarded as a way forward 
toward maximizing the potential use of deep learning in traffic safety applications.

Keywords Traffic safety · Signalized intersections · Turning vehicle trajectories · Convolutional neural networks · 
Minimum-jerk principle

1 Introduction

Road traffic safety is increasingly an issue of global con-
cern. Recently, it has been estimated that 1.4 million people 
die and 73.25 million get disabled annually as a result of 
road traffic injuries worldwide [1]. Globally, the annual cost 
estimation for deaths, injuries, and disabilities due to road 
crashes is approximately 518 billion dollars, which makes up 
around 1.5% of the gross national product for middle-income 
countries [1]. Intersections are recognized as the most com-
plex locations within a highway system, in which conflicts 
are easily generated, and thus traffic crashes are more likely 
to occur [2]. Despite them constituting a small part of the 
highway systems, intersection-related crashes share over 

50% of all crashes in urban areas and 30% of those in rural 
regions [2]. Therefore, intersections are deemed crash-prone 
locations due to the large number of conflict points between 
traffic streams moving in different direction. Turning traf-
fic has a major role in the safety performance of intersec-
tions due to the nature of their maneuvers which are usually 
characterized with significant variations in paths and speeds 
depending on drivers’ targeted exit lane, their instinctive 
judgment, intersection geometry, and other factors [3]. As 
left-turning vehicles (right-hand traffic rule) pass the stop 
line to the intersection zone, their driving routes are often 
changed randomly leading generally to serious conflicts and 
unsmooth driving, which in turn impacts on the traffic safety 
[4]. Therefore, analyzing the trajectories of turning vehicles 
is required so as to improve safety performance at signalized 
intersections.

Two approaches are classically implemented to evaluate 
the safety performance at intersections, namely, post- and 
preimplementation assessments. The former involves col-
lecting the data after implementing the countermeasure, 
while the latter enables the engineers to predict the safety 
performance at the planning stage and thus is more feasible 
[5]. Simulation tools are deemed promising since they pro-
vide more flexibility and opportunity to achieve reliable pre-
implementation safety assessments and thus overcome the 
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limitations associated with postimplementation assessments. 
However, the current simulation software tools are still over-
simplified, and therefore, the consequent safety assessments 
at intersections are not sufficiently reliable [6, 7]. Recently, 
driving simulators and virtual reality systems are emerging 
as new tools to study road user behavior in combination with 
microscopic simulation tools [8–10]. These advanced tools 
are rapidly replacing the traditional traffic safety assessment 
techniques. However, realistic representation of vehicle tra-
jectories (including path, speed, and acceleration profiles) 
is essential in such applications for a reliable safety assess-
ment. Furthermore, the availability of realistic and accu-
rate models for the trajectories of turning traffic is critically 
needed for the motion planning of autonomous vehicles.

The majority of vehicle path models available in the lit-
erature are developed based on a number of trajectories that 
are manually extracted from recorded videos. The process of 
manual trajectory extraction, however, can be tiresome and 
time-consuming since it requires tracking every single vehi-
cle in a frame-by-frame manner. This becomes particularly 
problematic when a large number of trajectories are required 
for building an accurate vehicle trajectory model. Alterna-
tively, automatic trajectory extraction techniques have been 
proposed [11–13]. Yet, most previously developed automatic 
trajectory extraction approaches require background subtrac-
tion to detect moving vehicles. This process is significantly 
vulnerable to factors such as light and shadow conditions, 
occlusion with obstacles and other vehicles, and camera’s 
position and viewing angle [14]. In view of that, the effort 
presented in this paper aims at developing an effective tool 
for automatic trajectory extraction of turning vehicles, and 
the proposed tool relies on convolutional neural networks 
(CNNs) to perform the vehicles’ detection task.

