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Abstract
For a given plane curve, consider a one-parameter family of curves consisting of those
points at which two support lines to the initial curve intersect at a constant angle. Such
curves are well known in differential and convex geometry and called isoptics. In this
paper, we describe parametrizations of orthogonal trajectories to isoptics of ovals. We
show that such parametrizations can be obtained using solutions to a specific Cauchy
problem constructed from the parametrizations of the oval and its isoptics. Moreover,
we provide analytical and numerical examples of orthogonal trajectories to isoptics of
some ovals.
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Fig. 1 Construction of an α-isoptic Cα of a convex curve C for a given α ∈ (0, π)

1 Introduction

Let C be an oval (by which we mean a simple closed convex plane curve of class C2

with positive curvature) and α ∈ (0, π). The set of points at which two support lines
of C intersect at angle π − α is called an α-isoptic Cα (or simply an isoptic) of C , see
Fig. 1. Choosing the coordinate system with origin O inside the curve C , we have the
following parametrization of C

z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π).

Here p is the support function of C (i.e. p(t) is the distance from O to the support
line of C perpendicular to eit at z(t) ∈ C).

The α-isoptics of C for α ∈ (0, π) can be parametrized (see Cieślak et al. 1991) in
terms of the support function

zα(t) = p(t)eit +
(

−p(t) cot α + 1

sin α
p(t + α)

)
ieit for t ∈ [0, 2π)

and this parametrization seems to be the main tool in the study of isoptics and their
generalizations (Cieślak et al. 1991, 1996; Cieślak and Mozgawa 2022; Dana-Picard
et al. 2020; Martini et al. 2011; Michalska 2003; Miernowski and Mozgawa 1997,
2001;Mozgawa 2008, 2009; Rochera 2022; Skrzypiec 2018, 2021; Szałkowski 2005).
Isoptics can be considered also in the nonparametric form.However, implicit equations
are known only for a small class of curves, see for example (Bakhvalov et al. 1964;
Dana-Picard et al. 2020, 2012).

In this paper, we construct parametrizations of orthogonal trajectories to isoptics
of ovals, using the solution of a specific Cauchy problem.

The paper is organized as follows. Section2 provides all necessary definitions and
preliminary results, including the formulation of the Cauchy problem used to obtain
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orthogonal trajectories to isoptics. Next, in Sect. 3, we showhow to obtain parametriza-
tions of orthogonal trajectories to isoptics of ovals,which is themain result of the paper.
Examples which illustrate orthogonal trajectories to isoptics of some ovals (circles,
ellipses, and a curve defined by the support function of class C3 but not of class C4)
are presented in Sect. 4. Finally, some open problems involving orthogonal trajectories
to isoptics are presented in Sect. 5.

2 Preliminaries and auxiliary lemmas

Let p : [0, 2π ] → R be the support function of an ovalC and let the radius of curvature

R(t) = p(t) + p′′(t)

of the curveC at the point z(t) = p(t)eit + p′(t)ieit be positive for all t ∈ [0, 2π). For
simplicity, in the following we assume that p and R are defined onR and that they are
2π -periodic functions. LetCα , α ∈ (0, π), be the isoptics ofC . For (α, t) ∈ [0, π)×R

we define

λ(α, t) =
⎧⎨
⎩

p(t + α) − p(t) cosα − p′(t) sin α

sin α
, (α, t) ∈ (0, π) × R,

0, (α, t) ∈ {0} × R,

μ(α, t) =
⎧⎨
⎩− p(t) − p(t + α) cosα + p′(t + α) sin α

sin α
, (α, t) ∈ (0, π) × R,

0, (α, t) ∈ {0} × R,

ν(α, t) =
⎧⎨
⎩

μ(α, t)

sin α
, (α, t) ∈ (0, π) × R,

− 1
2 R(t), (α, t) ∈ {0} × R,

ρ(α, t) =
⎧⎨
⎩

p(t) sin α − p′(t) cosα + p′(t + α)

sin α
, (α, t) ∈ (0, π) × R,

R(t), (α, t) ∈ {0} × R,

and

B(α, t) = −μ(α, t) sin α = p(t) − p(t + α) cosα + p′(t + α) sin α.

