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Abstract In a stepped spillway, the spillway face is pro-
vided with a series of steps from near the crest to the toe.
The energy dissipation caused by the steps reduces the size
of the energy dissipator, generally provided at the toe of the
spillway. The hydraulics of stepped spillways is investigated
by carrying out laboratory experiments, building models to
explain the data, and testing the robustness of the models
developed here using a neuro-fuzzy approach. The experi-
ments consist of twenty different stepped spillways tested in
a horizontal laboratory flume, a wide range of discharge val-
ues, three weir slopes of 15◦, 25◦, and 45◦ and different step
numbers from 3 to 50 on the ogee surface. The main objective
of this paper was to investigate the applicability and accuracy
of the neuro-fuzzy approach in estimating the proper values
of energy dissipation of skimming flow regime over stepped
spillways because of the imprecise, insufficient, ambiguous
and uncertain data available. A neuro-fuzzy approach was
developed to relate the input and output (energy dissipation)
variables. Multiple regression equations based on dimen-
sional analysis theory were developed for computing energy
dissipation over stepped spillways. The determination coef-
ficients for the suggested neuro-fuzzy model in training and
testing process are 0.974 and 0.966, respectively. It was found
that the neuro-fuzzy approach formulation of the problem of
solving for the energy dissipation over stepped spillways is
more successful than that by regression equations.
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List of symbols

b Spillway width
E1 Energy downstream of spillway before hydraulic

jump
E0 Total energy upstream of spillway
�E The difference between energy upstream and

downstream of the spillway (�E = E0 − E1)

Fr Supercritical Froude number = V1/
√

gy1

g Acceleration due to gravity
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h Step height
Hw Total spillway height from flume bed
l Step length
q Discharge per unit width
Q Discharge
S Weir/spillway slope (V : H)

Va Approach velocity = (q/y)

V1 Velocity at the toe of the spillway
y0 Depth of flow about 0.60 m upstream

of the spillway above the spillway crest
y1 Depth before hydraulic jump at the spillway toe
y2 Depth after hydraulic jump

1 Introduction

Stepped spillways have been built in the past, but there is
some interest in them because of significant cost savings.
Stepped spillways have many applications in dam structures,
river engineering, and soil conservation works. Their stilling
basins can be constructed at lower costs as energy dissipa-
tion in these spillways is high. Stepped spillways have been
used for centuries. Recently, new construction materials such

as roller compacted concrete (RCC) and design techniques
have increased the interest in stepped spillways [1]. The steps
produce considerable energy dissipation along the spillway
and reduce the size of the required downstream energy dissi-
pation basin. The various flow regimes for stepped spillways
are as follows: (i) nappe or jet flow regime: the water flows
as a succession of free-falling nappes at small discharges [2];
(ii) skimming flow regime: Most prototype spillways operate
at large discharges per unit width for which the water skims
as a coherent stream over the pseudo-bottom (i.e., not solid
bottom) formed by step edges, which is characterized by sig-
nificant form losses and momentum transfer from the main
stream to the recirculation zones (e.g., [3,4]); and (iii) tran-
sition flow regime: For an intermediate range of flow rates, a
transition flow regime is observed between the above regimes
[5].

Figure 1 shows the schematic classification of nappe, tran-
sition and skimming flow regimes.

The hydraulics of flow over stepped spillways is difficult
due to the complexity of flow regimes, physical characteris-
tics, and various hydraulic effects such as turbulence. Their
implementations in the form of stepped chutes/spillways

Fig. 1 Schematic classification
of three flow regimes: nappe,
transition and skimming flow
regimes
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have become a popular method for handling flood releases.
Arguably, a better insight into their hydraulics can enhance
their popularity and this is the focus of this paper. Many stud-
ies have been carried out to investigate different aspects of
overflow in stepped spillways but the hydraulics of stepped
spillways by neuro-fuzzy approach has not been fully inves-
tigated due to the complexity of flow patterns and resistance.

The primary focus of this research is to investigate the
accuracy of a fuzzy rule system approach for estimating the
energy dissipation of the skimming flow regime over stepped
spillway because of the imprecise, insufficient, ambiguous
and uncertain data available. The application of the pro-
posed approach was performed using the measured data for
energy dissipation available from the experimental analyses
[6]; hence, its performance was tested using some parameters
for error estimation.

