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Abstract As part of the rock mass, both the macroscopic
flaws such as joints and the mesoscopic flaws such as mi-
crocracks affect the strength and the deformational behavior
of rock mass. Existing models can either handle any one of
them alone, and a model which can consider the co-effect of
these two kinds of flaws on rock mass mechanical behavior
is not yet available. This study focusses on rock mass with
nonpersistently closed joints and establishes a new damage
constitutive model for it. Firstly, the damage model for the
intact rock which contains only the mesoscopic flaws is in-
troduced. Second, the expression of the macroscopic damage
variable (tensor) which can consider the joint geometrical and
mechanical properties at the same time is obtained based on
the energy principle and fracture theory. Third, the damage
variable based on coupling the macroscopic and mesoscopic
flaws is deduced based on Lemaitre strain equivalence hy-
pothesis, and then the corresponding damage constitutive
model for rock mass with nonpersistently closed joints under
uniaxial compression is set up. Finally, the test data for the
intact rock under uniaxial compression are adopted to vali-
date the proposed model. A series of calculation examples
verify that the proposed model is capable of presenting the
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effect of joint geometrical and mechanical properties on the
rock mass mechanical behavior.
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List of abbreviations
SIF Stress intensity factor
CDM Continuum damage mechanics

List of symbols
α Joint dip angle (◦)
ε Strain
� The second-order damage tensor
�k The damage tensor for the kth set of joints
�12 The coupled damage tensor
τ Shear stress (MPa)
ϕ Joint internal friction angle (◦)
μ The friction coefficient of the joint face
τeff The slide force along the joint face (MPa)
θ The propagation angle of the wing crack at

the joint tip (◦)
φ The persistent ratio of the nonpersistent

joints
σ Normal stress (MPa)
σ̃ The effective stress (MPa)
ε12, ε1, ε2, ε0 The strain of the rock mass samples with both

macroscopic and mesoscopic flaws, with
only macroscopic flaws, with only meso-
scopic flaws and without any flaws, respec-
tively

a The joint half length (cm)
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ak The size of the jointed area (m2)
A The joint area (m2)
B The joint depth (cm)
D Damage
D0 The damage along the loading direction
D1, D2 Macroscopic and mesoscopic damages,

respectively
D12 The coupled damage variable
E Young’s modulus (MPa)
Ẽ12, Ẽ1, Ẽ2, E0 The elastic modulus of the rock mass

samples with both macroscopic and
mesoscopic flaws, with only macroscopic
flaws, with only mesoscopic flaws and
without any flaws, respectively (MPa)

[E0] The second-order elastic tensor of intact
rock (MPa)

[E] The second-order elastic tensor jointed
rock mass (MPa)

F An elemental strength parameter or stress
level

G Young’s and shear moduli of the intact
rock (MPa)

I The second-order unit tensor
KI and KII The first and second stress intensity fac-

tors (SIF) of the joint tip, respectively
(MPa

√
m)

KI0, KII0 SIF of one single I and II types of joints,
respectively (MPa

√
m)

l∗ The length variable (cm)
l The propagation length of the wing cracks

(cm)
l0 The average space between two neighbor-

ing joints (m)
m, F0 The distribution parameters
n The number of all failed ones under a cer-

tain load
nk The orientation vector of the joint
N0 The number of all mesoscopic elements
N The joint number
P(ε) The percentage of damaged ones out of

the total number of the microcells in the
rock

UE The unit volume elastic strain energy
(MN m)

V The volume of rock mass (m3)
Y The emission of damaged strain energy

(MN m)

1 Introduction

Engineers and geophysicists are constantly being confronted
with the need to know the global deformational behavior

