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Abstract
Workflow scheduling concerns the mapping of complex tasks to cloud resources by taking into account various Quality of
Service requirements. In virtue of continuous proliferation in the exploration of cloud computing, it has become stringent to
find the proper scheduling scheme for the execution of workflow under user specifications. Moreover, till date, there exists no
systematic review of the existing numerous techniques for this NP-complete problem in the cloud. Taking this into account,
the present study seeks to address this gap and spotlights the comprehensive taxonomy of various scheduling schemes as well
as extensively compares them by illuminating their objectives, features, merits, and demerits. This paper also highlights the
future research challenges with an aim to foster more research in the realm of workflow scheduling as an optimization task.

Keywords Quality of Service · Optimization · Workflow scheduling · Cloud computing

1 Introduction

In the present days, the workflow scheduling (WFS) is con-
sidered as one of the eminent issues in distributed computing
which allows the mapping of inter-dependent tasks to virtual
machines (VMs) in such away that the execution ofworkflow
application gets completed within the specified Quality of
Service (QoS) requirements. Basically, in cloud, the services
like Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS) are consumed by the
users on the basis of ServiceLevelAgreement (SLA)with the
help ofQoS constraints [1]. In general, aworkflow is a flowof
complex tasks that are bounded together through dependen-
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cies [2]. Moreover, workflows have particular constraints in
terms of deadlines, resource utilization, etc., whereas in other
schedulings, decision is taken to order the execution of inde-
pendent tasks which have no relationship with each other.
Individual tasks may have priorities or may need specific
resources. It includes “e-science” and “e-business” like vari-
ous complex applications [3]. Probing further, the workflow
has a wide range of applications that can be programmed in
distributed computing environments like cloud and grid [4].
Moreover, it has been acknowledged from the previous stud-
ies that many researchers have been shifted towards cloud
computing in order to achieve high performance by virtue
of which, this literature review mainly spotlights the sur-
vey incorporating WFS issues in cloud environment without
neglecting the role of grid computing techniques in WFS.

1.1 Motivation

With the emergence of cloud computing area, the WFS
is gaining more consideration. Also, the evidence of this
can be found in the literature in form of various surveys.
Masdari et al. [2] have reviewed different algorithms like
Heuristic, Meta-heuristic and Hybrid by considering numer-
ous QoS constraints but they have just mentioned the basic
information of algorithms and have missed the detailed
information such as pros and cons of various approaches.
On the other hand, Arya et al. [5] have presented a sur-
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vey of WFS algorithms without any knowledge about QoS
constraints, Scheduling strategies, types of workflows and
different schemes. Therefore, in order to entirely cover up
the knowledge of WFS schemes, numerous algorithms, QoS
constraints, scheduling strategies, types of workflows, and
positive results and loopholes of different algorithms in cloud
computing and grid computing (to some extent), it is manda-
tory to provide the practitioners and researchers an up-to-date
state-of-the-art research as well as guide them to figure out
relevant studies of their own needs with regard to QoS-based
WFS, their challenges, aspects and parameters. As a result,
this literature review elucidates a meticulous knowledge of
all the above-mentioned areas in a single paper. Specifically,
the authors aim at a finer level of granularity in classifying the
WFS schemes based on single-objective and multi-objective
optimization. The outline of the present study can be fairly
explored from Fig. 1, and a list of abbreviations used in this
literature review with interpretations can be seen in Table 1.

1.2 Systematic Review Process

In this subsection, a clear description of all the phases for
conducting this review has been discussed, which explains
how the existing research is identified, evaluated and inter-
preted with regard to a specific topic or an area of interest.
Firstly, the research questions are defined to evaluatewhether
the objectives of present study will be achieved or not. Sub-
sequently, the quest approach is devised to maximize the
possibility of discovering relevant research results as well as
some segregate criteria are made to include or exclude par-
ticular research articles from the review process. Finally, all
the data are collected to relate in a meaningful way and are
synthesized to answer all the research questions.

1.2.1 Research Questions (RQ)

While planning this review, a set of research questions were
framed which are listed as follows, and the answers to which
will be provided by the subsequent sections.

RQ 1. What are the gaps in existing workflow scheduling
approaches?

RQ 2. Whichworkflow scheduling algorithms perform bet-
ter for application specific QoS constraints?

RQ 3. Which existing heuristic, meta-heuristic or hybrid
techniques do support WFS?

RQ 4. Why researchers are shifting towards new scheduling
strategies?

RQ 5. What do numerous future perspectives exist in the
WFS?

1.2.2 Quest Approach (QA)

For conducting this review, a quest approachhas beendevised
in such a way that it results in the wide-ranging and unprej-
udiced solutions from the literature related to different RQs.
The relevant publications related to cloud computing, opti-
mization, workflow, scheduling, heuristic techniques, meta-
heuristic and hybrid optimization techniques are leveraged.
For the sufficient scope of each quest area, the alternative
words of each termaswell as the abbreviations are also exten-
sively explored during the review process.

1.2.3 Sample Segregation Strategy (SSS)

This strategy is essential to identify the aptness and unsuit-
ability of existing research articles for addressing the research
questions.Almost 300papers from theyear 2000 to year 2018
have been reviewed out of which nearly 150 are included that
relate toWorkflowScheduling,Optimization Problem,Types
of Scheduling Problems, Task Scheduling in Cloud, QoS
constraints, Heuristic Scheduling Schemes, Meta-heuristic
Scheduling schemes and Hybrid Schemes , whereas the
researches related to scheduling schemes used specifically
in operating system and parallel computing environment are
wholly excluded from the review process.

1.2.4 Data Elicitation and Organization (DEO)

DuringDEOactivity, the comprehensive systematic Tables 3,
4 and 5 are created to record as well as correlate the elicited
information, and further organize the suitable and sufficient
information for answering the targeted RQs.

1.2.5 Target Audience

This survey is intended for readers who are interested
to acquaint with the techniques for scheduling workflows
specifically based on QoS constraints. Also, the researchers
with a wide variety of backgrounds in, for example, Dis-
tributed Computing, Cloud Computing, Big Data, Hadoop,
and Parallel Computingmay get profit by learning howwork-
flows can be scheduled using techniques inspired by the past
many decades of research. Furthermore, the experts in meta-
heuristic and heuristic optimization techniques may also be
lured by the comprehensive description of the roles of these
techniques in cloud computing as diverse workflow schedul-
ing schemes.

1.2.6 Organization of Paper

The rest of the paper is organized as: Sect. 2 engenders the
knowledge about the variants of WFS strategies and the QoS
constraints of workflow. Subsequently, Sect. 3 describes the
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Fig. 1 An outline of systematic literature review

WFSas anoptimizationproblem.Further, Sect. 4 throws light
upon the Classification and Scheduling Schemes of Work-
flow scheduling, whereas Sect. 5 adds discussions andmakes
comments over the strengths and limitations of this review.
Lastly, some concluding remarks and future directions are
presented in Sect. 6.