In recent years, artificial intelligence (AI) techniques such
as neuro-fuzzy, artificial neural network (ANN), and genetic
programming (GP) models have attracted researchers in
many disciplines of science and engineering, since they are
capable of correlating large and complex data sets with-
out any prior knowledge of the relationships among them.
Notably, ANNs have been applied to other hydraulic prob-
lems, e.g., Yuhong and Wenxin [7] to predict the friction
factor of open channel flow, Kisi [8] to predict the mean
monthly stream flow, Rakhshandehroo et al. [9] for forecast-
ing groundwater level in Shiraz plain and Eslamian et al. [10]
to estimate Penman–Monteith reference evapotranspiration.
The authors are not aware of the application of neuro-fuzzy
to stepped spillways.

Ozger and Yildirim [11] investigated the accuracy of a
fuzzy rule system approach to determine the relationship
between pipe roughness, Reynolds number, and friction fac-
tor. A neuro-fuzzy approach was developed to relate the
input (pipe roughness and Reynolds number) and output
(friction coefficient) variables. The application of the pro-
posed approach was performed for the data derived from the
Moody’s diagram. The performance of the proposed model
was compared with respect to conventional procedures using
some statistical parameters for error estimation. The compar-

Table 1 Geometrical characteristics of physical models of stepped
spillways of 50 cm width and average height of 100 cm

Steps
number (N)

Steps height
h (cm)

Steps length
l (cm)

Spillway
slope (S)

5 17.22 17.22 45

10 8.5 8.5 45

15 5.5 5.5 45

20 4.3 4.3 45

35 2.46 2.46 45

50 1.72 1.72 45

ison test results reveal that through fuzzy rules and member-
ship functions, the friction factor can be identified precisely.

Yildirim and Ozger [12] applied neuro-fuzzy approach
in estimating Hazen–Williams friction coefficient (CHW) for
small-diameter polyethylene pipes. The examination results
indicated that through fuzzy rules and membership functions,
the proposed model can be successfully used to identify the
proper values of the CHW coefficient; hence, accurately esti-
mate friction losses through smooth PE pipes.

2 Theoretical Bases and Model Implementation

2.1 Experimental Setup

Experiments on stepped spillways test runs were carried out
at the Hydraulic Laboratory of Water Engineering Depart-
ment, Shahid Chamran University (SCU) in Ahvaz city and
Iran. The test runs were installed in two flumes, (i) −0.5 m
wide, 8 m in length, and 1.6 m in height; (ii) −0.25 m wide,
10 m in length, and 0.60 m in height. Tables 1 and 2 show
some geometrical characteristics of the physical models of
stepped spillways with 50 and 25 cm width, respectively.

The flow through the flume was controlled at the end of
the laboratory flume by a gate to form a hydraulic jump at
the weir toe to enable flow measurements. Thus, discharge
values were measured by a calibrated sharp triangle weir (of
53◦ angle) installed at the downstream of the flume. Dis-
charge water was supplied by a pump (maximum value 50
l/s). Discharge values ranged from 7 to 50 l/s with an accu-
racy level of ±0.9l/s. Upstream water levels were measured
using a point gauge within ±0.1 mm accuracy. All measure-
ments were taken along the centreline of the flume.

Table 2 Geometrical characteristics of physical models of stepped
spillways of 25 cm width and average height of 32 cm

Steps
number (N)

Steps height
h (cm)

Steps length l
(cm)

Spillway
slope (S)

3 10.5 10.5 45

5 3.9 3.9 45

10 1.96 1.96 45

15 1.3 1.3 45

35 0.8 0.8 45

5 5.6 12 25

10 2.8 6 25

5 5.6 12 25

10 2.8 6 25

15 1.9 4.07 25

5 6.1 22.77 15

10 3 11.2 15

15 2 7.46 15

30 1 3.73 15
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In each test run, water depth was measured 0.60 m
upstream of the chute, y0, and after the hydraulic jump, y2.
The thin flow and air entrainment at the spillway toe made it
difficult to measure the flow depth (y1) accurately. Pegram
et al. [13] calculated energy dissipation using the conjugate
water depths of the hydraulic jump (y2). In the present study,
y2 was measured with an accuracy level of ±2 mm, where
there were few bubbles and less undulation in the tail water.