The motivation of using CNNs in this work is twofold:

1. CNNs have recently become the de facto standard for 
computer vision and pattern recognition as they achieved 
the state-of-the-art performances in challenging tasks 
such as handwriting recognition, classification of large 
image archives, and face segmentation. In the context 
of traffic engineering, successful applications of CNN 
have been reported including flow speed prediction [15], 
traffic density measurement [16, 17], pavement distress 
detection [18], road crack detection [19], and detection 
of traffic signs [20–23] or pedestrians [24, 25].

2. CNNs operate directly on the raw videos without requir-
ing prior image preprocessing or background subtrac-
tion.

In this paper, the proposed vehicle tracking tool is used 
for an automatic extraction of left-turning vehicles trajecto-
ries at a signalized intersection located in Doha City, State 
of Qatar. The extracted trajectories are then compared to 

their manually extracted counterparts in order to demon-
strate the accuracy of the CNN-based approach. After that, 
a minimum-jerk-based method is used to model the vari-
ations in vehicles’ trajectories (paths and speed profiles). 
Monte Carlo simulations are then conducted to generate a 
large number of simulated trajectories using the proposed 
minimum-jerk model. Finally, in order to verify this model, 
the distribution of the simulated paths is compared to that 
of the actual extracted trajectories.

2  Related Work

2.1  Modeling of Vehicle Turning Trajectory

Several studies have been conducted in the past few decades 
to grasp, as possible, the turning behavior of vehicles at sig-
nalized intersections. In general, significant characteristics 
concerning the intersection layout and the turning vehicle 
were highlighted [26–29]. As an example, Alhajyaseen 
et al. [30] underlined that the path of the turning vehicle is 
strongly related to the intersection’s angle, the vehicle’s type, 
and speed. However, it is agreed that the turning maneuver 
of vehicles is a further complex phenomenon whose vari-
ability extends to be related to highly dynamic factors [31, 
32]. For instance, the turning behavior was observed to 
depend on inter- and intra-subject factors concerning driv-
ers such as the perception of traffic environment, information 
processing, and the ability to react correctly and to cooperate 
with others [33, 34]. Other factors such as the waiting time 
of the turning vehicles [35], the relative speed of the vehicles 
in conflict [36], and gaps [37] were observed to impact on 
the decision behavior of turning vehicles.

Since understanding the complex mechanism of turn-
ing vehicles’ paths is crucial to achieve an effective traf-
fic control and safety assessment at intersections, a reliable 
simulation model is required so that the variations of the 
turning vehicles are reproduced with high resolution. Clas-
sically, the vehicle’s turning path was simulated via one-
dimensional models [38–40]. In such simulations, a set of 
lane-based models are defined, in which the longitudinal 
and lateral movements are separately represented by a car-
following model and a lane-changing model, respectively. 
Despite their simplicity and applicability to be involved in 
decision-making approaches, the one-dimensional models 
are unable to accurately reproduce the variations of turning 
trajectories [41].

As an alternative to the traditional one-dimensional tra-
jectory models, the two-dimensional model has emerged as 
a viable simulation technique for vehicle turning paths as it 
breaks the lane-based assumption. Accordingly, the longitu-
dinal and lateral movements are simultaneously simulated, 
and therefore, the characteristics of the turning paths are 
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reliably reflected [42]. However, these approaches produce 
the path of the turning vehicles only without the speed and 
acceleration profiles [30], which are usually estimated using 
other independent models. In this context, a microscopic 
simulation model that generates vehicles’ turning trajecto-
ries was developed by Tan et al. [43] using different mod-
els for path (Euler spiral-based approximation method) and 
speed profiles. More recently, Wei et al. [44] established 
a left-turning vehicle’s path model by means of extracting 
trajectories from recorded videos and analyzing their distri-
butions, velocities, and flow-changing characteristics. On 
the basis of this effort, the same authors [44] proposed the 
idea of setting left-turning guidelines at signalized intersec-
tions, which was verified as an effective tool to reduce traffic 
conflicts and improve traffic efficiency. Also, Ma et al. [45] 
proposed a three-phased (i.e., plan-decision-action) model to 
estimate the vehicle’s path at mixed-flow intersections. How-
ever, combining different models for turning path and speed 
profile does not ensure the spatial and temporal consistency 
between the location and the speed of turning vehicles. In 
an attempt to overcome such limitation, Dias et al. [7, 46] 
applied the concept of minimum jerk to fit the trajectories 
of manually tracked free-flow turning vehicles at signalized 
intersections in Japan. The proposed approach simultane-
ously estimates the temporal and the spatial profiles of the 
vehicle turning maneuvers with acceptable accuracy. Yet, 
the same authors [7, 46] did not discuss the limitations of 
their proposed approach and the procedure to generate the 
maneuvers of turning vehicles in microsimulation.

