Skip to main content
Log in

Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Carbon nanofibers (CNFs) were prepared via the deposition of acetylene gas on bimetallic catalyst (Fe–Co) supported on kaolin in a catalytic chemical vapour reactor. Carbon nanofibers/Pt nanocomposite (Pt catalyst) was synthesized by immobilization of potassium tetrachloroplatinate (IV) (K2PtCl4) onto the carbon nanofibers (CNFs) by a wet impregnation method. The effects of mass of carbon nanofibers (CNFs) (0.25–0.30 g) and deposition time (150–180 min) on the percentage of platinum (Pt) deposited on the nanofiber were investigated. The developed CNFs/Pt was characterized using different analytical tools such as HRSEM, EDS, HRTEM, BET, TGA, XRD, XPS and cyclic voltammetry (CV). The XRD patterns revealed the crystallite size of the Pt catalyst ranged between 5.54 and 6.69 nm, and the size decreased with increasing mass of support (CNFs). The HRTEM/HRSEM analysis of the CNFs/Pt catalyst showed that the dispersion and distribution pattern and the shape of the catalyst changes as the amount of CNFs increased from 0.25 to 0.3 g. However, deposition time did not influence the crystalline nature of the catalysts. XPS analysis demonstrated the existence of different oxidation states of Pt particles on the surface of CNFs. The CV analysis revealed that CNFs/Pt catalyst supports the oxygen reduction reaction and hydrogen oxidation reaction in the fuel cell. The platinum loading of 0.002–0.004 mgpt/cm2 in the fabricated electrodes using the developed CNFs/Pt nanocomposite was compared well with other electrodes (fabricated with other support materials) such as carbon black, carbon nanotubes, aerogel and titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Afolabi, A.S.: Development of Pt electro catalytic electrodes for proton exchange membrane fuel cell. PhD Thesis, University of the Witwatersrand, Johannesburg, pp. 115–142 (2009)

  2. Noramalina B.M.: Development of catalysts and catalyst supports for polymer electrolyte fuel cells. Ph.D Thesis, University College, London, Torrington, London, pp. 25–38 (2014)

  3. Aritonang, H.F.; Onggo, D.; Ciptati, C.; Radiman, C.L.: Synthesis of Pt nanoparticles from K2PtCl4 solution using bacterial cellulose matrix. J. Nanoparticles (2014). https://doi.org/10.1155/2014/285954

    Article  Google Scholar 

  4. Oliver, T.H.; Joseph, W.S.: The role of Pt in proton exchange membrane fuel cells. J. Pt Metals Rev. 57(4), 259–271 (2013). https://doi.org/10.1595/147106713X671222

    Article  Google Scholar 

  5. Cinthia, A.; María, E.G.; Rafael, M.; María, J.L.: Influence of the synthesis method for Pt catalysts supported on highly mesoporous carbon xerogel and vulcan carbon black on the electro-oxidation of methanol. Catal. J. 5, 392–405 (2015). https://doi.org/10.3390/catal5010392

    Article  Google Scholar 

  6. Rabis, A.; Rodriguez, P.; Schmidt, T.J.: Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal. J. 2, 864–890 (2012)

    Article  Google Scholar 

  7. David, S.; Isabel, S.; Rafael, M.; María, J.; Lázaro, A.S.; Vincenzo, B.; Antonino, S.A.: Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells. Appl. Catal. B J. Environ. 132–133, 22–27 (2013)

    Google Scholar 

  8. Seth, L.K.; Wenzhen, L.; Odysseas, P.; Thomas, M.M.; Jeremy, S.; Pradeep, H.: The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported Pt by polyol processing techniques. Carbon J. 46, 1276–1284 (2008)

    Article  Google Scholar 

  9. Li, W.; Mahesh, W.; Zhongwei, C.; Paul, L.; Yushan, Y.: Pt nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon J. 48, 995–1003 (2010)