2.2 Experimental Data

A total of 154 test runs were carried out in the skimming
flow regime with three different slopes (S = 15◦, 25◦ and
45◦), seven different step numbers (Tables 1, 2), and vary-
ing discharge rates and the measurements for each test run
comprised discharge values and two values of water depth
(Table 4 in “Appendix”). It should be mentioned that the
total number of experiments was 250 including the nappe,
transition and skimming flow regimes, but in this study, only
skimming data were used for simulation of energy dissipa-
tion. Selection of step numbers was based on laboratory flume
facilities.

A decision was made to use 68 % of these data points (104
data points) for training and 32 % of the total data points (50
point data) for testing the predictions of the model.

The procedure for selecting training and prediction data
was based on plotting relative energy dissipation, drop num-
ber, Froude number, slope, number of steps versus discharge
and selecting representative data points from high, medium
and low ranges. The measurement data points are given in
“Appendix”

2.3 Dimensional Analysis

Upstream energy head (E0), downstream energy head (E1)

and relative energy dissipation (�E/E0) are calculated as
follows (Fig. 2):

E0 = Hw + y0 + V 2
0

2g
= Hw + y0 + q2

2g(Hw + y0)2 (1)

E1 = y1 + V 2
1

2g
= y1 + q2

2gy2
1

(2)

�E

E0
= E0 − E1

E0
= 1 − E1

E0
(3)

where g is acceleration due to gravity, Hw is total spillway
height measured with a point gauge after the installation of
the spillway at the flume, y0 is the depth of the flow at a
set distance upstream of the spillway and above the spillway
crest, q is discharge per unit width, and V0 is the approach
velocity. The depth, y1, was calculated using the conjugate
depth (y2) expressed as:

y1 = y2

2

(√
1 + 8Fr2

2 − 1

)
(4)

where Fr2 is Froude number (Fr2 = V2/
√

gy2),V2 and y2 are
the velocity and water depth at Sect. 2 (after hydraulic jump
and the re-establishment of subcritical flow), respectively.

Generally, energy dissipation depends on hydraulic and
geometric variables expressed as:

�E

E0
= f (q, l, h, Hw, g, N ) (5)

where l is step length, h is step height, and N is number of
steps. In all tests, discharge was regulated in a way to form
hydraulic jump at spillway toe, so that supercritical flow at the
downstream of the spillway toe may occur (Froude number
>1). Although both depth values of y1 and y2 were measured,
only y2 values were used to calculate the energy dissipation
by means of Eqs. (1)–(4).

The fundamental variables that are important in the
hydraulics stepped spillways are geometrical parameters
such as total spillway height (Hw), step length (l), step height
(h), spillway slope (S), number of steps (N); and hydraulic
parameters such as discharge per unit width of canal (q),
energy upstream of weir (E0) and energy downstream of
weir (E1) defined in Eqs. (1) and (2) respectively. Using the
Buckingham �-theorem, relative energy dissipation can be
expressed as:

�E

E0
= f

(
q2/gH3

w, h/ l, N , yc/h, Fr1

)
(6)

Equation (6) can be rewritten as Eq. (7):

�E/E0 = f (DN, S, N , yc/h, Fr1) (7)

Fig. 2 Location of measured
y1 and y2 depths downstream of
weir
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Fig. 3 The model structure of
the proposed FIS

FIS: 5 inputs, 1 outputs, 32 rules

Fr1

yc/h

DN

N

S

f(u)

DE/E0

(sugeno)

32 rules

where DN = q2/gH3
w, yc is critical depth (yc = (q2/g)1/3)

and S = h/ l is the spillway slope. The parameter DN is
termed drop number, similar to drop number presented first
by Rand [14]. Froude number at Sect. 1 is defined by: Fr1 =
V1/

√
gy1. The average flow velocity at any section (V =

q/y) was calculated as the measured flow rate per unit width
(q = Q/b) where Q is total discharge, b is the spillway
width, and y is depth of water at the appropriate section.