2.2  Automatic Trajectory Extraction

As an alternative to manual trajectory extraction, research-
ers have proposed several methods for semiautomatic and 
automatic tracking of the turning vehicles. For instance, Shi-
razi and Morris [47] proposed a semiautomatic technique 
to extract vehicles’ trajectories from traffic footages. This 
method requires first to identify the locations of the vehicles 
in each video frame manually. After that, vehicle tracking 
is performed using a detection-track mapping matrix which 

utilizes nearest global matching. Yet, despite them produc-
ing accurate results, semiautomatic techniques are consid-
ered laborious since they initially require some steps to be 
performed manually [48–50].

Automatic extraction techniques, on the other hand, are 
deemed more promising since they provide swift results 
with minimum manpower involved. In this context, Hsieh 
et al. [11] proposed an automatic vehicle tracking method 
which implements a background subtraction technique for 
vehicle detection along with a Kalman filter for tracking. 
Similarly, Shirazi and Morris [51] used a Gaussian mixture 
model to detect vehicles at signalized intersections together 
with a Kalman filter for trajectory extraction. Apeltauer et al. 
[12] developed another automated method for trajectory 
extraction in which vehicles are detected using a two-stage 
classifier trained based on multi-block local binary pattern 
(MB-LBP) features. This method also requires applying 
background subtraction in order to generate the foreground 
mask. Also, Khan et al. [13] developed a comprehensive 
framework for automatic trajectory extraction of the vehicles 
from traffic footages acquired by unmanned aerial vehicles 
(UAVs). This framework involved video preprocessing and 
stabilization, vehicle detection and tracking, and ultimately, 
management of the extracted trajectories. Similar to [11, 
12], Khan et al. [13] carried out the vehicles’ detection using 
background subtraction algorithm.

3  CNNs and R‑CNNs

3.1  Convolutional Neural Networks (CNNs)

CNNs are deep, biologically inspired feed-forward artificial 
neural networks (ANNs) which have been developed based 
on a core model for mammalian visual cortex. One of the 
most attractive features of CNNs is their ability to classify 
images regardless of their scale and orientation [52]. A typi-
cal CNN designed to deal with 28 × 28 pixel RGB images is 
depicted in Fig. 1. The structure consists of alternating con-
volutional and sub-sampling layers followed by a number of 

Input Image (28x28)
R, G, B

Conv. layer
24x24

Sub-samp. layer
12x12

Conv. layer
8x8 Sub-samp. layer

4x4 MLP layers Output
(class vectors)

Fig. 1  A typical CNN [52]
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multilayer perceptrons (MLP) layers (i.e., fully connected 
layers). Each convolutional layer contains a number of fil-
ters (neurons) having a specific kernel size ( kx = ky = 5 in 
this illustration). These filters are responsible for extracting 
particular features from the input image called the feature 
maps. The convolutional filters are basically matrices of size (
kx, ky

)
 containing certain values referred to as the weights. 

At each neuron, 2D convolution is performed between the 
input image and the filter’s weights. The output of this oper-
ation is processed by an activation function and then passed 
to the next subsampling layer, which decimates the feature 
maps extracted by the previous convolutional layer by a 
predefined sub-sampling factor. As shown in Fig. 1, after 
being processed by a sufficient number of convolutional and 
subsampling layers, the input image is reduced to a 1D array. 
This array is then processed by the MLP layers resulting in 
an output vector that represents the classification results.