and strength of the jointed rock mass. The difficulties arise
mostly from the complexity caused by the flaws. The scale
of the flaws in the jointed rock mass varies from several
millimeters even less such as microcracks to several me-
ters even larger such as joints; therefore, the jointed rock
mass may exhibit behavior extending from that of an in-
tact rock to that of a near-homogeneous highly fractured
medium. For simplification in study, the joints and micro-
cracks are called the macroscopic and mesoscopic flaws,
respectively. As is known to all, these two different scale
flaws affect the jointed rock mass strength and deformabil-
ity. But many existing studies [1–4] on the jointed rock mass
mechanical behavior only focus on the effect of the joint on
rock mass and ignore that of the microcracks. Wang et al.
[1,5] established a mathematic model for the rock mass with
multi-sets of ubiquitous joints and an associated numerical
implementation accounting for the anisotropy in strength and
deformation induced by the joints. In order to account for the
roughness of the discontinuities, Halakatevakis et al. [2] ex-
tended the original plane of weakness theory by imposing
the nonlinear Barton–Bandis shear strength criterion for the
discontinuities. Prudencio et al. [3] ran biaxial tests on rock
with nonpersistent joints and found that the joint system had
much effect on the rock mass fracture modes and maximum
strength. Wai et al. [6] investigated the effects of joint sets
and dip angles on the rock mass strength and deformation be-
havior by using a three-dimensional distinct element code,
3DEC. Based on the extensive experiments, a new strength
criterion for jointed rock mass proposed by Ramamurthy et
al. [7] is related to the compressive strength of intact rock
and the joint factor J f which is evolved to account for the
number of joints per meter length, inclination of the sliding
joint and the shear strength along this joint. All the existing
studies indicate that the existence of joints has much effect
on the rock mass strength and deformability, leading to its
anisotropy. But the shortcoming in the existing studies is
that they all ignore the effect of the mesoscopic flaw on the
jointed rock mass mechanical behavior. The existing results
[8,9] have also proved that the stochastic microcracks would
cause the isotropic damage in rock mass, which caused the
strength reduction and stiffness deterioration. Therefore, it
is very necessary to comprehensively consider the co-effect
of these two kinds of flaws on the jointed rock mass me-
chanical behavior. Here, the damages in jointed rock mass
caused by the macroscopic and mesoscopic flaws are called
the macroscopic and mesoscopic damages, respectively.

However, the macroscopic and mesoscopic damages do
not independently play a role in affecting the rock mass me-
chanical behavior, but are in contact with each other. The
macroscopic damage is produced through many complicated
damage evolution processes such as initiation, propagation
and bifurcation of the microcracks. But up to now, nearly
none of the existing studies on rock mass damage mechanics
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considers the co-effect of the two kinds of damage on rock
mass. For example, Kawamoto et al. [10] and Swoboda et al.
[11] only considered the effect of the macroscopic flaw on
the rock mass mechanical behavior and adopted the second-
order damage tensor to reflect the anisotropy in rock mass
caused by it, which does not consider the effect of the meso-
scopic flaw in the rock blocks cut by joints. Likewise, Grady
et al. [12] and Taylor et al. [13] only considered the effect of
the mesoscopic flaw on the rock mass mechanical behavior
and defined the damage variable as the function of the micro-
crack density. They did not consider the anisotropy in rock
mass caused by the macroscopic cracks formed by the prop-
agation and coalescence of the microcracks. Therefore, the
above two methods do not reflect the co-effect of these two
kinds of different scale flaws on the rock mass mechanical
behavior.

The numerical study done by Niu et al. [14] indicates that
these two kinds of damages in the rock mass have effect on its
mechanical behavior, and the complex interaction will exist
between them. Therefore, how to perfectly reflect the co-
effect of these two kinds of flaws on the rock mass mechanical
behavior is an urgent subject to solve in rock mass damage
mechanics.

It can be seen from the existing study that the initial
mesoscopic damage in rock will evolve into the macroscopic
damage under the load. From the scale viewpoint of the dam-
age and its identification, there is no strict limitation between
the macroscopic and mesoscopic damages, they are often re-
lated to the scale of the studied object. But for convenience
in engineering analysis, it is necessary to classify these two
kinds of damages and then calculate their coupling effect
[15].

Now the existing study on rock mesoscopic damage me-
chanics is often based on the statistical damage constitutive
model [16,17], which is well developed. However, the study
on rock mass damage constitutive model is comparatively
not enough, because the most existing studies mainly adopt
the damage tensor to describe the anisotropic damage in the
rock mass caused by the joints [10,11], in which only the
joint geometrical property such as its length and dip angle is
considered, while its mechanical property such as the shear
strength is not. So, it is obvious that this definition method for
the damage tensor has some deficiency. Therefore, a new rock
mass damage constitutive model which includes the joint
geometrical and mechanical properties at the same time is
proposed in this paper. Secondly, the damage variable (ten-
sor) comprehensively considering these two kinds of flaws
is set up based on Lemaitre strain equivalence hypothesis.
Then the corresponding damage constitutive model for the
jointed rock mass under uniaxial compression is established.
Finally, the proposed model is adopted to discuss the effect
of joint dip angle, joint internal friction angle and joint length
on rock mass mechanical behaviors.