It is easy to verify that

lim
α→0+ λ(α, t) = lim

α→0+ μ(α, t) = lim
α→0+ B(α, t) = 0,

lim
α→0+ ν(α, t) = − 1

2 R(t) and lim
α→0+ ρ(α, t) = R(t)
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Fig. 2 Geometric interpretation of λ(α, t) and μ(α, t) for α ∈ (0, π) and t ∈ [0, 2π)

for all t ∈ R.
Since B(0, t) = 0 and ∂B

∂α
(α, t) = R(t + α) sin α > 0 for (α, t) ∈ (0, π) × R,

we have B(α, t) > 0 for (α, t) ∈ (0, π) × R. Similarly, we have λ(0, t) = 0 and
∂λ
∂α

(α, t) = B(t,α)

sin2 α
, so λ(α, t) > 0 and μ(α, t) = − B(α,t)

sin α
< 0 for (α, t) ∈ (0, π) ×R.

Moreover, we have

λ2(α, t) + ρ2(α, t) > 0 for (α, t) ∈ (0, π) × R.

For (α, t) ∈ [0, π) × R we define

H(α, t) =
⎧⎨
⎩

ν(α, t)ρ(α, t)

λ2(α, t) + ρ2(α, t)
, (α, t) ∈ (0, π) × R,

− 1
2 , (α, t) ∈ {0} × R.

For technical reasons, we define H(α, t) = H(−α, t) for (α, t) ∈ (−π, 0) × R.

Lemma 2.1 If p is a C2 function, then H is continuous in (−π, π) × R.

Proof Since the functions λ, ν and ρ are continuous in (0, π) × R we only need to
prove that H is continuous at (0, t) for all t ∈ R, which we obtain by showing that

lim
(a,s)→(0+,t)

λ(a, s) = 0, lim
(a,s)→(0+,t)

ν(a, s) = −1

2
R(t)

and

lim
(a,s)→(0+,t)

ρ(a, s) = R(t),

where the limits are taken as (a, s) → (0, t) with a > 0.
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For (a, s) ∈ [0, π
2 ) × R we define

f (a, s) = p(s + a) − p(s) cos a − p′(s) sin a and g(a, s) = sin a,

so that we have

λ(a, s) = f (a, s)

g(a, s)
, (a, s) ∈ (0, π

2 ) × R.

Since

lim
(a,s)→(0+,t)

f (a, s) = lim
(a,s)→(0+,t)

g(a, s) = 0,

we need some version of l’Hôpital’s rule for multivariable functions. Following the
arguments given in the proof of Theorem 2.1 in Lawlor (2012) and the proof of
Theorem 4 in Lawlor (2020), let us fix an arbitrary point (0, t), t ∈ R, and take any
sequence (an, tn) → (0, t) such that an ∈ (0, π

2 ) and tn ∈ R. Since the functions
a �→ f (a, tn) and a �→ g(a, tn) are differentiable in (0, π

2 ) and continuous in [0, π
2 ],

and ∂g
∂a (a, s) > 0 for (a, s) ∈ (0, π

2 ) × R, we can apply the Cauchy Mean Value
Theorem and obtain

f (an, tn)

g(an, tn)
= f (an, tn) − f (0, tn)

g(an, tn) − g(0, tn)
=

∂ f
∂a (cn, tn)
∂g
∂a (cn, tn)

,

where cn ∈ (0, an) for all n ∈ N. Since (cn, tn) → (0+, t), we have

lim
(a,s)→(0+,t)

f (a, s)

g(a, s)
= lim

(a,s)→(0+,t)

∂ f
∂α

(a, s)
∂g
∂α

(a, s)

= lim
(a,s)→(0+,t)

p′(s + a) + p(s) sin a − p′(s) cos a
cos a

= 0,

and therefore lim
(a,s)→(0+,t)

λ(a, s) = 0 for all t ∈ R.

The limits of ν(a, s) and ρ(a, s) as (a, s) → (0+, t) can be calculated in the same
manner, defining

f (a, s) = μ(a, s) sin a = −p(t) + p(t + a) cos a − p′(t + a) sin a,

g(a, s) = sin2 a,

and

f (a, s) = p(s) sin a − p′(s) cos a + p′(s + a),

g(a, s) = sin a,

respectively. ��
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Lemma 2.2 If p is a C3 function, then for each (α0, t0) ∈ (−π, π) × R the Cauchy
problem {

t ′(α) = H(α, t(α)), α ∈ (−π, π),

t(α0) = t0,
(1)

has a unique solution.

Proof Since the continuity of ∂H
∂t in (−π, π) × R implies that in every compact

subset of (−π, π) × R the derivative ∂H
∂t is bounded and, consequently, H is locally

Lipschitz continuous with respect to t , we only need to prove that ∂H
∂t is continuous

in (−π, π) × R.
For (α, t) ∈ (0, π) × R we have

∂H

∂t
=

(
∂ν
∂t ρ + ν

∂ρ
∂t

)
(λ2 + ρ2) − 2νρ

(
λ∂λ

∂t + ρ
∂ρ
∂t

)
(λ2 + ρ2)2

.