The process of computing the weights of the convolu-
tional filters and MLP layers is defined as CNN training. 
Before carrying out the training process, it is necessary to 
define the CNN’s structure in advance. This includes the 
number of convolutional and MLP layers as well as the ker-
nel size and subsampling factor at each level and the number 
of neurons in each layer of the CNN. Such hyperparameters 
are usually picked by trial and error since there is no sys-
tematic approach for determining the optimal CNN struc-
ture within an acceptable computational time [16]. After-
ward, the weights in both convolutional and MLP layers are 
initialized randomly. A large set of images is then used to 
train the CNN according to a back-propagation (BP) algo-
rithm. The objective of this training process is to adjust the 
CNN weights in an iterative manner until the summation of 
squared error between the target values and the CNN out-
put is minimized. The BP operation is not explained in this 
paper for brevity. The interested reader is referred to [53] for 
more details about training CNNs.

Instead of training a new CNN starting from randomly 
generated weights, researchers often apply a technique called 
transfer learning in which a pretrained CNN is fine-tuned 
to learn a new task. Networks such as AlexNet [54] and 
GoogLeNet [55] are commonly used as a starting point in 
deep learning applications. Previous studies have shown that 

this approach is faster and more efficient than training CNNs 
from scratch [56].

3.2  Regions with CNNs (R‑CNNs)

It must be noted here that CNNs are only designed to classify 
the input image into a number of predefined classes with-
out being able to detect and localize specific objects within 
the image. Therefore, CNNs alone cannot satisfy the main 
requirement of this study, which is to detect and track vehi-
cles automatically. To bridge the gap between image clas-
sification and object segmentation, Girshick et al. [57] have 
proposed a method called regions with CNNs (R-CNN). As 
shown in Fig. 2, this method consists of three components: 
(1) a region proposal algorithm that generates a large num-
ber of candidate detections, (2) a large CNN that extracts 
features from each proposal, and (3) linear support vector 
machines (SVMs) to process the extracted features and clas-
sify each candidate regions.

3.3  Data Collection and CNN Training

The south approach of Lekhwair signalized intersection 
located in Doha City, State of Qatar, was videotaped for a 
duration of two and a half hours. The video was recorded 
at a frame rate of 30 fps and a resolution of 3840 × 2160 
pixel. The same video was used in the current study for both 
R-CNN training and trajectory extraction operations.

The images required for carrying out the training of the 
R-CNN were acquired by randomly selecting 26 frames of 
the video. To reduce the computational time required for the 
training, the images were cropped to the region around the 
middle of the intersection and the resolution was reduced to 
1920 × 1080 pixel. For each image, vehicles were manually 
labeled by bounding boxes, and consequently, a dataset for 
the coordinates of 536 vehicles in total was obtained. Based 
on the images and the bounding boxes dataset, the R-CNN 
training process was carried out using “trainRCNNObject-
Detector” function available in MATLAB Computer Vision 
System Toolbox. AlexNet was used as a starting point for 
this deep learning task. Details about the architecture of this 
network can be found in [54].

Fig. 2  Object detection and localization using R-CNN
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4  Trajectory Extraction Using R‑CNN

A MATLAB tool was developed to utilize the R-CNN 
trained in Sect. 3.3 for tracking of vehicles. This tool pro-
cesses the video frames at a user-defined sampling rate and 
uses the R-CNN to detect the vehicles. The output of the 
R-CNN is a set of bounding boxes enclosing each vehicle in 
the processed frame. The location of a vehicle was defined 
here as the centroid of its bounding box. Once a vehicle 
is detected, the tool constructs a Kalman filter to track the 
location of this vehicle in the next frames until it leaves the 
intersection area. Using Kalman filters for tracking the vehi-
cles is necessary to reduce trajectory noise and enable the 
tool to associate multiple vehicles to their correct tracks. The 
tool operates in two modes (Fig. 3): (1) tracking of multiple 
vehicles and (2) tracking of a single vehicle. The first mode 
allows the user to simultaneously track all moving vehicle in 
the video (Fig. 3a), while the second mode involves tracking 
a single vehicle picked by the user (Fig. 3b). The advantage 
of the second mode is the fact that it requires significantly 
lower computational time and effort compared to the first 
mode since the R-CNN only processes the region surround-
ing the vehicle of interest. The vehicle tracking process 
explained in the current section is illustrated in Fig. 4.