2 Workflow Scheduling

2.1 Workflow

Workflow is the execution and automation of an orches-
trated and repeatable pattern of business processes where
tasks, information or documents are passed from one partici-
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Table 1 Abbreviations with their interpretation

Abbreviation Interpretation Abbreviation Interpretation

WFS WorkFlow Scheduling PaaS Platform as a Service

IaaS Infrastructure as a Service SaaS Software as a Service

QoS Quality of Service ASJS Adaptive Scoring Job Scheduling

RQ Research Questions QA Quest Approach

SSS Sample Segregation Strategy DEO Data Elicitation and Organization

LIGO Laser Interferometer Gravitational Wave
Observatory

QDA QoS-based Deadline Allocation

SIPHT sRNA identification Protocol using High
Throughput technology

SABA Security Aware and Budget Aware

SLA Service Level Agreement MOP Multi-objective optimization

VM Virtual Machine WMTG-min Weighted Mean execution Time Guided-minimum

NP Non-probabilistic WMTSG-min Weighted Mean execution Time Sufferage
Guided-minimum

DAG Directed Acyclic Graph SHEFT Scalable Heterogeneous Earliest Finish Time

SOP Single-objective optimization HCOC Hybrid Cloud Optimized Cost

HEFT Heterogeneous Earliest Finish Time 3S Super-job Static Scheduling

PCP Partial Critical Path MOLS Multi-Objective List Scheduling

EDF_BF_IC Earliest Deadline First Best Fit with Imprecise
Computation

SC-PCP SAAS Cloud Partial Critical Path

BDA Bi-direction Adjust heuristic PBSA Priority Based Scheduling Algorithm

PCH Path Clustering Heuristic TOF Transformation based Optimization Framework

ADOS Adaptive Dual Objective Scheduling MCPCPP Multi Cloud Partial Critical Path with Pretreatment

HHSA Hyper Heuristic Scheduling Algorithm BOSS Bi-Objective Scheduling Strategy

IOO Iterative Ordinal Optimization LJFN Longest Job on Fastest Node

CEVAET Cost-Effective Virtual Machine Allocation
Algorithm within Execution Time Bound

SJFN Shortest Job on Fastest Node

PSO Particle Swarm Optimization LAGA Look Ahead GA

RDPSO Revised Discrete Particle Swarm Optimization SLPSO Self adaptive Learning PSO

BPSO Bi-criteria priority based PSO DBD-CTO Deadline and Budget Distribution based Cost Time
Optimization

GA Genetic Algorithm BDLS Bi-objective Dynamic Level Scheduling

DOGA Dynamic Objective GA TS Tabu Search

MOGA Multi-Objective GA SMS Stochastic Multi-stage

CSO Cat Swarm Optimization SPEA Strength Pareto Evolutionary Algorithm

ACO Ant Colony Optimization NSGA Non-dominated Sorting Genetic Algorithm

ABC Artificial Bee Colony LDDLS Levelwise Deadline Distributed Linewise Scheduling

MQMW Multiple QoS constrained scheduling strategy for
Multiple Workflows

HSGA Hybrid Heuristic Scheduling based on GA

QSMTS_IP QoS-based meta-task scheduling for time-invariant
resource usage penalties

RHDPSO Rotary Hybrid Discrete PSO

SARS Self Adaptive Reduce Scheduling BGA Bi-objective GA

NS Not Specified FCFS First Come First Serve

CGS Chaos- Genetic Scheduling MOEA Multi-Objective Evolutionary Algorithm

ACS Ant Colony System PAES Pareto Archived Evolution Strategy

MDP Markov Decision Process RD Reliability Driven

S-CLPSO Set-based Comprehensive Learning PSO CDCGA Cloud Deadline Coevolutional GA

VNS Variable Neighbourhood Search DWSGA Dynamic Bi-objective Schedule based on GA

MMGWS Minimum Makespan Grid Workflow Scheduling BDHEFT Budget and Deadline constrained Heterogeneous
Earliest Finish Time
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Table 1 continued

Abbreviation Interpretation Abbreviation Interpretation

CPOP Critical Path on a Processor LDD-LS Levelwise Deadline Distributed Linewise Scheduling

MER Maximum Effective Reduction

Fig. 2 Simple workflow DAG

pant to other for specific action. Corporations use workflows
to coordinate tasks between people and synchronize data
between systems, with the aim of enhancing corporational
efficiency, responsiveness and profitability [6]. Workflow
applications are generally represented as a DAG. A DAG
(D = T , E) is a graph having dependencies between the
tasks, in which no child task can be executed until all its
parent tasks have completed their execution successfully
[3]. Figure 2 demonstrates a DAG: D = (T , E) where, T
is a set of tasks (T1, T2, T 3, . . . , Tn) and E is the set of
edges (E1, E2, E3, . . . , Em) that indicates the dependen-
cies between the tasks [7]. Workflow scheduling is one of
the key issues in the management of workflow execution.
Basically, the workflow scheduling interprets the execution
of workflows on well-suited resources by satisfying the QoS
requirements [1]. There are basically two types of workflows
that are discussed as follows [2]:

1. Simple workflow It defines the execution of any simple
job in which the set of tasks are represented in form of
DAG as shown in Fig. 2.

2. Scientific workflow It includes the huge amount of com-
plex data in the form of thousands of tasks that are
represented as a DAG [8]. The several real-world exam-
ples of workflow on the basis of scientific applications
are demonstrated in Fig. 3, which are also briefly dis-
cussed in Table 2 [9,10].

2.2 Scheduling

Scheduling is a course of action to deal with the mapping of
tasks onwell-suited resourceswith specified user constraints.
The classification of scheduling strategies is shown in Fig. 4
[11].

1. Static In this, the mapping and scheduling of tasks are
completed before the execution of workflow jobs [7].
Also, no run-time fault tolerance and failure recovery is
considered in static scheduling.

2. Dynamic In this type of scheduling, an information of
job components is not knownbefore and the updations in
schedule like allocation of resources to incoming tasks,
execution time, etc., can be done in run-time. So, the
decisions are made in real time [12].

3. User level In this, the scheduler manages the problems
that are proposed by the service provision between the
users and providers. It is efficient where market-based
resources are virtualized and delivered to user as a ser-
vice.

4. System levelThis type of scheduling tackles the resource
management within the data centres and it appreciably
impacts the performance of data centre.

5. Online or immediate mode In this, the scheduling of
tasks to specific resource is done at the same time when
the scheduler receives it without any delay [13].

6. Offline or Batch mode In this, the scheduler gathers the
incoming tasks and assigns them to the resources after
doing observation at some prescheduled time [13].

7. Pre-emptive It defines that the execution of currently
on-going task is interrupted on temporary basis with the
appearance of any high priority task and the interrupted
task will be executed later [14].

8. Non-pre-emptive It does not allow the suspension of any
task and reschedules it later on [14]. If any task enters the
queue, then it has to wait until the current task finishes
its execution.