2 A Damage Constitutive Model for Rock with
Mesoscopic Flaws

All sorts of the mesoscopic flaws in rock are randomly dis-
tributed because rock is a product of long geological history.
Therefore, statistical damage mechanics is a powerful tool to
study the occurrence, propagation and coalescence processes
of these mesoscopic flaws and their effect on rock mechan-
ical behaviors. By means of statistical damage mechanics,
the distribution law of these mesoscopic flaws in rock such
as normal or Weibull distribution is assumed so as to build up
the mesoscopic elements with strength in rock and to deter-
mine its damage state. Thus, a damage statistical constitutive
model for rock can be set up. Till now, much progress in
the study of damage statistical constitutive models has been
made [16,17]. The establishment of a rock damage statisti-
cal constitutive model is mainly based on the following two
aspects: (1) choose strength criteria for the rock mesoscopic
element, for instance, the maximum principle strain criterion,
Mohr–Coulomb criterion and Drucker–Prager criterion; and
(2) determine the distribution law of the rock mesoscopic el-
ement strength, for example power function distribution and
Weibull distribution. The studies show that the damage con-
stitutive model based on Weibull distribution is better than
that based on power function distribution, and its calculation
process is easier. Therefore, the damage constitutive model
based on Weibull distribution and the maximum principle
strain criterion is adopted here.

2.1 Establishment of the Damage Statistical
Constitutive Model Based on Weibull Distribution

The strength of mesoscopic elements observes the following
Weibull distribution function [18]:

P(F) =
{

m
F0

(
F
F0

)m−1
exp

[
−

(
F
F0

)m]
F > 0

0 F ≤ 0
(1)

where F is an elemental strength parameter or stress level,
and because the strain strength theory is adopted here, it de-
notes strain; m and F0 are the distribution parameters; and
P(F) is the percentage of damaged ones out of the total
number of the microcells in the rock [8].

Let N0 denote the number of all mesoscopic elements and
n denote the number of all failed ones under a certain load.
The damage D can be defined as:

D = n

N0
(2)

where D takes a value between 0 and 1 corresponding to
damage states of the rock from undamaged to fully damaged.

123



3110 Arab J Sci Eng (2015) 40:3107–3117

When the strain level ε increases to ε + dε, the number
of failed mesoscopic elements increases by N0P(F)dε. If
external load increases from 0 to ε, the total number of failed
mesoscopic elements is:

n =
∫ F

0
N0P(F)dF = N0

{
1 exp

[
−

(
F

F0

)m]}
(3)

Substituting Eq. (3) into (2) yields:

D = 1 − exp

[
−

(
F

F0

)m]
(4)

Equation (4) is the damage evolution equation of mesoscopic
elements in the statistical constitutive model for rock.

Assuming the mechanical behavior of the rock mesoscopic
elements observes Hooke law, its constitutive law is:

σ = Eε(1 − D) (5)

where E and ε are the Young’s modulus and strain for the
intact rock, respectively.

2.2 Determination of Distribution Parameters

The following stress–strain relationship can be derived from
Eq. (5):

σ

Eε
= exp

[
−

(
F

F0

)m]
(6)

Equation (7) can be obtained by natural logarithm operation
on both sides of Eq. (6):

ln
(
− ln

σ

Eε

)
= m ln F − m ln F0 (7)

Let

y = ln
(
− ln

σ

Eε

)
x = ln F

x0 = −m ln F0

then

y = mx + x0 (8)

Obviously, Eq. (8) is linear, in whichm is the slope of beeline
and x0 is the intercept. Parameter m and F0 can be obtained
by fitted with the test data.

3 A Damage Constitutive Model for Rock Mass
with Macroscopic Flaws

Now how to describe the effect of joints on the rock mass me-
chanical behavior is a hot and difficult subject in rock mass
mechanics. The fault in rock mass is larger and fewer and
can be simulated with the joint element such as Goodman
element [19] or Desai element [20]. While obviously differ-
ent from it, the joint belongs to the third- and fourth-class
structural face, which is small, many and nonpersistent, and
it cannot be calculated one by one. Therefore, many scholars
adopt the damage theory to study this problem, which regards
that the existence of joints will lead to the rock mass strength
reduction and stiffness deterioration. Assuming the constitu-
tive law for the damaged rock mass still conforms to Hooke
law, the effect of the joint on rock mass mechanical behavior
is the deterioration of elastic modulus. So, the relationship
between elastic constants and damage tensor of jointed rock
mass can be expressed as follows:

[E] = (I − �) : [E0] (9)

where [E0] and [E] are the second-order elastic tensor of
intact rock and jointed rock mass, respectively, I is a second-
order unit tensor, and � is the second-order damage tensor
for the joint in the rock mass in two-dimensional problems.