4.1  Transformation from Image to Real‑World 
Coordinates

The trajectories generated by the aforementioned approach 
describe the locations of moving vehicles in image coor-
dinates (pixels) with respect to time. In order to map the 
trajectories to the real-world coordinates, it is necessary 
to define the homography matrix corresponding to this 

transformation. To do so, it is required to have four known 
points in both real-world and image coordinates. Then, the 
homography matrix � can be computed as follows:

where 
(
xw,1, yw,1

)
,… ,

(
xw,4, yw,4

)
 are the real-world coordi-

nates of any four noncolinear points and 
(
x1, y1

)
,… ,

(
x4, y4

)
 

are the image coordinates (in pixels) of the same four points. 
The matrix � can be then calculated as the first eigenvec-
tor (reshaped into a 3 × 3 matrix) of ��

� . Next, the hom-
ography matrix can be used to map any point from image 
coordinates 

(
xi, yi

)
 to world coordinates 

(
xw, yw

)
 as follows:

4.2  Verification of the Proposed CNN Tool

In order to verify its accuracy, the proposed tool was used to 
extract the trajectories of 18 free-flowing left-turning vehi-
cles. The same vehicles were also tracked manually in order 
to identify the ground truth of the trajectories. The manual 
trajectory extraction was performed simply by tracking 
each vehicle at a 0.5-s rate, while drawing a bounding box 
around the vehicle in each frame. The location of a manually 
tracked vehicle position at a certain time was taken as the 
centroid of the bounding box. The manual trajectories were 
then transformed into real-world coordinates as explained 
in Sect. 4.1. A comparison between the automatically and 

(1)� =

⎡
⎢⎢⎢⎢⎢⎣

−x1 −y1 −1 0 0 0 x1xw,1 y1xw,1 xw,1
0 0 0 −x1 −y1 −1 x1yw,1 y1yw,1 yw,1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

−x4 −y4 −1 0 0 0 x4xw,4 y4xw,4 xw,4
0 0 0 −x4 −y4 −1 x4yw,4 y4yw,4 yw,4

⎤
⎥⎥⎥⎥⎥⎦

(2)
[
c ∗ xw c ∗ yw c

]T
= �

[
xi yi 1

]T

Fig. 3  Automatic tracking of vehicles using the proposed tool. a 
Tracking using the first mode (i.e., tracking of multiple vehicles). b 
Tracking using the second mode (i.e., tracking of a single vehicle). 

Note the black box surrounding the tracked car which represents the 
R-CNN’s region of interest
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manually extracted trajectories is shown in Fig. 5. The error 
between the trajectories extracted by the proposed tool and 
their manually extracted counterparts was calculated at each 
point of the trajectories. The error Ep was defined here as 
the distance between an automatically extracted point and 
the corresponding manually extracted one according to the 
following equation:

(3)Ep =

√(
xa − xm

)2
+
(
ya − ym

)2

where xa and ya are the coordinates of the automatically 
extracted point and xm and ym the associated manually 
extracted point. The error distribution of the points cor-
responding to the 18 trajectories is shown in Fig. 6. The 
average error across all points of the trajectories is 16.5 cm 
with a standard deviation 11.8 cm. These results support the 
ability of the proposed tool to automatically track vehicles 
with an acceptable level of accuracy.