2.4 Implementation of Adaptive Neuro-Fuzzy Inference
System (ANFIS)

Adaptive neuro-fuzzy inference system (ANFIS), first intro-
duced by Jang [15], is a universal approximator. The neuro-
fuzzy model used in this study implements the Takagi–
Sugeno (TS) fuzzy approach [16] to obtain the value of the
output variable from input variables. Here, the fuzzy infer-
ence system (FIS) has five inputs: drop number (DN), spill-
way slope (S), number of steps (N ), critical depth to step
height (yc/h) and Froude number (Fr1); and one output rel-
ative energy dissipation (�E/E0).

In this study, ANFIS is selected to train the proposed
model. ANFIS Editor GUI of MATLAB is used for imple-
mentation. The data (154) is divided into two parts which are
the training (104) and testing (50) parts. The testing data is
selected randomly, and it is independent from training data.
An initial FIS model structure should be specified prior to FIS
training. The FIS model consists of grid partitioning tech-
niques which apply grid partition on the data. To train the
FIS, backpropagation gradient descent method is employed.
The number of training epochs is 1,000, and the training error
tolerance is set to 0.01. After the FIS is trained, the model is
validated using the testing data that is independent from the
data used to train the FIS.

A schematic of the model structure is given in Fig. 3.
The FIS model consists of 3 membership functions (MFs)
for each input. Gaussian type MF is chosen for input and
constant type for output membership function. The MFs for
the trained FIS are given in Fig. 4.

2.5 Performance Criteria

The two error measures are used to compare the performance
of the various models: determination coefficient (r2) and root
mean square error (RMSE). The study also uses relative error
(RE) that is defined as follows:

RE = |TTrue − TEstimated| /TTrue (8)

where TTrue is from experimental tests and TEstimated is
calculated.

3 Results

Figure 5 presents: �E/E0 versus DN and shows that by
increasing DN, the relative energy dissipation is reduced.
Energy dissipation is reduced with a high gradient until GN
reaches a value approximately equal to 0.01 but above this
value (DN > 0.01), energy dissipation becomes independent
of DN, i.e., it becomes less efficient.

Figure 6 presents: �E/E0 versus yc/h and shows that by
increasing yc/h, the relative energy dissipation is reduced.
But discrepancies among data points are high, and it seems
that yc/h does not affect the variation of �E/E0 solely.

Figure 7 presents: �E/E0 versus Fr1 and discrepancies
among data points are high, and it seems that Fr1 does not
reflect the variation of �E/E0 solely.
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Fig. 4 Membership functions for the trained FIS

Scatter plots of energy dissipation versus to N and S indi-
cate that the correlation is lower than that of the Fr1, yc/h
and DN, so their scatter plots are not presented in this
study.

The performance of the ANFIS model for calculating
energy dissipation of flow over stepped spillways was inves-
tigated by plotting a scatter diagram, as shown in Figs. 8 and 9
for training and testing, respectively. The determination coef-
ficients of the proposed neuro-fuzzy model in training and
testing process are 0.974 and 0.966, respectively. This sug-
gests high accuracy of implementation of neuro-fuzzy model
for estimating the energy dissipation of flows over stepped
spillways.

3.1 Regression Analyses

Multiple regression analyses were performed with different
combinations of the dimensionless parameters that appear
in Eq. (7). Several linear and nonlinear multiple regressions
were conducted using the Statistical Package for Social Sci-
ence (SPSS) software version 17.

The fitted equations for physical models are given by
Eqs. (9)–(12):

�E/E0 = −1.063F−2.119
r1 + 350.365(yc/h)−0.02

+473.031(DN)−0.014 + 61.544N 0.052

−858.114S0.007, r2 = 0.928 (9)
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Fig. 6 Variation of �E/E0 versus yc/h for stepped spillways

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

ΔE
 / 

E
0 

(%
)

Fr1

Fig. 7 Variation of �E/E0 versus Fr1 for stepped spillways

�E/E0 = 26.991(Fr1)
0.075(yc/h)−0.298(DN)−0.048

×(N )0.255(S)−0.063, r2 = 0.865 (10)