Therefore, determination of the damage constitutive
model for jointed rock mass is boiled down to the calcula-
tion of damage tensor. The phenomenological second-order
tensor which is directly related to the geological data of
the jointed rock mass is chosen as the damage tensor of
continuum damage mechanics (CDM) in two-dimensional
problems. Scholars have proposed many kinds of definitions
of the second-order damage tensor to describe anisotropic
damage of the jointed rock mass. For instance, Kawamoto et
al. [10] proposed a damage model for the rock mass with a
single set of joints (a series of joints parallel to each other):

�k = l0
V
ak

(
nk ⊗ nk

)
(10)

where l0 is the average space between two neighboring joints;
V is the volume of rock mass; ak is the size of the jointed
area; nk is the orientation vector of the joint; and �k is the
damage tensor for the kth set of joints.

It is often used to define the damage in rock mass geomet-
rical damage theory [10,11,21]. But its deficiency is obvious,
in which only the joint geometrical property such as its length
and dip angle is considered, while its mechanical one such
as its shear strength is not included in Eq. (10). That is to
say, it thinks that damage cannot transfer the stress, which is
nearly true to the rock mass under tension, but not to the rock
mass under compression. Because the joint will close and slip
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along the joint face under compression, the joint can trans-
fer part of compressive and shear stresses. The transferring
coefficient is much related to the strength parameters of the
joint such as its internal friction angle and cohesion. There-
fore, both Kawamoto [10] and Yuan et al. [22] introduced the
joint transferring compression and shear coefficients to revise
the above model by considering the condition that the joint
can transfer part of the compressive and shear stresses. But
how to accurately define these two coefficients also becomes
a new problem. However, Swoboda et al. [11] introduced the
material constant Hd(0 ≤ Hd < 1) to consider the effect of
joint contact on the stress transfer, and now the method to
determine it is mainly by experience.

So, it can be seen from the existing studies that the joint
property such as geometrical ones and mechanical ones is
separately considered. Namely, the joint geometrical prop-
erty is firstly adopted to define the damage tensor, and then
its mechanical one such as its shear strength is adopted to
revise the above calculation result, which not only causes
inconvenience in application of this model but also is dif-
ficult to use in engineering because of the arbitrariness in
selecting these parameters. Can a damage tensor which in-
cludes both the joint geometrical and mechanical properties
be proposed? This kind of damage tensor is not only in good
agreement with the failure mechanism of the jointed rock
mass but also applicable to use, which can avoid the error
in selecting the parameters to a large extent. Many scholars
have done many works on it. For instance, Li et al. [23] ob-
tained the calculation method of the damage tensor of the
rock mass with nonpersistent joints based on the strain en-
ergy theory, which perfectly considers the joint geometrical
and mechanical properties at the same time. It provides a
good idea for studying the damage model for the rock mass
with nonpersistent joints. So in view of it, the calculation
method of the damage tensor which can consider both the
joint geometrical and mechanical properties is set up based
on the energy principle and facture mechanics. Then the cor-
responding damage constitutive model for the rock mass with
nonpersistently closed joints under uniaxial compression is
set up.

3.1 Establishment of the Damage Model for Rock Mass
with Nonpersistently Closed Joints

According to fracture mechanics, for a planar stress prob-
lem under compression, the increment of the addition strain
energy U1 because of the existence of joints is:

U1 =
∫ A

0
GdA = 1

E

∫ A

0

(
K 2

I + K 2
II

)
dA (11)

where A is the joint area, KI and KII are the first and second
stress intensity factors (SIF) of the joint tip, respectively, and

E and G are Young’s elastic modulus and shear modulus of
the corresponding intact rock, respectively.

For a single joint, A = Ba (unilateral joint) or 2Ba (cen-
traljoint). For many joints, A = NBa (unilateral joint) or
2NBa (central joint), where N is the joint number, B is the
joint depth, and a is the joint half length.

Under the uniaxial stress σ , the emission of damaged
strain energy Y is [24]:

Y = − σ 2

2E(1 − D)2 (12)

UE is the unit volume elastic strain energy corresponding to
the stress σ , and under the uniaxial stress condition, it can be
expressed as [25]:

UE = −(1 − D)Y (13)

Substituting Eq. (12) into Eq. (13), we have:

UE = σ 2

2E(1 − D)
(14)

When the rock mass does not contain any joints, D = 0, and
Eq. (14) can be changed into:

UE
0 = σ 2

2E
(15)

The increment of the unit volume elastic strain energy caused
by the joints is:

	UE = UE −UE
0 = σ 2

2E(1 − D)
− σ 2

2E
(16)

Assuming the volume of the rock mass is V , the increment
of the elastic strain energy caused by the joints is:

	UE = V

[
σ 2

2E (1 − D)
− σ 2

2E

]
(17)

Both 	UE in Eq. (17) andU1 in Eq. (11) are the increment of
the elastic strain energy caused by the joints, and they should
be equal to each other:

	UE = U1 (18)

or

1

E

∫ A

0

(
K 2

1 + K 2
II

)
dA = V

[
σ 2

2E(1 − D)
− σ 2

2E

]
(19)
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From Eq. (19), we obtain:

D = 1 − 1

1 + 2
Vσ 2

∫ A
0

(
K 2

I + K 2
II

)
dA

(20)

Next, the SIF KI and KII are solved with the mechanical
analysis of the jointed rock mass.