R-CNN

Kalman 
Filter

Recorded Video

1

2

N

1

User-defined 
bounding 

box around 
the vehicle 
of interest

1

2

N

Centroid
(t=1)

Centroid
(t=2)

Centroid
(t=N)

12

Homography
Matrix

3

Ve
hi

cl
e 

Tr
ac

ki
ng

Extracted Trajectory

Fig. 4  Scheme for the proposed vehicle tracking approach (Mode 2: tracking of a single vehicle)
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5  Trajectory Analyses

The proposed CNN-based tool was used to automatically 
extract the trajectories of 44 left-turning free-flowing 
vehicles (i.e., unimpeded by traffic/pedestrians) from the 
recorded video. The extracted trajectories are shown in 
image coordinates (in Fig. 7a) as well as in real-world 
coordinates (Fig. 7b).

5.1  Minimum‑Jerk Method

Originally, the principle of minimum jerk was proposed in 
the mid-1980s by Flash and Hogan [58] to describe the pla-
nar movements of the human arm, after which the use of 
this method has gained more popularity and general accept-
ance. Successful applications of the minimum-jerk method 
have been reported in various contexts including human 

Fig. 5  Comparison between the manually and automatically extracted trajectories in real-world coordinates. The solid black line represents a 
manually extracted trajectory, while the dashed red line denotes an automatically extracted one

Fig. 6  The distribution of the 
error between the manually and 
automatically extracted points 
across the 18 trajectories

Pr
ob

ab
ili
ty
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goal-oriented locomotion [59], robot-limb movements [60], 
autonomous vehicle maneuvers [61, 62], driver-following 
behavior [63], and more recently a preliminary application 
for modeling the trajectory of turning vehicles [7, 46].

In principle, the minimum-jerk model suggests that the 
drivers tend to optimize the smoothness of turning maneu-
vers by minimizing the time integration of the jerk. Thus, 
according to [58], the cost function to be minimized can be 
given as:

where tf  is the time elapsed by the turning vehicle to cross 
the intersection.

As indicated by Flash and Hogan [58], the solution of 
the minimization problem given in Eq. (4) can be obtained 
in the time domain as a set of fifth-order polynomials for x 
and y as follows:

where ai and bi ( i = 0, 1,… , 5 ) are unknown coefficients to 
be obtained using twelve boundary conditions corresponding 
to the x- and y-components of location, velocity, and accel-
eration at the initial and final points of the vehicle’s trajec-
tory. By applying the boundary conditions corresponding to 
the x-direction on Eq. (5), the following system of equations 
can be obtained:

(4)J = 1∕2

tf

∫
0

((
d
3x

dt3

)2

+

(
d
3y

dt3

)2
)
dt

(5)x(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5

(6)y(t) = b0 + b1t + b2t
2 + b3t

3 + b4t
4 + b5t

5

where x0 , vx0 , and ax0 are the position, velocity, and accelera-
tion, respectively, in the x-direction at the starting point of 
the turning maneuver, and xf  , vxf  , and axf  are those corre-
sponding to the end point. Likewise, applying the boundary 
conditions corresponding to the y-direction yields a system 
of equations similar to that of Eq. (7) but in terms of the 
coefficients bi(i = 0, 1,… , 5) and the parameters y0 , vy0 , ay0 , 
yf  , vyf  , and ayf .

5.2  Identification of the Starting and Ending Points 
of the Turning Maneuver

In order to compute the coefficients ai and bi(i = 0, 1,… , 5) 
corresponding to each of the extracted trajectories, it is 
necessary to identify the x- and y-components of position, 
velocity, and acceleration at the points at which the vehicle 
starts and ends its turning maneuver, along with the time 

(7a)x0 = a0

(7b)vx0 = a1

(7c)ax0 = 2a2

(7d)xf = a0 + a1tf + a2t
2

f
+ a3t

3

f
+ a4t

4

f
+ a5t

5

f

(7e)vxf = a1 + 2a2tf + 3a3t
2

f
+ 4a4t

3

f
+ 5a5t

4

f

(7f)axf = 2a2 + 6a3tf + 12a4t
2

f
+ 20a5t

3

f

(a) Image coordinates (b) Real-world coordinates

Turning Direc�on

Fig. 7  The automatically extracted free-flowing left-turning trajectories at the south approach of Lekhwair signalized intersection
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taken during the maneuver tf  . Once these values are known, 
the two systems of equations (described in Sect. 5.1) can be 
easily solved to obtain the coefficients ai and bi correspond-
ing to the trajectory’s turning curve.