�E/E0 = −172464.174(Fr1)
1.791∗10−5 + 172471.549

×(DN)−4.747∗10−5
, r2 = 0.903 (11)

y = 0.9733x + 1.5565
R² = 0.974
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Fig. 8 Predicted and observed values for training data
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Fig. 9 Predicted and observed values for testing data
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Fig. 10 Performance of regression Eq. (11) and observed data points

�E/E0 = 21.748(Fr1)
0.028(DN)−0.133, r2 = 0.845 (12)

An overview of Eqs. (9)–(12) indicates that the correlation
of yc/h, N and S with energy dissipation is lower (compare
Eqs. 10 and 11) than that of the Fr1 and DN.

In practice, Eq. (11) can be helpful because it includes
simple correlations among �E/E0, Fr1 and DN with r2 =
0.903. With more accuracy, Eq. (9) with r2 = 0.928 can be
used.

The performance of regression analysis using Eq. (11) ver-
sus the observed data points is shown in Fig. 10, according to
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Table 3 Error measurements in regression equations and ANFIS for
testing data

Determination
coefficient (r2)

RE (average) RE
(minimum)

RE
(maximum)

Equation

0.908 0.0962 0.0022 1.0158 9

0.892 0.1133 0.00097 1.1879 11

0.966 0.0545 0.00056 0.3349 ANFIS

which regression Eq. (11) is capable of predicting the values
of energy dissipation.

A comparison among Eqs. 9, 11 and the ANFIS approx-
imation approach in Table 3 demonstrates that ANFIS
approach is more accurate than regression analysis. From
Table 3, RE (Average)=0.054 and r2 = 0.966 for the ANFIS
approach.

4 Conclusions

The paper applies neuro-fuzzy technique for predicting the
energy dissipation in stepped spillways. The data is obtained
from laboratory experimental tests on physical stepped spill-
ways. In the proposed fuzzy rule system approach, drop num-
ber (DN), Froude number (Fr1), slope (S), number of steps
(N) and (yc/h) are the input variables, whereas the relative
energy dissipation is employed as the output variable.

Preliminary test runs identified the optimum ANFIS
model. The trained network of ANFIS model was able to
predict the response with r2 and RE equal to 0.966 and

0.054, respectively (Table 3). The application of the proposed
approach was performed using the measured data for the
relative energy dissipation available from the experimental
analysis.

The performance of the proposed model was tested using
some parameters for error estimation. The results indicate
that through fuzzy rules and membership functions, the pro-
posed model can be used with the highest degree of accuracy
to identify the proper values of energy dissipation; hence,
accurately estimate relative energy dissipation.

Energy dissipation with regression equations had some
edge over the fuzzy rules model, both visually and quanti-
tatively. Although the performance of the regression equa-
tions in terms of r2 and RE was good, these values were
slightly lower than those predicted by means of the neuro-
fuzzy approach, i.e., the latter was found to be more accurate
than regression analysis.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

Appendix: Experimental Results

Note-Total data points are 154. A decision was made to use
104 data points for training and 50 point data for testing the
model.
See Table 4.