9. Centralized In this scheduling type, the master proces-
sor unit gathers all the tasks and sends them to other
processing units and a dispatch queue is preserved for
every processor [15].

10. Distributed This type of scheduling involves no central
control unit. So, it is the responsibility of local sched-
ulers to handle the incoming requests and give updations
to all other processors to maintain their status [16].
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Fig. 3 Pictorial representation
of scientific workflows

Table 2 Description of scientific workflows

S. no. Scientific workflow Description Application area

1 Montage A workflow used to create an image mosaic of sky Astronomy

2 Cybershake A workflow used to depict the earthquake threats in an area with the help of
Probabilistic Seismic Hazard Analysis method

Earthquake

3 Epigenomics A workflow interprets the processing of genetic data to implement the different genome
sequencing operations

Genetic data

4 SIPHT A workflow that implements the bioinformatics problems Bioinformatics

5 LIGO A workflow used for the identification of gravitational waves and to examine the data
attained from compact binary systems

Gravitational works

Fig. 4 Different strategies of scheduling

11. Cooperative In this, theremust be collaboration between
all the processorswhile scheduling to attain the common
goal [17]. A cooperative scheduler allows tasks to be
scheduled through the use of a periodic timer that creates
a system tick and it executes tasks that occur at a time
periodic table.

12. Non-cooperativeWhile scheduling, the decisions made
by every individual processor are independent and do
not affect the other processors [17].

2.3 QoS Constraints

It has been interpreted from various workflow scheduling
schemes that the predominant challenge in WFS is to satisfy
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Table 3 Different QoS constraints for workflow scheduling

S. no. Constraints Description

1 Makespan It defines the time when the execution is started until the completion time of last task in
workflow [18]

2 Cost It defines the price that the users have to pay for scheduling their workload on the
resources provided by the cloud providers [19]

3 Throughput It is the total number of user requests that are completed within a specified time period
[20]

4 Reliability It defines that how many tasks are executed successfully from the total number of tasks
with the help of service provided to the user [21]

5 Resource utilization It defines the proper usage of resources that are provided to the user for scheduling the
workload by utilizing the idle time gaps [22]

6 Turnaround time It defines the difference between the completion time of the task and the time at which
the task is submitted [23]

7 Success rate It defines that how many workflows are executed within the user-defined constraints
from the total number of submitted workflows [24]

8 Tardiness It describes the delay in execution of workflow task means that the completion time of
task goes beyond the estimated due time [25]

9 Resource availability It defines the number of available resources for mapping the tasks to reduce the task
failure rate [26]

10 Load balancing It defines to eschew the burden of cloud resources, a scheduler should optimize the
utilization of resources [2]

11 Response time It defines the time duration between the arrival of task and the completion of task [27]

12 Budget It defines the cost that is approved by the user for specific time period to get hold of the
cloud resources [28]

13 Deadline It defines the user-specified time bounds within which the workflow should be executed
[29]

14 Waiting time It defines the time elapsed between the ready time of task to the actual initiation of task
[30]

15 Execution time It defines the time taken by the resource to execute the job when it starts executing on
the resource [18]

16 Security It defines a protected scheduling by a secure scheduler to diminish the effects of security
attacks that are done by the attackers by misusing the cloud services [2]

the user requirements. QoS constraints are specified by the
user as per their requirements for workflow scheduling. The
authors’ acknowledge thirteen QoS constraints from litera-
ture which are described in Table 3.

3 Workflow Scheduling as Optimization
Problem

Workflow scheduling in cloud computing is an NP-complete
optimizationproblem.Anoptimizationproblemcanbe stated
as:

Let T be the finite set of tasks Ti (1 ≤ i ≤ n) and S be the
finite set of schedules Si (1 ≤ i ≤ n), each containing all the
tasks from set T . The best workflow schedule Si is chosen
based on the constraint or objective ‘O’, whether it is to be
minimized (Eq. 1) or maximized (Eq. 2), such that

Si (Omin) < S j (Omin) ∀i, j ∈ n, i �= j (1)

Si (Omax) > S j (Omax) ∀i, j ∈ n, i �= j (2)

To attain an optimal solution for WFS problem in cloud and
grid environment, there are numerous criteria that can be
optimized by exploring different algorithms. All the opti-
mization goals are mentioned in Table 3, and the algorithms
which worked on single criteria, bi-criteria and multi-criteria
are mentioned in Sect. 4. There are basically two types of
optimizations:

• SOP A general single-objective optimization problem is
defined as minimizing (or maximizing) O(x) objective
function. A solution minimizes (or maximizes) the scalar
O(x)where x is an n-dimensional decision variable vec-
tor X = (x1, . . . , xn) from some universe �.

• MOP The MOP problems deal with the task of simul-
taneously optimizing two or more conflicting objec-
tives with respect to a set of certain constraints. Sup-
pose the different objective functions are designated as
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O1(x), O2(x), . . . , Ok(x), where k is the number of
objective functions in the MOP being solved; and the
general objective function is represented by Eq. 3:

O(x) = [O1(x), O2(x), . . . , Ok(x)]T (3)

The authors have acknowledged that the researchers aremov-
ing towards new scheduling schemes as they do work by
considering more than one QoS constraint under different
user specifications; and this statement targets the RQ4.

4 Taxonomy ofWorkflow Scheduling
Schemes

Workflow scheduling can be broadly classified into heuris-
tic, meta-heuristic and hybrid schemes as per the authors’
literature survey. The classification of workflow scheduling
schemes is shown in Fig. 5 with their standard algorithms.
Considering RQ3, most of the researchers focus on the fol-
lowing techniques to schedule the workflow in distributed
environment:

4.1 Heuristic Algorithms

Heuristic means “to discover by trial and error”. So, this cat-
egory of algorithms includes the algorithms that can provide
solutions of an optimization problem in a reasonable amount
of time, but there is no guarantee that optimal solutions are
reached. This is good when we do not necessarily want the
best solutions rather good solutions which can be reached
easily [31].As per authors’ knowledge, these algorithmshave
been widely used by the previous researchers.

• HEFT Topcuoglu et al. [32] have used HEFT and CPOP
algorithm with fixed number of processors having differ-
ent configurations. The selection of tasks by HEFT is on
the basis of rank strategy while doing sorting of tasks that
help in minimizing the earliest finish time and generates
feasible results for DAG related issues.

• HCOC Bittencourt et al. [33] have presented an algo-
rithm known as HCOC that can execute the workflow
in hybrid clouds by increasing the speed of execution
and decreasing the cost of execution. HCOC follows two
prominent steps: firstly, an “initial schedule” of the work-
flow is generated with the aid of private cloud. Secondly,
comparison of makespan with deadline is done. On the
basis of these, tasks and the resources on which they are
scheduled or rescheduled are selected. They have con-
cluded that HCOC is robust and can provide efficient
results on comparison with greedy algorithms.