3.2 SIF Calculation Method

3.2.1 SIF Calculation Method of a Single Nonpersistently
Closed Joint in Rock Mass

Under compression, the shear stress will make the rock mass
have the trend of sliding along the joint face. Because of
the closure of the joint, the direction of the friction force is
opposite to that of the sliding. When the shear stress along
the joint face exceeds the friction, the rock mass will slide
along the joint face. With the increase in compression, the
wing cracks will begin to propagate from the joint tips at the
direction of 70.5◦ [26–28]; namely, the joints will propagate
along the direction in which the tensile stress is maximum,
as shown in Fig. 1. Then the wing cracks are formed.

Under the uniaxial compression, the normal and shear
stresses on the joint face are as follows, respectively:

σ(σ, α) = σ

2
+ σ

2
cos 2α = σ cos2 α (21)

τ(σ, α) = σ

2
sin 2α (22)

where σ(σ, α) and τ(σ, α) are the normal and shear stresses
on the joint face, respectively, α is the joint dip angle.

If assume the joint internal friction angle is ϕ, its friction
coefficient μ is tan ϕ. Then under the uniaxial compression,
the shear stress on the joint face will cause the rock block
to slide along it. In turn, the normal stress on the joint face
will produce the friction force to resist the slippage of the
rock block along it. So the slide force along the joint face τeff

must be more than or equal to 0 and cannot be less than 0.
Therefore, τeff can be obtained from Eqs. (21) and (22):

Fig. 1 Sketch of wing crack
growth model. Joint length 2a,
joint dip angle α, growing crack
length l, joint depth B

τeff =
{

0 tan α < tan ϕ

τ − μσ tan α ≥ tan ϕ
(23)

It is noted that because the cohesion on the joint face is much
less than friction force, it is neglected here.

The SIF KI and KII of the wing cracks at the joint tip can be
revised as follows according to Lee [29] and the propagation
direction of the wing cracks:

KI = − 2aτeff sin θ√
π(l + l∗)

+ p (σ , α + θ)
√

πl

KII = − 2aτeff cos θ√
π (l + l∗)

− τ (σ , α + θ)
√

πl (24)

where a is half length of the joint, and l∗ = 0.27a was
introduced [30] to make KI and KII nonsingular when the
tensile crack length is small. l is the propagation length of
the wing cracks. θ is the propagation angle of the wing crack
at the joint tip, and it is assumed to be 70.5◦ [26,27].

Considering the critical condition of the wing cracks to
propagate, namely, l = 0, KI and KII of the wing cracks are:

KI = − 2aτeff sin θ√
πl∗

KII = − 2aτeff cos θ√
πl∗

(25)

From the statement above, it is known that the critical condi-
tion that the wing crack length l = 0 is the initial condition
that the nonpersistent joint begins to propagate. If the SIF of
the joint tip at this moment is solved, the initial damage vari-
able of the rock mass caused by the original nonpersistently
closed joint can be obtained from Eq. (10). It is obviously
seen that the damage obtained with this method includes not
only the joint geometrical property such as its length and
dip angle but also its mechanical one such as its internal
friction angle. So the jointed rock mass damage constitutive
model obtained from this method is more in agreement with
the actual condition, and the joint transferring coefficients of
compression and shear stresses are not required to revise it.

3.2.2 SIF Calculation Method of One or More Rows of
Paralleled Nonpersistently Closed Joints in Rock
Mass

If there is not one but a row of infinite nonpersistently closed
joints with the same length and the same interval whose geo-
metrical parameters are shown in Fig. 2, the effective SIF is
by considering the interaction among the joints [31]:

KI = KI0

√
2

πφ
tan

πφ

2

KII = KII0

√
2

πφ
tan

πφ

2
(26)
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Fig. 2 Rock mass with
nonpersistently closed joint.
Joint length 2a, joint dip angle
α, joint center distance b, joint
row interval d 2a

b

d

¦ α

Table 1 The value of f (a, b, d)

d/2a b/2a

∞ 5.0 2.5 1.67 1.25

∞ 1.0 1.017 1.075 1.208 1.565

5 1.016 1.020 1.075 1.208 1.565

1 1.257 1.257 1.258 1.292 1.580

0.25 2.094 2.094 2.094 2.094 2.107

where KI0 and KII0 are SIF of one single I and II types of
joints, respectively, KI and KII are SIF of many I and II types
of joints, and φ is the persistent ratio of the nonpersistent
joints, φ = 2a

b .
If the rock mass contains many rows of nonpersistently

closed joints, the effective SIF is:

KI = f (a, b, d)KI0

KII = f (a, b, d)KII0 (27)

where f (a, b, d) is the coefficient to reflect the interaction
between joints, a, b, d are shown in Fig. 2.