Table 4 Experimental results of stepped spillway

Row �E/E0 Fr1 yc/h q2/gH3
w N S Row �E/E0 Fr1 yc/h q2/gH3

w N S

1 61.523 4.706 0.608 0.001105 5 45 78 21.720 3.719 2.880 0.050072 5 45

2 60.530 4.877 0.596 0.001044 5 45 79 32.943 3.440 2.582 0.036092 5 45

3 63.390 4.758 0.565 0.000890 5 45 80 18.065 5.320 1.710 0.010492 5 45

4 65.931 4.734 0.524 0.000710 5 45 81 74.946 3.549 0.709 0.000747 5 45

5 70.308 4.658 0.459 0.000476 5 45 82 86.357 4.415 0.281 0.000047 5 45

6 78.157 3.931 0.404 0.000325 5 45 83 24.643 3.232 6.885 0.084616 10 45

7 70.203 6.223 0.314 0.000153 5 45 84 16.689 4.086 5.428 0.041449 10 45

8 84.571 4.534 0.233 0.000063 5 45 85 19.022 4.039 5.300 0.038602 10 45

9 60.486 4.807 1.231 0.001111 10 45 86 39.911 4.382 3.083 0.007594 10 45

10 61.312 4.979 1.145 0.000896 10 45 87 54.504 6.423 1.280 0.000543 10 45

11 67.193 5.283 0.878 0.000404 10 45 88 93.836 1.455 0.640 0.000068 10 45

12 80.723 3.642 0.780 0.000283 10 45 89 22.915 3.249 10.603 0.092298 15 45

13 65.084 7.361 0.601 0.000130 10 45 90 23.783 3.791 8.040 0.040247 15 45

14 84.384 3.650 0.619 0.000141 10 45 91 31.232 4.566 5.172 0.010711 15 45

15 81.226 5.346 0.473 0.000063 10 45 92 42.199 9.339 1.475 0.000249 15 45

16 86.788 4.085 0.454 0.000056 10 45 93 23.388 3.692 6.333 0.047045 15 25
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Table 4 continued