• Qsufferage algorithm Weng et al. [34] have presented
an algorithm Qsufferage for the scheduling of “Bag-of-
Tasks” related problems that is createdwith “independent
tasks”. Moreover, this application includes the tasks that
are waiting for the execution and can be sorted in any
order. In addition to this there is no need of “inter-task
communication”. Qsufferage works on three essential
steps that are: “computation of expected execution time
of each task on each host”, “sufferage value of each task
is calculated” and the last is “to find out the task having
highest sufferage value and hand over this task to equiv-
alent host”. They have concluded that when size of input
data is changed, Qsufferage provides efficient results in
terms of makespan and response ratio.

• PCPAbrishami et al. [35] have proposed an algorithm
known as PCP, in order to schedule the workflow while
satisfying the QoS constraints. PCP basically works on
two stages that are deadline distribution and planning
stage. At first stage, “overall deadline of the workflow is
distributed on individual tasks”, in such a way that the
entire execution of workflow is completed before its spe-
cific deadline. In next stage, “planner” is used for the
selection of low-priced resource for every task that meet
up its subdeadline. The intention of PCP is to arrange the
workflow in such a way that it will satisfy the require-
ments of user and bring out the results at low price.

• SHEFT Lin et al. [36] have proposed this algorithm
that extends the HEFT algorithm. They have included
the concept of clustering and evaluate their proposed
algorithm by doing simulation. In clustering, resources
having the similar “computing capability” are grouped
to form a cluster. Moreover, all the resources are par-
titioned in distinct number of clusters. SHEFT is used
after “task prioritizing” to map the given workflow on
“bounded number of processors”. The results have con-
cluded that the performance of SHEFT is more effective
than HEFT in terms of makespan and also provision
dynamic resources within workflow execution.

• MOLSFard et al. [37] have proposed an algorithm that
is based on static list scheduling algorithm known as
MOLS. They have applied a dual approach that is tomax-
imize the “distance to constraint vector” for dominating
solutions and to minimize it if not and evaluated their
proposed approach for four different objectives that are
execution time, cost, reliability and energy consumption.
They have divided MOLS algorithm into three stages:
“Constant vector partitioning”, “Activity ordering” and
“Activity mapping” and concluded that MOLS creates
efficient solutions than “Bi-criteria scheduling heuristic”
and “Bi-criteria GA”.

• PCH Bittencourt et al. [38] have used the PCH that is
the combination of clustering and list scheduling heuris-
tics. In PCH, “clustering scheme” is used to generate
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Workflow 
Scheduling 
Schemes

Hybrid 
Schemes

Bi-objective Dynamic Level Scheduling (BDLS) and Bi-objective GA 
(BGA) [92]

Meta-
Heuristic 
Schemes Particle Swarm Optimization 

(PSO)

Cat Swarm Optimisation (CSO) [74]

Ant Colony Optimization (ACO) [71]

Genetic Algorithm 
(GA)

Artificial Bee Colony (ABC) [78]

Bi-criteria priority based PSO [88]

Revised discrete PSO [63]

Bat algorithm [79]

Improved GA [72]

Dynamic Objective GA [89]

Bi-Objective GA [142]

Multi-Objective GA [67]

Cost Effective GA [144]

PSOi [64]

Self Adaptive learning PSO [70]

List scheduling (LS) and GA [84]

Hybrid Heuristic Scheduling based on GA (HSGA) [94]
GA with Variable Neighbourhood Search (VNS) [91]

Dynamic Bi-objective Schedule based on GA (DWSGA) [95]

Rotary Hybrid Discrete PSO (RHDPSO) [21]

Heuristic 
Schemes

Heterogeneous Earliest Finish Time (HEFT) [32]

Partial Critical Path (PCP) [35]

Bi-direction Adjust heuristic (BDA) [83]

Hybrid Cloud Optimized Cost (HCOC) [33]

Scalable Heterogeneous Earliest Finish Time (SHEFT) 
[36]

Min-Min, Max-Min, Random  and Sufferage  [39]

Qsufferage algorithm [34]

Earliest Deadline First Best Fit with Imprecise 
Computation (EDF_BF_IC) [44]

Deadline and Budget Distribution based Cost 
Time Optimization (DBD-CTO) [46]

Adaptive Dual Objective Scheduling (ADOS) [50]

Hyper Heuristic Scheduling Algorithm (HHSA) [42]

Modified Path Clustering Heuristic (PCH) [38]

Iterative Ordinal Optimisation (IOO) [40]

Multi Objective List Scheduling (MOLS) [37]

Cost-Effective Virtual machine Allocation Algorithm within 
Execution Time bound (CEVAET) [20]

Fig. 5 Classification of scheduling schemes

clusters of tasks. However, “list scheduling heuristics”
is used for the selection of tasks and resources. They
have used it for more than one workflow in which they
have not done any biasingwhile allocating the processors
to all workflows for scheduling and apply four differ-

ent approaches: “Sequential”, “Gap search”, “Interleave”
and “Group DAGs” that are used for scheduling of multi-
ple workflows and evaluated it on the basis of makespan
and fairness and also analyzed that less work is done in
scheduling of multiple workflows.
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• Min–Min, Max–Min, Random, Sufferage and HEFT
Lopez et al. [39] have examined these five heuristic
algorithms while using static and dynamic scheduling
schemes. For the evaluation of all these heuristic algo-
rithms, they have considered some features that are
“Number of machines”, “DAG” and “Variation” and
examined the sensitivity to inaccurate completion time
of all these heuristics.

• Iterative Ordinal Optimization (IOO) Zhang et al. [40]
have presented a technique that is related to IOO. They
have also discussed about Monte Carlo and Blind-Pick
techniques and compared these two techniques with the
presented IOO. To shrink the search area and to decrease
the overhead, IOO is used. In Monte Carlo, feasible
schedules are created under “heavy scheduling over-
head”. They have demonstrated that the performance of
IOO is very effective for run-time workflow applications
like LIGO.

• WMTG-min and WMTSG-min Jinquan et al. [41] have
presented these two algorithms in which WMTG-min is
used to achieve high throughput. WMTSG-min has done
some enhancements in sufferage algorithm, whereas the
main motive behind “Sufferage algorithm” is that supe-
rior scheduling can be done by “mapping a resource to a
task that would suffer most in terms of execution time if
that specific resource is not assigned to it”. It is concluded
that their algorithms outperform in terms of makespan
and time complexity.

• HHSATsai et al. [42] have presented an algorithm known
as HHSA that focused on raising the diversity detection
operators so that the “intensification” and “diversifi-
cation” for finding the results have to be improved.
The results have concluded that the convergence rate of
HHSA is better for mapping the resources to workflow
tasks and improves the capability to schedule the prob-
lems.

• CEVAET Zhu et al. [20] have proposed an algorithm that
is CEVAET which includes two stages that are described
in [20]. At first stage, “topological sorting” is inculcated
for the determination of mapping and scheduling is done
on the basis of least “End-to-End Delay (EED)”. In the
next stage, there is an enhancement in the “resource uti-
lization rate” by plummeting the overhead of VM. They
have worked on cost and makespan and concluded that
their proposed algorithm is effective in terms of both
specified objectives.