The value of f (a, b, d) is shown in Table 1 proposed by
Cherepanov [32].

3.3 The Damage Variable of Rock Mass with One Set of
Closed Joints

When the rock mass contains a set of one-rowed nonper-
sistently closed joints, it can be obtained by substituting
Eq. (21)–(23) into (25)–(26) and (20):

D =
⎧⎨
⎩

0 tan α< tan ϕ

1 − 1

1+ 12BNa2
Vφ

tan πφ
2 cos2 α(sin α−cos α tan ϕ)2

tan α≥ tan ϕ

(28)

When the rock mass contains a set of more-rowed non-
persistently closed joints, it can be obtained by substituting
Eq. (21)–(23) into (25), (27) and (20):

D=
{

0 tan α< tan ϕ

1 − 1

1+ 18.86BNa2
V f 2(a,b,d) cos2 α(sin α−cos α tan ϕ)2

tan α≥ tan ϕ

(29)

where N is the joint number, V is the volume of the rock
mass, and the other parameters are as above.

However, the damage caused by the joints to rock mass
only denotes that along the loading direction. So it is nec-
essary to make it tensorial in order to reflect the anisotropy
of the macroscopic damage. Here the method proposed by
Chen et al. [33] is adopted, and the following damage tensor
� is introduced:

� =
⎡
⎣ D0 0 0

0 0 0
0 0 0

⎤
⎦ (30)

where D0 is the damage along the loading direction, which
can be solved with Eq. (28) or (29).

4 A Damage Constitutive Model for Jointed Rock
Mass by Coupling Macroscopic and Mesoscopic
Flaws

4.1 The Damage Variable by Coupling Macroscopic and
Mesoscopic Flaws

The damage variable of the jointed rock mass by considering
the macroscopic and mesoscopic flaws is firstly discussed.
The coupling of these two kinds of flaws is that of their cor-
responding damage variables [15].

In the calculation of coupled damage variable of these
two kinds of flaws, the following hypotheses are adopted: 1©
The scale of macroscopic and mesoscopic flaws is differing
in size of millimeters. The macroscopic flaws are assumed
to be anisotropic, and the mesoscopic damage is isotropic.
2© These two kinds of damages are described with different
methods introduced in section 2 and 3, respectively. 3© The
calculation method of the coupled damage variable follows
Lemaitre strain equivalence hypothesis [34]. It states that the
deformability of the damaged material can be calculated only
with the effective stress. Its constitutive model can also be
defined as the undamaged form, in which the stress σ should
be replaced with the effective stress σ̃ .

Under the stress, the damage strain caused by the coupled
damage is the combination of these two kinds of damages,
shown in Fig. 3. According to Lemaitre strain equivalence
hypothesis, there is

ε12 = ε1 + ε2 − ε0 (31)
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Fig. 3 Calculation of the equivalence strain. Parts a–d are the rock
mass samples with both macroscopic and mesoscopic flaws, with
only macroscopic flaws, with only mesoscopic flaws and without any
flaws, respectively. Their elastic modulus and strain under stress σ are
Ẽ12, Ẽ1, Ẽ2, E0 and ε12, ε1, ε2, ε0, respectively

in which the physical meaning of ε12, ε1, ε2 and ε0 is defined
in Fig. 3.

Then we can obtain:

σ

Ẽ12
= σ

Ẽ1
+ σ

Ẽ2
− σ

Ẽ0
(32)

or

1

Ẽ12
= 1

Ẽ1
+ 1

Ẽ2
− 1

Ẽ0
(33)

We assume the damage variables in the loading direction
produced by the macroscopic and mesoscopic damages are
D1 and D2, respectively, and their coupled damage variable
is D12. From Lemaitre strain equivalence hypothesis, it is
known that:

⎧⎨
⎩

Ẽ12 = E0 (1 − D12)

Ẽ1 = E0 (1 − D1)

Ẽ2 = E0 (1 − D2)

(34)

Substituting Eq. (34) into Eq. (33), it obtains that:

D12 = 1 − (1 − D1) (1 − D2)

1 − D1D2
(35)

Then the two extreme conditions are discussed follow-
ing. First, when the rock mass contains only the macroscopic
damage, namely D2 = 0, we obtain D12 = D1 from Eq. (35).
It indicates that the coupled damage variable is equal to
the macroscopic damage variable, and it agrees with the
actual condition. If the rock mass contains only the meso-
scopic damage, namely D1 = 0, we have D12 = D2, which
indicates that the coupled damage variable is equal to the
mesoscopic damage variable. It shows that the coupled dam-
age variable obtained from the above method can apply to
these two conditions.