Moreover, ∂H
∂t (0, t) = 0 for all t ∈ R and ∂H

∂t (−α, t) = ∂H
∂t (α, t) for (α, t) ∈

(−π, 0) × R. Straightforward calculations yield

∂ν

∂t
(α, t) =

⎧⎨
⎩−

p′(t) − p′(t + α) cosα + p′′(t + α) sin α

sin2 α
, (α, t) ∈ (0, π) × R,

− 1
2 R

′(t), (α, t) ∈ {0} × R,

∂ρ

∂t
(α, t) =

⎧⎨
⎩
p′(t) sin α − p′′(t) cosα + p′′(t + α)

sin α
, (α, t) ∈ (0, π) × R,

R′(t), (α, t) ∈ {0} × R,

∂λ

∂t
(α, t) =

⎧⎨
⎩
p′(t + α) − p′(t) cosα − p′′(t) sin α

sin α
, (α, t) ∈ (0, π) × R,

0, (α, t) ∈ {0} × R.

Continuity of ∂ν
∂t ,

∂ρ
∂t and ∂λ

∂t in [0, π) × R can be easily established by using the
l’Hôpital’s rule derived in the proof of Lemma 2.1 to calculate the following limits:

lim
(a,s)→(0+,t)

∂ν

∂t
(a, s) = −1

2
R′(t), lim

(a,s)→(0+,t)

∂ρ

∂t
(a, s) = R′(t)

and

lim
(a,s)→(0+,t)

∂λ

∂t
(a, s) = 0, t ∈ R.

Now, we can calculate

lim
(a,s)→(0+,t)

∂H

∂t
(a, s) = 0 = ∂H

∂t
(0, t),

and the continuity of ∂H
∂t in (−π, π) × R follows easily. ��
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3 Parametrization of orthogonal trajectories to isoptics of an oval

For (α, t) ∈ [0, π) × R we define

F(α, t) =
{
zα(t), (α, t) ∈ (0, π) × R,

z(t), (α, t) ∈ {0} × R,

so that F(0, t) for t ∈ [0, 2π) forms the oval C , while F(α, t) for t ∈ [0, 2π)

constitutes a single α-isoptic of C , where α ∈ (0, π). The function F is continuous
in [0, π) × R and C1 in (0, π) × R. Moreover, F restricted to (0, π) × [0, 2π) is
injective and the image of (0, π) × [0, 2π) under F is the exterior of C .

Theorem 3.1 Let C be an oval parametrized in terms of the support function p of class
C3. Orthogonal trajectories to isoptics of C are the curves parameterized by functions
γτ0 : [0, π) → R

2 for τ0 ∈ [0, 2π), defined by

γτ0(α) = F(α, t(α)),

where t : [0, π) → R is the solution to the Cauchy problem

{
t ′(α) = H(α, t(α)), α ∈ (0, π),

t(0) = τ0.
(2)

Proof Assume that t0 ∈ [0, 2π) and γ (α) = F(α, t(α)), where t : [0, π) → R is the
solution to the Cauchy problem (2) with α0 = 0. For each α ∈ (0, π), the point γ (α)

lies on the isoptic Cα . We claim that at the point γ (α) the tangent vector to γ and the
tangent vector to the isoptic Cα are orthogonal for all α ∈ (0, π).

For α ∈ (0, π), we have

γ ′(α) = ∂F

∂α
(α, t(α)) + ∂F

∂t
(α, t(α)) · t ′(α)

= −ν(α, t(α))ieit(α) +
(
−λ(α, t(α))eit(α) + ρ(α, t(α))ieit(α)

)
t ′(α)

= −λ(α, t(α))t ′(α)eit(α) + (−ν(α, t(α)) + ρ(α, t(α))t ′(α)
)
ieit(α)

and

z′α(t(α)) = ∂F

∂t
(α, t(α)) = −λ(α, t)eit(α) + ρ(α, t(α))ieit(α).

Therefore

〈
γ ′(α), z′α(t(α))

〉
= λ2(α, t(α))t ′(α) + (−ν(α, t(α)) + ρ(α, t(α))t ′(α))ρ(α, t(α))

= (λ2(α, t(α)) + ρ2(α, t(α))H(α, t(α)) − ν(α, t(α))ρ(α, t(α))

= 0.
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Fig. 3 Isoptics of a circle and
their orthogonal trajectories

On the other hand, for an arbitrary point P on an isoptic Cα0 , where α0 ∈ (0, π), one
can find t0 ∈ [0, 2π) such that F(α0, t0) = P and the solution to the Cauchy problem
(1) which goes through (α0, t0) reaches some point (0, T0), where T0 ∈ R. Since F
and H are 2π -periodic in t , there exists τ0 ∈ [0, 2π) such that the solution to the
Cauchy problem (2) goes through P . ��
Remark 3.2 Orthogonal trajectories to isoptics of an ovalC , whereC is parametrized in
terms of the support function p of classC3, are regular curves. Indeed, for τ0 ∈ [0, 2π)

and α ∈ (0, π), we have

|γ ′
τ0

(α)|2 = λ2(α, t(α))ν2(α, t(α))

λ2(α, t(α)) + ρ2(α, t(α))
> 0.