Therefore, it is necessary to accurately identify the two 
points along the trajectory at which the turning maneu-
ver starts and ends. To do so, we utilize the spline-fitting 
method presented in [30]. According to this method, the 
trajectory of a left-turning vehicle at a signalized intersec-
tion can be represented by a spline consisting of five seg-
ments. The spline starts with a straight line followed by an 
Euler spiral having a curvature profile that varies almost 
linearly with a gradient of 1∕A2

1
 . This spiral is followed by 

a circular segment with a curvature of 1∕Rmin . The end of 
the spline consists of another Euler spiral having a nearly 
linear curvature profile with a gradient of −1∕A2

2
 followed 

by a straight line. As shown in Fig. 8, there are four main 
locations that define the beginning and the end of each Euler 

spiral and circular segments. These locations are basically 
the points of discontinuity along the curvature profile of the 
vehicle’s path. The points of interest here are points 1 and 4 
in Fig. 8, which represent the starting and ending points of 
the turning maneuver.

A MATLAB code was written to fit the aforementioned 
spline to each of the extracted trajectories in order to identify 
the four points of curvature discontinuity along the vehicles’ 
turning paths. The code applies the nonlinear programming 
solver “fmincon” available in MATLAB Optimization Tool-
box to compute the optimal location of the four key points 
(described in Fig. 8) so that the error between the tracked 
path and the fitted spline is minimized. Four constraints were 
imposed to enforce continuity of the fitted spline at the four 
points. Also, another four constraints were applied to make 
sure that there are no sudden jumps in the curvature profile 
at the key points. The fitting of the two Euler spirals was 
conducted according to the approach proposed in [64]. Fig-
ure 9 displays four examples of splines fitted to their cor-
responding automatically extracted paths.

5.3  Statistical Analysis

After identifying the two points of interest along each of 
the extracted trajectories (as explained in Sect. 5.2), the 
parameters x0 , vx,0 , ax,0 , xf  , vx,f  , ax,f  , y0 , vy,0 , ay,0 , yf  , vy,f  , ay,f  , 
along with tf  , were computed for each trajectory. Figure 10 
displays the probability distributions for these 13 param-
eters. As shown in the figure, a normal distribution was fit-
ted for each parameter. One-sample Kolmogorov–Smirnov 
test (95% confidence level) indicated that each of the 13 
parameters comes from a normal distribution with the mean 
and standard deviation shown in Table 1.

5.4  Comparison Between Simulated and Observed 
Trajectories

Monte Carlo simulation with 500 trials was conducted using 
the developed models. In each trial, random values of x0 , 
vx,0 , ax,0 , xf  , vx,f  , ax,f  , y0 , vy,0 , ay,0 , yf  , vy,f  , ay,f  , and tf  were Fig. 8  Components of the spline used for trajectory curve fitting

Fig. 9  Examples of the curve fitting process showing the fitted splines and their curvature profiles along with the speed profiles
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generated according to the normal distributions described 
in Fig. 10 and Table 1. The resulting parameters were then 
used to compute the coefficients which determine the shape 
of the trajectory ( ai and bi ) by solving the two systems of 
equations described in Sect. 5.1. The coefficients were then 
used as per Eqs. (5) and (6) to obtain the simulated paths 
shown in Fig. 11a.