Also based on Lemaitre strain equivalence hypothesis, the
rock mass damage variable by coupling macroscopic and
mesoscopic damages obtained by Yang et al. [15] was in
Eq. (36).

D12 = 1 − (1 − D1) (1 − D2)

(1 − D1) + (1 − D2)
(36)

It can be seen from Eq. (36) that D12 = 1
2−D2

, namely D12 
=
D2 when D1 = 0. That is to say, when rock mass only
contains mesoscopic damage, the coupled damage variable
is not equal to the mesoscopic one, which is not obviously
in agreement with the fact. From the deduction process of
the coupling damage variable by Yang et al. [15], it can be
found that it regarded that ε12was the summation of ε1and ε2.
It calculated the strain caused by the rock mass without any
damage twice; namely, it does not subtract the strain caused
by the sample in Fig. 3d, and so its result is not rational.

If assume the damage tensor and variable caused by the
macroscopic and mesoscopic flaws are � or D, respectively,
the coupled damage tensor �12 can be expressed as:

�12 = I − (I − �) (1 − D)

I − �D
(37)

4.2 The Damage Constitutive Model for Rock Mass

Assuming the strength of the mesoscopic elements in rock
blocks conforms to Weibull distribution and according to the
damage theory, the jointed rock mass constitutive damage
model by coupling the macroscopic and mesoscopic flaws
is:

{σ } = [E0]
(I − �) (1 − D)

I − �D
{ε} (38)

where � and D are the second-order damage tensor and
damage variable caused by the macroscopic and mesoscopic
flaws, respectively, and [E0] is the second-order elastic tensor
of the intact rock.

5 Analysis of Calculation Examples

5.1 The Stress–Strain Diagram of Jointed Rock Mass

In order to validate the proposed model, the test done by
Ling et al. [35] is adopted. The cylindrical sample is red
sandstone with 50mm in diameter and 100mm in length. Its
uniaxial compressive test diagram is shown in Fig. 4.

The Young’s modulus E and Poisson’s ratio ν of the red
sandstone sample can be determined directly from the test
data: E = 6949 MPa and ν = 0.22. So the parameter m and
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Fig. 4 Comparison between the test and theoretical diagrams

Fig. 5 The calculation model.
Joint length 2a, joint dip angle
45◦

ε0 of the rock sample can be obtained with Eq. (8): m =
3.3352 and ε0 = 0.0128.

Theoretical compressive stress–strain diagram from the
constitutive model with only mesoscopic flaws can be ob-
tained by substituting the distribution parameters and stress–
strain diagram test data into Eq. (7), which fits well with the
test diagram (Fig. 4).

Assume there is a nonpersistently closed joint in the sam-
ple (Fig. 5), and the joint depth, length, dip angle and internal
friction angle are 1, 4 cm, 45◦ and 15◦ (ignoring its cohesion),
respectively. The macroscopic damage tensor � along the
loading direction caused by the joint according to the calcu-

lation method proposed in this paper is � =
⎡
⎣ 0.17 0 0

0 0 0
0 0 0

⎤
⎦.

For a planar stress problem under compression, the dam-
age constitutive model for jointed rock mass can be obtained
according to Eq. (38). Then the theoretical stress–strain di-
agram of jointed rock mass is shown in Fig. 4. It can be
seen that: 1© When the rock mass contains only mesoscopic
damage, the mesoscopic damage model based on Weibull
distribution can perfectly reflect the stress–strain relation-
ship of the rock. The theoretical diagram fits very well with
the test one, especially before the peak strength. 2© However,
when the rock mass contains the macroscopic flaw namely
the joint, its mechanical behavior will be evidently intener-
ated. For this calculation example, the peak strength of the
rock mass with a nonpersistently closed joint is 39.41 MPa,

85.8 % of the intact rock. These results show that the rock
mass strength and stiffness are weakened by the joint. 3©
From the characteristic of the sample’s stress–strain diagram,
one of the rock mass with these two kinds of flaws differs
from that of the rock mass with only the mesoscopic flaws
very much before the peak strength, and then the gap between
them gradually becomes less and less. Finally their residual
strength is nearly the same.