• Sufferage Min Han et al. [43] have presented this algo-
rithm in which they have divided the QoS objectives in
two different stages that are “High QoS level” and “Low
QoS level”. To bolster this algorithm, at first step, suf-
ferage number is computed for every task before the
execution of scheduling and sorting is done according
to maximum sufferage value. Sufferage value is calcu-

lated by subtracting the “next earliest completion time
with the earliest completion time”. Moving ahead, at
second step, “min–min approach” is applied. They have
compared the SufferageMin algorithmwith QoSGuided
Min–Min heuristic and results show that Sufferage Min
provide better results thanQoS guidedMin–Min in terms
of execution time.

• EDF_BF_IC Stavrinides et al. [44] have used EDF
to propose an algorithm known as EDF_BF_IC with
two main aims: (i) to assure that the execution will be
completed within user-defined time period and (ii) to
accomplish the workflow in less time and at low cost.
In the imprecise computation scheme, “a real-time appli-
cation” is used to get intermediate (imprecise) solutions
of poorer, however, of satisfiable quality, “when the
deadline of application can not meet”. They have also
examined theQoS constraints and concluded that the pro-
posed strategy generates good results.

• BDHEFT Verma et al. [9] have proposed this technique
that is an extension of HEFT. In BDHEFT, they have con-
sidered both the time and cost under budget and deadline
QoS constraints. BDHEFT is divided into two stages that
are “Service level scheduling” and “Task level schedul-
ing. They have considered fiveworkflowapplications and
on the basis of two parameters that are “NSC” and “NSL”
they have done the comparison of BDHEFTwith BHEFT
and concluded that BDHEFT creates better results than
BHEFT in terms of makespan and cost under budget and
deadline constraints.

• MQMW Xu et al. [45] have offered a method that
is MQMW to deal with more than one workflow at a
time while satisfying all the QoS constraints. In this
scheme, the tasks are organized in a specific order and
the sorting is done on the basis of “minimum available
service number”, “least time and cost” and “minimum
covariance”. They have used this method to enhance the
performance of scheduling and the results ofMQMWand
RANK_HYBD are compared and concluded that their
method is effective in terms of execution time and cost.

• DBD-CTO Verma et al. have proposed an algorithm in
[46] to reduce the cost and time to execute the sched-
ule and have also considered dynamic rescheduling. In
DBD-CTO, the first and foremost aim is to find out the
accessible services and ask for “QoS parameters of ser-
vices for each task”. After this step, they have started the
workflow partitioning and computation of smallest com-
pletion time and cost of every task. Moving further, they
have done the distribution of “user’s overall deadline and
budget” on the basis of some rules. At last, a specific
resource is selected for the execution of task in such a
way that the execution is finished within deadline and
budget. It is demonstrated that the proposed algorithm
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helps in creating effective schedule in terms of deadline
and budget.

• QSMTS_IP Dogan et al. [47] have presented an algo-
rithm QSMTS_IP to handle the issues regarding QoS
constraints in scheduling and considered the viewpoints
of both the users and system in terms of QoS constraints.
At the end, they have concluded that their algorithm is
efficient in providing requirements to more than one user
at the same time.

• FCFS, Random and Backfill Hamscher et al. [48] have
discussed the different heuristic algorithms like FCFS,
Random and Backfill. For evaluation of these algo-
rithms, they have done simulation. In FCFS, the tasks
are scheduled and executed in “order of their submis-
sion”.Moreover, if at present, themachines are not vacant
then scheduler should have to wait till the starting of
job. In Random algorithm, the selection of subsequent
job for scheduling is done on random basis, due to this,
the scheduling is “non-deterministic”. Apart from this,
in random technique, there is no preference for jobs.
However, Backfill algorithm is also considered as “out-
of-order version of FCFS” that aims to avoid needless
idle time that is due to wide-jobs.

Table 4 presents a comparative analysis of different heuris-
tic algorithms that were used by the researchers to handle the
problems regarding workflow scheduling also it presents a
year-wise systematic review of various heuristic algorithms
with their advantages and disadvantages which target RQ1
and RQ2. Also, it incorporates the sources of papers with
their citations.

4.2 Meta-heuristic Algorithms

The Meta word means “beyond” or “higher level” and
generally, the meta-algorithms perform better than simple
heuristics, with the use of certain trade-off of randomiza-
tion and local search. Here, the randomization provides
good solutions to escape from local search, and therefore
all meta-heuristic algorithms intend to be suitable for global
optimization [31].

• PSO Pandey et al. [62] have considered PSO for run-time
WFS to find out the global optimum solution of computa-
tional and communication costs. For optimized solutions
two factors are utilized: one is the specific scheduling
heuristic method, whereas other is the PSO used to get
optimized results for “task-resource mapping”.

• RDPSO Wu et al. [63] have proposed a PSO-based
algorithm known as RDPSO in which every solution
is defined in pairs of task-service set. In this, Greedy
Randomized Adaptive Research Procedure (GRASP) is
used for initial optimized population of swarms. Then, a

three-step procedure is followed to create new location
of swarms. At first stage, particles having higher prob-
ability are selected from “gbest and pbest”. In the next
step, because of “discrete property” of scheduling, there
are not that much optimized pairs of gbest to produce
new location, due to this individuals will learn from its
“previous location” and in third step, the tasks that are not
mapped should select the resources from other optimized
pairs. It is concluded that RDPSO outperforms PSO in
terms of cost minimization.

• PSOiThanh et al. [64] have proposed an algorithmknown
as PSOi that is a new variant of PSO to solve work-
flow scheduling issue. PSOi includes some strategies that
improve the optimal solutions by not getting stuck in
local optima. It uses one newmethod known as “Inverse”
for the movement of particles to a new space. Moreover,
PSOi assists in updation of particle’s location after every
iteration.

• Fuzzy PSOwith LJFN and SJFN Liu et al. have proposed
this algorithm in [65] by using LJFN and SJFN heuris-
tics. They have used the concept of swapping, in which
LJFN and SJFN heuristics are swapped in alternate man-
ner whenever any new job is allocated to grid nodes. But
if grid nodes are more in count than the number of tasks,
allocation is done on the basis of FCFS and LJFN. The
proposedmethod helps to create optimal solutions at run-
time to minimize the scheduling time and to enhance the
efficiency of resource usage.

• MOEA Yu et al. [66] have introduced a technique that
works on multiple objectives and based on evolutionary
algorithms. They mainly focused on three distinct tech-
niques for resolving the “workflow planning execution
issue”. In first algorithm that is NSGAII, ranking of solu-
tions is done.Moving further, in SPEA, there is a creation
of “external archive” for the selection of next generation
elements. Furthermore, the algorithm PAES applies the
concept of “local search” from existing solutions to cre-
ate new solutions and comparison is done with the help
of “dominance criteria and density estimation” between
both the solutions. They have focused on reducing the
makespan and cost and demonstrated that the proposed
technique is able to provide efficient solutions with more
flexibility.