    Article  Google Scholar 

  10. Iuliia, M.: Synthesis and characterisation of nanofibre supports for pt as electrodes for polymer electrolyte fuel cells. PhD Thesis, University of Montpellier, Montpellier (2014)

  11. Sergey, A.G.; Vladimir, N.F.; Elena, K.L.; Alexander, S.G.; Dmitri, G.B.; Xing, W.; Junjie, G.: CNF-supported Pt electrocatalysts synthesized using plasma-assisted sputtering in pulse conditions for the application in a high-temperature PEM fuel cell. Int. J. Electrochem. Sci. 11, 2085–2096 (2016)

    Google Scholar 

  12. Hyung-Suk, O.; Jong-Gil, O.; Hansung, K.: Modification of polyol process for synthesis of highly Pt loaded Pt–carbon catalysts for fuel cells. J. Power Sources 183, 600–603 (2008)

    Article  Google Scholar 

  13. Zhang, Y.; Dafei, K.; Carl, S.; Mark, A.; Can, E.: Supported Pt nanoparticles by supercritical deposition. Ind. Eng. Chem. Resour. 44, 4161–4164 (2005). https://doi.org/10.1021/ie050345w

    Article  Google Scholar 

  14. Sajid, H.; Heiki, E.; Nadezda, K.; Maido, M.; Mihkel, R.; Väino, S.; Gilberto, M.; Kaido, T.: Pt particles electrochemically deposited on multiwalled carbon nanotubes for oxygen reduction reaction in acid media. J. Electrochem. Soc. 164(9), F1014–F1021 (2017)

    Article  Google Scholar 

  15. Roxana, M.; Dragoș-Toader, P.; Gabriela, M.; Nicolae, V.; Nicolae, V.: Carbon nanofibers decorated with Pt–Co alloy nanoparticles as catalysts for electrochemical cell applications synthesis and structural characterization. Int. J. Electrochem. Sci. 12, 4597–4609 (2017). https://doi.org/10.20964/2017.05.25

    Article  Google Scholar 

  16. Aminul, I.M.; Anwarul, K.B.; Saidul, I.M.: A review on chemical synthesis process of Pt nanoparticles. Asia Pac. J. Energy Environ. 1(2), 107 (2014)

    Article  Google Scholar 

  17. Mineo, H.; Masaru, H.: Preparation of dispersed Pt nanoparticles on a carbon nanostructured surface using supercritical fluid chemical deposition. Mater. J. 3, 1559–1572 (2010). https://doi.org/10.3390/ma3031559

    Article  Google Scholar 

  18. Calvillo, L.; Gangeri, M.; Perathoner, S.; Centi, G.; Moliner, R.; Lázaro, M.J.: Synthesis and performance of Pt supported on ordered mesoporous carbons as catalyst for PEM fuel cells: effect of the surface chemistry of the support. Int. J. Hydrogen Energy 36, 9805–9814 (2011)

    Article  Google Scholar 

  19. Bessel, C.A.; Kate, L.; Rodriguez, N.M.: Terry KBR (2001) Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B. 105(6), 1115–1118 (2001)

    Article  Google Scholar 

  20. Antolini, E.: Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci. 38, 2995–3005 (2003)

    Article  Google Scholar 

  21. Kvande, I.; Stein, T.B.; Mikhail, T.; Magnus, R.; Svein, S.; Reidar, T.; De, C.: On the preparation methods for carbon nanofiber-supported Pt catalysts. Topics Catal. 45(1–4), 81–85 (2007). https://doi.org/10.1007/s11244-007-0244-5

    Article  Google Scholar 

  22. Asanda, N.: Electrochemical investigation of Pt nanoparticles supported on carbon nanotubes as cathode electrocatalysts for direct methanol fuel cell. A thesis submitted in fulfillment of the requirements for the degree of Magister Scientiae in the Department of Chemistry, University of the Western cape 44–54 62 (2010)

  23. Yehya, M.A.; Abdullah, A.; Ahmad, T.J.; Ma’an,, F.R.A.: Synthesis and characterization of carbon nanofibers grown on powdered activated carbon. J. Nanotechnol. 2016, 1–10 (2016)