Row �E/E0 Fr1 yc/h q2/gH3
w N S Row �E/E0 Fr1 yc/h q2/gH3

w N S

17 87.066 4.101 0.442 0.000051 10 45 94 29.799 3.928 5.032 0.023607 15 25

18 84.818 5.505 0.364 0.000029 10 45 95 39.447 4.290 3.594 0.008597 15 25

19 53.397 5.346 1.956 0.001271 15 45 96 68.119 3.822 1.916 0.001304 15 25

20 60.260 4.820 1.875 0.001121 15 45 97 75.376 4.321 1.225 0.000340 15 25

21 62.144 4.810 1.779 0.000956 15 45 98 79.242 3.956 1.132 0.000269 15 25

22 70.890 4.417 1.477 0.000547 15 45 99 95.727 0.234 0.284 0.000004 15 25

23 70.062 5.166 1.242 0.000326 15 45 100 96.441 0.307 0.278 0.000004 15 25

24 64.960 6.336 1.124 0.000241 15 45 101 22.516 3.382 2.334 0.077210 5 25

25 71.521 5.883 0.991 0.000165 15 45 102 23.893 3.889 1.798 0.035287 5 25

26 83.994 4.279 0.800 0.000087 15 45 103 34.138 3.903 1.451 0.018549 5 25

27 88.529 3.764 0.654 0.000047 15 45 104 55.410 3.945 0.858 0.003837 5 25

28 92.395 3.750 0.427 0.000013 15 45 105 72.669 2.791 0.728 0.002338 5 25

29 56.414 5.158 2.548 0.001169 20 45 106 93.735 0.341 0.166 0.000028 5 25

30 54.585 5.391 2.513 0.001122 20 45 107 95.734 0.258 0.094 0.000005 5 25

31 57.646 5.155 2.467 0.001061 20 45 108 32.761 3.246 4.297 0.047945 10 25

32 57.767 5.249 2.399 0.000976 20 45 109 34.477 3.817 3.217 0.020120 10 25

33 54.751 5.615 2.365 0.000935 20 45 110 56.071 3.590 2.065 0.005324 10 25

34 59.966 5.199 2.286 0.000844 20 45 111 87.756 2.395 0.733 0.000237 10 25

35 60.962 5.239 2.198 0.000750 20 45 112 15.136 3.484 7.144 0.104340 15 15

36 62.960 5.225 2.079 0.000635 20 45 113 13.145 3.811 6.327 0.072493 15 15

37 69.447 4.674 1.941 0.000517 20 45 114 26.775 3.510 5.552 0.048963 15 15

38 65.435 5.427 1.828 0.000431 20 45 115 34.037 3.676 4.416 0.024638 15 15

39 71.836 5.084 1.589 0.000284 20 45 116 32.178 3.787 4.387 0.024160 15 15

40 77.825 4.573 1.402 0.000195 20 45 117 41.184 3.682 3.750 0.015085 15 15

41 90.285 2.673 1.055 0.000083 20 45 118 45.071 3.705 3.388 0.011127 15 15

42 91.466 3.424 0.714 0.000026 20 45 119 48.367 4.225 2.592 0.004981 15 15

43 95.710 3.243 0.372 0.000004 20 45 120 61.490 3.662 2.192 0.003016 15 15

44 42.443 6.275 4.484 0.001343 35 45 121 61.848 4.369 1.716 0.001447 15 15

45 46.099 6.045 4.383 0.001253 35 45 122 81.976 2.512 1.382 0.000756 15 15

46 45.403 6.271 4.222 0.001120 35 45 123 89.186 2.460 0.802 0.000147 15 15

47 44.749 6.526 4.043 0.000984 35 45 124 22.376 3.342 13.781 0.082713 30 15

48 51.015 6.087 3.887 0.000874 35 45 125 25.744 3.337 12.855 0.067132 30 15

49 53.859 6.078 3.639 0.000718 35 45 126 25.166 3.548 11.758 0.051369 30 15

50 58.269 5.884 3.398 0.000584 35 45 127 30.232 3.763 9.622 0.028150 30 15

51 63.573 5.571 3.144 0.000463 35 45 128 36.844 3.982 7.663 0.014220 30 15

52 68.903 5.805 2.499 0.000232 35 45 129 53.027 4.906 3.900 0.001874 30 15

53 83.291 4.175 1.943 0.000109 35 45 130 57.673 5.151 3.227 0.001062 30 15

54 91.516 2.925 1.406 0.000041 35 45 131 94.996 1.428 1.043 0.000036 30 15

55 94.435 2.919 0.908 0.000011 35 45 132 26.388 3.287 2.189 0.069367 5 15

56 46.559 6.271 6.038 0.001040 50 45 133 29.013 3.289 2.064 0.058102 5 15

57 68.387 5.267 4.245 0.000361 50 45 134 32.891 3.397 1.798 0.038402 5 15

58 67.240 5.425 4.245 0.000361 50 45 135 45.866 3.232 1.418 0.018834 5 15

59 55.561 7.034 4.174 0.000344 50 45 136 37.728 3.798 1.360 0.016632 5 15

60 58.334 6.770 4.098 0.000325 50 45 137 48.168 3.971 0.998 0.006582 5 15

61 63.225 6.202 4.027 0.000309 50 45 138 56.691 3.470 0.956 0.005780 5 15

62 58.139 6.883 4.027 0.000309 50 45 139 61.166 3.711 0.764 0.002950 5 15

63 69.063 5.410 4.000 0.000302 50 45 140 57.286 4.078 0.756 0.002861 5 15
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Table 4 continued

Row �E/E0 Fr1 yc/h q2/gH3
w N S Row �E/E0 Fr1 yc/h q2/gH3

w N S

64 68.069 6.013 3.596 0.000220 50 45 141 66.842 3.952 0.584 0.001315 5 15

65 79.533 4.282 3.437 0.000192 50 45 142 68.882 4.275 0.490 0.000779 5 15

66 76.888 4.910 3.301 0.000170 50 45 143 83.096 4.530 0.233 0.000084 5 15

67 71.326 6.503 2.884 0.000113 50 45 144 20.522 3.244 5.008 0.108685 10 15

68 85.997 3.985 2.493 0.000073 50 45 145 27.132 3.277 4.263 0.067043 10 15

69 90.110 3.264 2.162 0.000048 50 45 146 32.461 3.349 3.655 0.042257 10 15

70 95.096 1.669 1.796 0.000027 50 45 147 34.180 3.740 2.964 0.022532 10 15

71 92.397 3.082 1.742 0.000025 50 45 148 44.370 3.742 2.349 0.011221 10 15

72 94.628 2.715 1.376 0.000012 50 45 149 44.105 4.156 2.030 0.007243 10 15

73 96.580 2.165 1.047 0.000005 50 45 150 51.193 4.420 1.568 0.003338 10 15

74 20.735 3.628 1.179 0.060239 3 45 151 56.819 4.907 1.172 0.001392 10 15

75 28.297 3.900 0.899 0.026757 3 45 152 80.929 3.253 0.776 0.000404 10 15

76 47.728 3.832 0.599 0.007919 3 45 153 95.475 0.598 0.298 0.000023 10 15

77 62.845 4.358 0.331 0.001332 3 45 154 96.217 0.686 0.259 0.000015 10 15
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