• MOGA Singh et al. have presented MOGA in [67] that
focused resource provisioning while considering more
than one objective like cost, makespan and utilization of
resources and also discussed about the idea of “PARETO
OPTIMALITY” in which from the group of solutions to
multi-objective issue, the Pareto optimal set is “the set
of solutions that are not dominated by any other solution
in the whole group”. The “Pareto-optimal set” gives per-
mission to user for normalization of objective function
values. In addition to this, MOGA works on “objective
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variables space” which means it determines the fitness
of “allocation cost and scheduling cost” of resources by
implying HEFT algorithm. They concluded that MOGA
provides optimal solutions of all objectives.

• RD reputation and LAGAWang et al. [68] have proposed
RD and LAGA to support reliable scheduling because it
is a prominent issue in WFS. So, they have presented the
“RD reputation” that depends on time and helps in eval-
uating the reliability of resources. RD includes failure
rate for the reputation of resources at run-time. How-
ever, LAGA makes use of RD reputation to get feasible
solutions of makespan and reliability by using one more
heuristic mechanism of “Resource priority”.

• CGS Gharooni-fard et al. [69] have presented CGS that
uses “chaotic variables” that spread out the solutions and
explore in better way within the entire search space to
deal with budget and deadline constraints in scheduling.
Basic meaning of Chaos is “randomness created by sim-
ple deterministic systems”. The first and foremost step in
CGS is to utilize chaotic variables to create “individuals
of subgenerations dispensed ergodically in defined area”.
This helps in circumventing the premature convergence
of solutions. In next step, CGS uses converging features
of GA to surmount randomness and generate global fea-
sible solutions.

• SLPSO Zuo et al. [70] have proposed a strategy based
on PSO; however, PSO already has a benefit of “quick
convergence”. The proposed method includes different
“velocity updating methods” that help to not get trapped
in local optima and enhance the results. SLPSO incorpo-
rates some policies that are “adaptively adjusting param-
eters”, “designing distinct population topologies”, “make
use of multi-population in standard PSO”, “include bio-
inspired methods in basic PSO” and last one is “to
combine PSO with some another adaptive schemes”. By
inculcating these steps, SLPSO creates efficient results
within the user-specified QoS constraints.

• ACO Liu et al. [71] have proposed a model known
as “Service flow scheduling” and for optimization they
have considered ACO. ACO is inspired by the foraging
behaviour of ants. They have used ACS algorithm for
their scheduling issues that consist QoS constraints like
reliability, cost, response time and security. ACS mainly
focuses on “heuristic information” that provides guid-
ance to ants.

• Improved GA Kumar et al. [72] have proposed an
improved GA algorithm in which they have used the
two most popular heuristic algorithms that are “Max–
Min” and “Min–Min” to generate initial population. In
“Max–Min”, the jobs that are selected for scheduling are
arranged on the basis of “maximum-time” and a job hav-
ing higher value of time is mapped to one of thematching
resources. However, in “Min–Min” algorithm, the prior-

ity is given to that job which is having minimum running
time. After this, there will be an updation in running time
of all other jobs. Authors found that the improved GA is
more effective in reducing makespan and also in utiliza-
tion of resources than GA.

• GA with Fuzzy theory Javanmardi et al. [73] have pro-
posed a scheme of fuzzy theory that is used for the
modification of GA and becomes helpful in minimizing
the number of iterations for generating initial population.
They have applied this concept of fuzzy theory mainly
on two stages that are “crossover” and “fitness evalua-
tion”. This scheme is used to assign the resources on the
basis of “resource ability” and the “length of jobs”. They
have shown that it enhances the solutions of cost and
makespan.

• CSO Bilgaiyan et al. [74] have discussed about CSO for
finding optimal solution in terms of cost. Authors have
proposedCSO-based algorithm that is encouragedby two
types of cats’ behaviours: “seeking mode in which cats
do not move” and “tracing mode in which cats move
towards next best locationswith somevelocity”. By using
some steps, algorithm generates optimal schedule for the
execution of workflow in less iterations and concluded
that proposed algorithm outperforms than PSO in terms
of cost having better rate of convergence.

• GASingh et al. have proposed an algorithm in [75] known
as “Budget constrained time minimization GA” that is
based on GA that helps in reliable WFS by minimiz-
ing the failure rate. In basic GA, mainly three steps are
followed that are: “Create initial population”, “Selection
to generate new individuals” and “Evaluation of fitness
value”. However, in the proposed strategy, GA comprises
somemore steps including thesementioned steps. Firstly,
there is “Encoding of individuals” then, “Creation of ini-
tial population”.Moving further, there is an “Evaluation”
for objective function in addition to which, “selection
procedure” is followed. After these stages, “Crossover”
and “Mutation” is done before “Termination”. Authors
have compared the proposed algorithm with min–min
and max–min algorithms and concluded that the pro-
posed algorithm decreases the execution time and the
scheduling is completed within the budget constraint.

• PSO with VNS This technique is proposed by Netjinda
et al. [76] that is the combination of 4 procedures: “ini-
tialization”, “particle string update”, “fitness calculation”
and “solution selection”. Prior to these procedures, there
is a necessity to create “particle string” that focused on
encoding of promising solutions. VNS is applied in solu-
tion selection phase to enhance the value of solutions.

• S-CLPSO Chen et al. [77] have proposed this approach
on the basis of PSO to handle the user-specified con-
straints and explained the Set-based PSO approach and
how it is appropriate for WFS. In S-CLPSO algorithm,

123



2884 Arabian Journal for Science and Engineering (2019) 44:2867–2897

velocity and position are updated in each iteration. S-
PSO technique is applied in S-CLPSO and it seems to be
better choice for WFS issues because in S-PSO “service
instances in cloud are considered as resource set”andwith
the aid of S-PSO it is effortless to “accelerate search”.
Thus, it is concluded that the results produced by S-
CLPSO are very promising under tight constraints.

• ABC Liang et al. [78] have presented two algorithms
based on ABC with some proposed strategies and some
rules that basically focused on finding the optimal solu-
tion of execution time when the performance ability of
cloud VM’s is low. The main idea behind ABC is that
how group of bees work mutually to find out the food
sources (solutions). They have considered more than one
workflow and on applying both ABC-I and ABC-II, the
results have demonstrated that the performance of ABC-
II is more effective than ABC-I in terms of execution
time.

• Bat algorithm Kaur et al. [79] have presented an algo-
rithm known as Bat algorithm that examined the issues
related to workflow scheduling for different objectives
such as makespan, cost and reliability. The complete
working of bat algorithm is supported by “echoloca-
tion nature of virtual bats” that is implied to sense the
range of solutions. They have compared the Bat algo-
rithm with “basic randomized evolutionary algorithm”
(BREA) and demonstrated that Bat algorithm is more
effective in terms of specified budget and other defined
QoS constraints.