5.2 The Mechanical Behaviors of Rock Mass with
Different Joint Dip Angle

Here the calculation model in Fig. 5 is adopted to discuss the
effect law of joint dip angle β on the sample’s stress–strain
diagram. It can be seen from Fig. 6 that: 1© For the rock mass
with a joint of different dip angle, their stress–strain diagrams
are basically the same, but their peak strength is different. For
values of β, between 0 and 15◦(ϕ) or very close to 90◦, no
sliding occurs on the planes of the joint, and the samples’
climax strengthes are the same. This is because the sample’s
strength depends on shear failure or axial splitting of intact
rock in a direction not controlled by the joint. The minimum
strength appears for a joint dip 52.5◦(450 + ϕ/2), which
fits with the existing research conclusions [36]. 2© It can be
seen from change amplitude of the sample’s peak strength
that the peak strength of the sample with a joint dip 52.5◦ is
39.03 MPa, 85.5 % of that of the samples with a joint dip 0◦
or 90◦. It indicates that the joint dip angle has effect on the
sample’s mechanical behaviors.
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Fig. 6 The mechanical behaviors of the samples with different joint dip
angle. a Stress-strain diagrams. b Change law of the sample’s uniaxial
compressive peak strength with joint dip angle
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Fig. 7 The stress–strain diagrams of the samples with different joint
internal friction angle under uniaxial compression

5.3 The Mechanical Behaviors of Rock Mass with
Different Joint Internal Friction Angle

Here the calculation model in Fig. 5 is still adopted. The
joint dip angle and its length are 45◦ and 4 cm, respectively.
Assume the joint internal friction angle is 0◦, 15◦ and 30◦,
respectively. It can be seen from Fig. 7 that the slope of
the rock mass stress–strain diagrams increases with the joint
internal friction angle, which indicates that the rock mass
elastic modulus increases with the joint internal friction an-
gle. Meanwhile, the rock mass peak strength increases with
the joint internal friction angle, and this is because the joint
shear strength increases with the joint internal friction angle,
and accordingly the damage caused by the joint to the rock
mass decreases, and the rock mass strength increases. It indi-
cates that the joint shear strength has effect on the rock mass
mechanical behaviors such as stress–strain diagram and peak
strength.

5.4 The Mechanical Behaviors of Rock Mass with
Different Joint Length

Here the calculation model in Fig. 5 is still adopted. The
joint dip angle and internal friction angle are 45◦ and 15◦,
respectively. Assume the joint length is 1, 2, 3 and 4 cm,
respectively. It can be seen from Fig. 8 that the slope of the
rock mass stress–strain diagrams decreases with the joint
length, which indicates that the rock mass elastic modulus
decreases with the joint length. This is because the damage
caused by the joint to the rock mass increases with the joint
length, and accordingly the rock mass strength decreases.
Meanwhile, it can be seen from Fig. 8b that the sample’s peak
strength decreases almost linearly with the joint length. When
the joint length increases from 1 to 4 cm, the sample’s peak
strength decreases from 45.3 to 39.41 MPa, whose amplitude
is about 13.0 %. It indicates that the joint length has effect
on the rock mass mechanical behaviors such as stress–strain
diagram and peak strength.
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Fig. 8 The mechanical behaviors of the samples with different joint
length under uniaxial compression. a Stress-strain diagrams. b Change
law of the sample’s uniaxial compressive peak strength with joint length

6 Conclusions

In this study, rock mass is assumed to be a compound damage
material, and then we investigate the effect of the macro-
scopic and mesoscopic flaws on its mechanical behavior. The
damage caused by the mesoscopic flaws is described by the
damage constitutive model based on Weibull distribution.
Based on the energy principle and fracture mechanics, we
propose the calculation method of the macroscopic damage
tensor caused by the joints, which can consider the effect of
the joint geometrical and mechanical property on the rock
mass mechanical behaviors.

On the basis of Lemaitre strain equivalence hypothesis,
the coupled damage variable is deduced. Then the damage
constitutive model for jointed rock mass under uniaxial com-
pression by coupling the macroscopic and mesoscopic flaws
is set up. Next, the proposed model is validated with the test
data.

Finally, the proposed model is adopted to discuss the ef-
fect of joint dip angle, joint internal friction angle and joint
length on the mechanical behavior of rock mass with one
single nonpersistently closed joint. Overall, the proposed
model provides a way to simulate on how the macroscopic
and mesoscopic flaws affect the mechanical behavior of rock
mass with nonpersistently closed joints.
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