    Google Scholar 

  24. Idowu, A.O.: Development of a suitable bimetallic (Fe–Co) catalyst on kaolin support for carbon nanotube synthesis. ME Thesis Federal University of Technology, Minna (2016)

  25. Mustafa, M.; Mohammed, A.; Rasel, D.: Optimization of the synthesis of superhydrophobic carbon nanomaterials by chemical vapor deposition. Sci. Rep. 8, 1–12 (2018). https://doi.org/10.1038/s41598-018-21051-3

    Article  Google Scholar 

  26. Chang-Seop, L.; Yura, H.: Preparation and Characterization of CNF and its Composites by Chemical Vapor Deposition, vol 1. Open Book Publication, pp 2–21 (2016)

  27. Alhassan, M.I.: Formulation of bimetallic (Fe–Co) catalyst on CaCO3 support for Carbon nanotube Synthesis. M.E. Thesis Federal University of Technology, Minna (2016)

  28. Prabhu, T.G.: Green synthesis of noble metal of Pt Nanoparticles from Ocimum sanctum (Tulsi). IOSR J. Biotechnol. Biochem. (IOSR-JBB) 3(1), 107–112 (2017). https://doi.org/10.9790/264x-0301107112

    Article  Google Scholar 

  29. Viet-Long, N.; Nguyen, D.C.; Tomokatsu, H.; Hirohito, H.; Gandham, L.; Masayuki, N.: The synthesis and characterization of Pt nanoparticles: a method of controlling the size and morphology. J. Nanotechnol. 21, 35–65 (2010). https://doi.org/10.1088/0957-4484/21/3/035605

    Article  Google Scholar 

  30. Vinila, V.S.; Jacob, R.; Mony, A.; Nair, H.G.; Issac, S.; Rajan, S.; Nair, A.S.; Satheesh, D.J.; Isac, J.: X-ray diffraction analysis of nano crystalline ceramic PbBaTiO3. Cryst. Struct. Theory Appl. 3, 57–65 (2014)

    Google Scholar 

  31. Xubin, P.; Iliana, M.R.; Ray, M.; Jingbo, L.: Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids Surf. B J. Biointerfaces 77, 82–89 (2010)

    Article  Google Scholar 

  32. Theivasanthi, T.; Alagar, M.: Nano sized copper particles by electrolytic synthesis and characterizations. Int. J. Phys. Sci. 6(15), 3662–3671 (2011)

    Google Scholar 

  33. http://xpssimplified.com/elements/Pt.php

  34. Jäger, R.; Härk, E.; Kasatkin, P.E.; Pikma, P.; Joost, U.; Paiste, P.; Aruväli, J.; Kallio, T.; Jiang, H.; Lust, E.: Carbide derived carbon supported Pt nanoparticles with optimum size and amount for efficient oxygen reduction reaction kinetics. J. Electrochem. Soc. 164(4), 448–453 (2017)

    Article  Google Scholar 

  35. Yu-chun, C.; Chia-chun, L.; Chun-ping, C.: Characterization of Pt nanoparticles deposited on functionalized graphene sheets. Mater. J. 8, 6484–6497 (2015). https://doi.org/10.3390/ma8095318

    Article  Google Scholar 

  36. Farokh, M.; Mohammad, J.; Soosan, R.Z.: Durability investigation and performance study of hydrothermal synthesized Pt-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell. Energy J. (2017). https://doi.org/10.1016/j.energy.2017.07.098

    Article  Google Scholar 

  37. Dongping, Z.; Jeyavelvel, M.; Michael, V.M.: Adsorption/desorption of hydrogen on Pt nanoelectrodes: evidence of surface diffusion and spillover. J. Am. Chem. Soc. (2009). https://doi.org/10.1021/ja902876v

    Article  Google Scholar 

  38. Shukla, S.: Experimental analysis of inkjet printed polymer electrolyte fuel cell electrodes. PhD thesis, University of Alberta, Edmonton (2016)