• PSO-ACODr. George [80] has projected a new algorithm
that is the fusion of PSO and ACO. The proposed algo-
rithm has focused on minimization of cost and time in
which PSO is used for the “evaluation of fitness” and
ACO finds out the “global optimal solutions”. In start-
ing, “ initialization of population” is done and then there
is an “iterative loop” in which different values are com-
pared on the basis of objective function. After this, the
steps are repeated by changing the “velocity and location
of particles” till an entire schedule is generated. Moving
further, ACO is appliedwith “global updation procedure”
and “task rescheduling” is also handled by ACO as well.

• PSO and TS Dr. Sridhar et al. [81] have projected a
new algorithm that includes TS and PSO in which PSO
is used to perform “global search” and TS performed
“local search”. The plan behind this hybrid approach is
to enhance the solutions both globally and in confined
space as well. Moreover, this assist in finding feasible
solutions and also prevent the solutions to stuck in local
optima.

• GA-ACOLIU et al. [82] have planned an algorithm that is
the combination of twometa-heuristic algorithms known
as “genetic-ant colony” algorithm. Firstly, the benefits of
GA is used for “global search” and after going through

every step of GA, feasible solutions are created and then
these solutions become initial population for ACO. In
addition to this, they have utilized the ACO for bet-
ter “convergence rate”. The functioning of the proposed
algorithm is explained in the paper with proper policies
and plans. Also, Sathish and Reddy [83] have projected
GA-ACO to schedule the workflow in grid environment
to gratify all the user-specified constraints.

Table 5 presents a comparative analysis of different meta-
heuristic algorithms that were used by the researchers to
handle the problems regarding workflow scheduling also it
presents a year-wise systematic review of various heuristic
algorithms with their advantages and disadvantages which
target RQ1 and RQ2 and the sources of papers with their
citations.

4.3 Hybrid Algorithms

This category includes a blend of heuristic andmeta-heuristic
algorithms. A year-wise systematic analysis of different
hybrid algorithms that have been proposed by the researchers
so far (as per the authors’ knowledge) for workflow schedul-
ing is shown in Table 6 with their strengths and shortcomings
which target RQ1 andRQ2. In addition, the sources of papers
are included with their citations.

• List scheduling (LS) andGALoukopoulos et al. [84] have
presented an algorithm that includes GA with “MaxMin
and MinMin” for the improvement in basic algorithms.
They have exploited scheduling heuristics that are “LS-
based” and “GA-based”whereLSheuristics sort the tasks
on the basis of weight function and make a schedule in
accordance with their arrangement in sorted list. On the
other hand,GAheuristics include both SimpleGA (SGA)
and Improved GA (IGA). In IGA, they have launched a
new crossover scheme known as “node-crossover”. Both
LS and GA result in the collapsed makespan.

• GA with VNS Kardani-Moghaddam et al. [91] have
offered an algorithm for the reduction in costwith the rea-
sonable completion time by combining the exploration
aptness of GA and the exploitation potential of VNSwith
the purpose to improve the solutions in the whole popu-
lation.

• BDLS and BGADogan and Ozguner [92] have presented
“matching and scheduling algorithms” which focus on
two objectives “scheduling length and failure probabil-
ity”. On every scheduling step, DLS selects the next task
to schedule and the machine on which that task is to
be implemented, by finding the ready task and machine
pair that has the highest dynamic level. However, this
algorithm does not trace the reliability of resources when
matching and scheduling decisions are made. So, to
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enhance DLS the “analogous incremental cost” is calcu-
lated when the “dynamic level of task-machine pair” is
evaluated. This procedure helps in figuring out the fail-
ure probability of application. With DLS, SGA is also
applied to generate better results.

• LDD-LS and CDCGAVisheratin et al. [93] have planned
a new hybrid algorithm for scheduling the workflow
under user-specified QoS constraints. The main aim of
LDD-LS is to make lines for workflow and analyze
the computation time for each line. After which, the
total deadline is allocated across levels of the workflow.
However, CDCGA works on two different “heteroge-
neous populations”. The sorted list of task identifiers is
presented in one population in parallel with the com-
putational resource indexes, whereas the sorted list of
computational powers of resources is mentioned in the
other population, concluding that the implementation of
CDCGA is more effective than LDD-LS.

• HSGA Delavar and Aryan [94] have projected an algo-
rithm for theminimization of run-time ofworkflow tasks.
HSGA generates initial population by the virtual list of
resources and their updated properties. To create initial
population, all the tasks are sorted by utilizing prior-
ity method on the basis of graph topology and then
resources will be allocated bymerging the characteristics
of “Best-Fit” and “Round-Robin” algorithms. They have
explained the “Best-Fit andRound-Robin” algorithm and
have proved that HSGAprovide results that aremore effi-
cient than other presented algorithms of this paper.

• DWSGA Aryan and Delavar [95] have planned an algo-
rithm that includes “Bi-Directional task prioritization”
and “optimization of solutions”. The main concern of
DWSGA is to trim down the “GA operation iterations”
by building up an optimized initial population in order to
facilitate suitable workload distribution on resources. It
also uses a particular mutation process that is very sup-
portive in getting effective solutions.

• RHDPSOTaoet al. [21] havepresented ahybrid approach
that is useful in avoiding “premature convergence and
local optimum”. They have recommended two meth-
ods: one is “discretization method” in which multi-QoS
constraint workflow scheduling issue is resolved and
the other is “random time sequence method” to disturb
the double extremums of particles, as a result of which
“premature convergence and local optimum” issue is
resolved. This hybrid method outperforms the standard
PSO algorithm.

5 Discussions

This section targets the principal findings of the systematic
literature review. It begins with the discussion of key sub-

areas followed by the historical distribution of conspicuous
researches. Furthermore, the practical impacts of study are
analyzed as well as the multi-disciplinary scope is conferred
followed by the validity of present study.

5.1 Key Sub-areas

While writing this paper, many other survey papers such
as [100–102] from different fields of study as well as dif-
ferent journals have been analyzed thoroughly to accustom
the authors’ art of showing up their works, which eventually
emanates this literature work.
The literature is categorized into following four distinct
sub-areas attaining prominence from various research per-
spectives:

i.) QoS constraints for WFS
ii.) Heuristic WFS Schemes
iii.) Meta-heuristic WFS Schemes
iv.) Hybrid WFS Schemes

Various QoS metrics to be specified by the user while work-
flow scheduling are presented in Sect. 2.1. However, the
limelight of this survey is the classification of various WFS
schemes intoHeuristic,Meta-heuristic andhybrid algorithms
which are described in Sect. 4 and are comprehensively sum-
marized in tables 3, 4 and 5, respectively. These schemes
also highlight the open research challenges in respective
spheres of research. In order to limit the survey, the issues
related to load balancing, security, failure prediction and fault
tolerance during WFS are not considered by the authors.
Moreover, the review is constrained only to single-objective
and multi-objective optimization techniques for the schedul-
ing of workflows.