The distributions of the simulated paths, and those 
of the observed/actual trajectories, were analyzed and 
compared along three selected cross sections (drawn in 
Fig. 11a). Figure 11b–d depicts a comparison between 
the observed and the simulated distributions. Kolmogo-
rov–Smirnov test (performed at 95% confidence level) 
revealed that the simulated distributions at the three 

cross sections are not significantly different from the 
actual/observed counterparts. Furthermore, the compari-
son shown in Fig. 12 indicates a reasonable agreement 
between the observed and simulated speed and accelera-
tion profiles, which supports the reliability of the proposed 
model in generating accurate and realistic vehicle turning 
maneuvers.

Finally, Fig. 13 provides a concise summary of the 
overall procedure followed to develop and validate the 
proposed minimum-jerk-based trajectory model, start-
ing from trajectory extraction and ending with the use of 
Monte Carlo simulations to generate trajectories of the 
turning vehicles.

Fig. 10  Probability distribution of the 13 extracted parameters across the extracted trajectories

Table 1  Mean, standard deviation, and coefficient of variation of the parameters’ distribution

x0 (m) xf  (m) vx,0 (m/s) vx,f  (m/s) ax,0 (m/s2) ax,0 (m/s2) x0 (m) xf  (m) vx,0 (m/s) vx,f  (m/s) ax,0 (m/s2) ax,0 (m/s2) tf  (s)

� 35.7 − 29.4 − 9.68 − 6.57 1.03 − 0.971 − 49.3 − 45.06 8.98 − 7.45 − 1.44 − 0.708 7.72
� 3.27 4.29 1.22 0.77 1.46 1.17 2.74 3.33 1.16 1.04 1.22 1.36 0.74
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(a) (b)

(c) (d)

Fig. 11  Comparison between observed and simulated distributions at different cross sections

(a) (b)

Fig. 12  Comparison between observed and simulated speed and acceleration profiles
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6  Conclusions and Future 
Recommendations

In this paper, a CNN-based tool was developed for the auto-
matic extraction of vehicle trajectories. In order to test the 
proposed tool, video data were collected at a signalized 
intersection located in Doha City, State of Qatar. Several 
trajectories were extracted both manually and automatically. 
The average error between the manually and automatically 
extracted trajectory paths was 16.5 cm, which demonstrates 
the accuracy of the proposed method. A minimum-jerk-
based approach was used to statistically model the varia-
tions in left-turning vehicle trajectories including paths 
and speed profiles. The minimum-jerk approach was found 
to be effective and reliable in producing realistic turning 

maneuvers. Monte Carlo simulation was conducted to verify 
the statistical model by comparing the simulated and actual 
trajectories.

Finally, the effort presented in this paper can be regarded 
as a step forward toward maximizing the potential use of 
deep learning in traffic safety applications. However, in order 
to further improve the applicability of the proposed methods, 
the following recommendations can be considered in future 
studies:

• The R-CNN used in this work was trained using images 
taken from a single intersection with specific geometric 
characteristics and surrounding conditions. Therefore, 
the proposed R-CNN can only be used to accurately track 
vehicles at this particular intersection. Training the net-

Fig. 13  Flowchart for the overall procedure followed in the trajectory analyses
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work using a larger set of images that are collected from 
multiple intersections is required to generate a more ver-
satile R-CNN.

• The computational efficiency of the proposed tool can 
be improved by optimizing the structure of the R-CNN. 
Also, the updated versions of the standard R-CNN used 
in this work (i.e., fast R-CNN [65] or faster R-CNN [66]) 
can be implemented to minimize the required computa-
tional time.

• The trajectory models developed in this study are based 
on a limited number of trajectories (N = 44) extracted 
from a single intersection. A larger number of trajecto-
ries obtained from several intersections are essential to 
achieve a deeper insight into the behavior of drivers at 
signalized intersections. Furthermore, the proposed tra-
jectory model assumes that the start and end points of the 
turning trajectory are known; accordingly, it is required 
to develop probabilistic models to estimate the distribu-
tion of these points (i.e., start and end of turning path) 
as functions of the vehicle entry speed and intersection 
geometry.
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