  39. Liang, H.; Koji, M.; Wenbin, G.; Chao-Yang, W.: Modeling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells. J. Electrochem. Soc. 162(8), 854–867 (2015)

    Article  Google Scholar 

  40. Rashmi, S.; Singh, M.K.; Sushmita, B.; Ashish, S.; Kohli, D.K.; Prakash, C.G.; Meenakshi, S.; Gupta, P.K.: Facile synthesis of highly conducting and mesoporous carbon aerogel as Pt support for PEM fuel cells. Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhyd

    Article  Google Scholar 

  41. Morawietz, T.; Handl, M.; Oldani, C.; Friedrich, K.A.; Hiesgen, R.: Influence of water and temperature on ionomer in catalytic layers and membranes of fuel cells and electrolyzers evaluated by AFM. In: 7th International Conference on Fundamentals and Development of Fuel Cell, pp 1–12 (2018). https://doi.org/10.1002/fuce.201700113

  42. Young-Gab, C.; Chang-Soo, K.; Dong-Hyun, P.; Dong-Ryul, S.: Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes. J. Power Sources 71, 174–178 (2012)

    Google Scholar 

  43. Neetu, J.; Palanisamy, R.; Elena, B.; Xiaojuan, T.; Feihu, W.; Mikhail, E.; Robert, C.H.: Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets. Sci. Rep. 3, 2257 (2013)

    Article  Google Scholar 

  44. Anwar, M.T.; Xiaohui, Y.; Shuiyun, S.; Naveed, H.; Fengjuan, Z.; Liuxuan, L.; Junliang, Z.: Enhanced durability of Pt electrocatalyst with tantalum doped titania as catalyst support. Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhyden

    Article  Google Scholar 

  45. Jae-Young, L.; Jiyong, J.; Jae Kwang, L.; Sunghyun, U.; Eon-Soo, L.; Jae-Hyuk, J.; Nam-Ki, K.; Yong-Chul, L.; Jaeyoung, L.: Effect of hydrogen partial pressure on a polymer electrolyte fuel cell performance. Korean J. Chem. Eng. 27(3), 843–847 (2010). https://doi.org/10.1007/s11814-010-0141-7

    Article  Google Scholar 

  46. Shuang, M.A.; Mikkel, J.L.: Performance of the electrode based on silicon carbide supported Pt catalyst for proton exchange membrane fuel cells. J. Electroanal. Chem. 791, 175–184 (2017)

    Article  Google Scholar 

  47. Gazdzicki, P.; Mitzel, J.; Dreizler, A.M.; Schulze, M.; Friedrich, K.A.: Impact of Pt loading on performance and degradation of polymer electrolyte fuel cell electrodes studied in a rainbow stack. Fuel Cells 18, 270–278 (2018). https://doi.org/10.1002/fuce.201700099

    Article  Google Scholar 

Download references

Acknowledgements

This is to acknowledge and appreciate the support received from the Tertiary Education Trust Fund (TETFUND) of Nigeria under grant number TETFUND/FUTMINNA/2017/09. The authors also thank The Centre for Genetic Engineering and Biotechnology (CGEB) FUTMinna who offered us direct access to their facilities. We are also grateful to the following people that helped analysed the samples: Dr. Remy Bucher, (iThemba Labs), Cape Town, South Africa, for XRD, Dr.Franscious Cummings, Electron Microscope Unit (EMU), Physics Department, University of Western Cape (UWC), South Africa, for HRTEM. Adrian Joseph, Physics department, UWC, South Africa, for HRSEM and Prof. W.D Roos, Physics Department, University of the Free State, South Africa, for XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Mudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudi, K.Y., Abdulkareem, A.S., Kovo, A.S. et al. Development of Carbon Nanofibers/Pt Nanocomposites for Fuel Cell Application. Arab J Sci Eng 45, 7329–7346 (2020). https://doi.org/10.1007/s13369-020-04498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04498-3

Keywords

Navigation