5.2 QoS andWorkflow Benchmarks

The literature has acknowledged that different workflow
scheduling algorithms have been developed to address the
challenges of different QoS constraints. However, there are
no workflow and QoS standards as per the author’s review,
which can evaluate and compare the QoS constrained work-
flow scheduling algorithms. Therefore, setting up some
benchmarks has become the need of the hour with the pro-
liferation of workflow techniques in cloud computing [103].

5.3 Strengths of Literature Review

The importance of this literature review is that it provides
a reasonable amount of information about many approaches
used for workflow scheduling with their advantages and dis-
advantages shown in Tables of Sect. 4. Tables 4, 5 and 6,
being the limelight of this paper, will help the researchers to
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Fig. 6 Year-wise distribution of
papers considered for literature
review
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knowabout variousworkflow schemes and scheduling strate-
gies. Moreover, we have shown that how much work is done
in all the different schemes by considering the range of year
from 2000 to 2018.

5.4 Limitations of Literature Review

After analyzing the data collected from this literature review
related to workflow scheduling, we have observed that there
are following limitations of this review:

• Wehave not defined onwhat parameters, which approach
performs better while considering different databases.

• Wehave not covered all the QoS constraints such as secu-
rity, load balancing, etc.

• We have not defined the accuracy of any algorithm.

5.5 Historical Distribution

This subsection provides the result about the growth of
specific studies done in the past many years. The relevant
publications throughout the period between 2000 and 2018
are considered after performing QA, SSS and DEO, which
are able to answer different RQs from Sect. 1 for answering
the gaps in existing approaches (RQ1) to Sect. 6 for stating
the future perception of the research (RQ5). The year-wise
distribution of these papers is also shown in Fig. 6, and it
is apparent that the proportion of research papers concerned
with WFS is maximum in the year 2015. Pondering over,
it has been acknowledged that more than half of the total
existing researchers have preferred heuristic schemes for the
scheduling of workflows in the context of cloud, whereas
about one-fourth of the research sample involves the meta-
heuristic schemes as depicted in Fig. 7.

Fig. 7 Types and percentage of different scheduling schemes in existing
literature

5.6 Analysis of Practical Impact

Though analyzing the effectiveness of existing researches
has been one of the challenging tasks during this survey, yet
the authors have made an attempt to scrutinize their practical
impact by taking citations into account. To limit the data,
Table 7 shows only top 10 cited researches.

5.7 Multi-disciplinary Applications

In the literature, it has been found that scope of the existing
WFS schemes is not limited to cloud computing only, but
software engineering [104], telecommunications [105,106],
bioinformatics [107], economics and finance [108], schedul-
ing [109], and cutting and packing [110] as well. Moreover,
QoS constraints discussed in this paper have shown their
relevance in different realms such as computer networking,
optimization, etc. Clearly, the authors can precisely state
the multi-disciplinary nature of QoS-based WFS algorithms
mentioned in this article.
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Table 7 Top 10 cited researches in the literature

Author(s) Year Total citations Rationale

Pandey et al. [62] 2010 666 PSO is used to schedule applications taking into account both
computation cost and data transmission cost. Authors have used it to
establish new hybrid techniques by making its variants while
considering QoS objectives

Yu et al. [19] 2005 462 Researchers have used it mostly for optimization of deadline and
budget constraints for both static and dynamic scheduling in
distributed environment

Chen [87] 2009 327 Researchers have focused on wireless sensor networks, scheduling of
scientific workflows, text categorization and researchers those who
want to launch new hybrid approach

Xu et al. [45] 2009 230 Resource provisioning and scheduling of workflows while considering
Deadline constraint, fault tolerance in mobile social cloud
computing, clustering based scheduling, load balancing in cloud, etc

Yu et al. [86] 2006 214 Scheduling the workflow under cost and time constraints and those
who have focused on fault tolerance and to optimize multiple
objectives in cloud computing

Rodriguez et al.
[111]

2013 284 This paper is Followed by those who have focused on multi-objective
optimization in scheduling, data retrieval for cloud robotic systems,
fault tolerant scheduling and big data applications

Bittencourt et al. [33] 2011 213 Researchers who have focused on cost and budget constraints in
workflow scheduling, clustering in scheduling and multi-objective
scheduling in big data processing

Etminani et al. [49] 2007 187 Researchers those who are interested in heuristic techniques of
scheduling and to create new variants of heuristics have mainly
focused on this paper

Xu et al. [85] 2003 156 Researchers who want to do scheduling in grid computing for multiple
QoS objectives and who have focused on optimization and wireless
networking

Abrisha-mi et al. [35] 2012 185 Researchers have focused on cost, time, energy efficiency, budget,
deadlines and data-intensive workflows in this paper

Number of Citations are obtained from Google Scholar and as of date 04-06-2018

5.8 Research Validity

The authors have attempted to survey the existing literature
cautiously. However, some primary studies have remained
untouched because of the devised Search Strategy since dif-
ferent researchers use different synonyms related to their
studies. Additionally, in order to avoid the biasness of study
selection problem, the authors have reviewed the techniques
thoroughly during DEO activity as well.

6 Conclusions and FutureWork

Cloud computing has drawn voluminous attention from the
researchers’ community and the industry from the first light
where one of the prime issues aspired by the researchers
so far to be delved into is Workflow Scheduling (WFS).
In this regard, the authors have attempted to present a sys-
tematic review of the existing literature related to WFS in
Cloud Computing with an intention to spot the distinct trends

of WFS and investigated the various aspects ranging from
workflow types, QoS constraints, WFS schemes, as well as
their categorization into heuristic, meta-heuristic and hybrid
schemes, their practical impacts and their multi-disciplinary
applications. Moreover, through in-depth analysis and inter-
pretation of the collected data, they have obtained splendid
findings along with the pros and cons of these techniques.
Another point worth considering here is that it has been
witnessed from other existing surveys of WFS that no one
has considered all the key aspects with such meticulous
information of different scheduling schemes, numerous QoS
constraints, distinct scheduling strategies as well as types
of optimizations, and due to this, authors have decided to
present a survey in which anyone can get up-to-date knowl-
edge of issues related to WFS. It has also been found that
most of the researchers have preferred WorkflowSim over
CloudSim simulator for scheduling workflow applications
in cloud since WorkflowSim allows the modelling and sim-
ulation of the cloud environment, VMs, data centres, and
cloudlets by taking into account only a single work load.
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In previous researches, the makespan and cost are the
only two objectives which have been focused upon by the
researchers so far (as per author’s survey). Therefore, the
following are the promising future directions:

• Work can be extended by considering objectives other
than makespan and cost.

• The fault tolerance, load balancing and security of work-
flows as well as cloud resources can be incorporated.

• Pondering over, the catastrophe consequences of work-
flow failures on different cloud resources can be trimmed
down by envisaging the failures perceptively with the aid
of machine-learning approaches.

• Last, but not the least, the work can also be extended by
implementing up-to-the-minute optimization algorithms
for developing optimal schedules for the purpose ofWFS.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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