4 Examples of orthogonal trajectories to isoptics

Example 4.1 ForC being the circle of radius r > 0 centered at (0, 0)we have p(t) = r
for t ∈ R and H(α, t) = − 1

2 for (α, t) ∈ [0, π) × R. The solution to (2) is

t(α) = −1

2
α + τ0, α ∈ [0, π),

and orthogonal trajectories to the isoptics to the circle C (see Fig. 3) are half-lines

γ (α) = F

(
α, τ0 − 1

2
α

)
= r

cos α
2

eiτ0 , α ∈ [0, π),

starting from z(τ0) = reiτ0 , where τ0 ∈ [0, 2π).

Example 4.2 The support function

p(t) =
√
cos2 t + 4 sin2 t, t ∈ R,

defines an ellipse. For (α, t) ∈ (0, π) × R we have

H(α, t) = N (α, t)

D(α, t)
,
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Fig. 4 An ellipse, its isoptics,
and their orthogonal trajectories

where

N (α, t) = −75 sin(2t − α) − 295 sin α − 45 sin 3α + 225 sin(2t + α)

+ 34 sin 2α
√

(5 − 3 cos 2t)(5 − 3 cos(2t + 2α))

− 60 sin(2t + 2α)
√

(5 − 3 cos 2t)(5 − 3 cos(2t + 2α))

+ 18 sin(4t + 2α)
√

(5 − 3 cos 2t)(5 − 3 cos(2t + 2α))

+ 27 sin(6t + 3α) − 45 sin(4t + α) + 177 sin(2t + 3α)

− 135 sin(4t + 3α)

and

D(α, t) = 4 sin α
(
170 − 126 cos 2t + 45 cos 2α − 126 cos(2t + 2α)

− 34 cosα
√

(5 − 3 cos 2t)(5 − 3 cos(2t + 2α))

+ 30 cos(2t + α)
√

(5 − 3 cos 2t)(5 − 3 cos(2t + 2α))

+ 45 cos(4t + 2α)
)
.

Since we do not have an analytic solution to (2) for H(α, t) = N (α,t)
D(α,t) , orthogonal

trajectories to the isoptics of the ellipse are obtained numerically, see Fig. 4.

Example 4.3 In Fig. 5, also obtained numerically, we present orthogonal trajectories
to the isoptics of the curve K defined by the support function

p(t) =
⎧⎨
⎩
r , t ∈ [0, π

2 ),

r − 17a + a cos 4t +
+ 4a(5 cos t + 5 sin t − 4 sin 2t − cos 3t + sin 3t), t ∈ [π

2 , 2π),

with r = 150 and a = 1. The function p is of class C3 (but not C4). The curve K has
an axis of symmetry, namely y = x , and coincides with the circle of radius r in the
first quadrant.

Remark 4.4 Notice that in all the examples presented above, the orthogonal trajectories
to the isoptics of the oval, starting at points on any of the axis of symmetry of the oval,
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Fig. 5 The isoptics of the curve
K (Example 4.3) and their
orthogonal trajectories

are half-lines contained in this axis of symmetry. This observation inspired us to state
the following theorem.

Theorem 4.5 If l is an axis of symmetry of an oval C then the orthogonal trajectories
to the isoptics of C, starting at points on l, are contained in l.

Proof The theorem follows easily from the uniqueness of solutions to the problem (1),
see Lemma 2.2, and the symmetry of the oval. ��

5 Open problems

The following questions involving orthogonal trajectories to isoptics are open for
future research:

• Do the sets of points at which the curvature of the isoptics of ovals is extremal
form a curve that is orthogonal to the isoptics?We know that the answer is positive
for some ovals, e.g., ellipses.

• Do the sets of points at which the curvature of the isoptics of ovals is equal to zero
and the sets of inflection points of orthogonal trajectories to the isoptics coincide?
We even do not know if the answer is positive for very simple ovals such as ellipses,
but numerical experiments for ellipses suggest so.

• Are there any other relations between properties of orthogonal trajectories to isop-
tics and the curvature of the isoptics?
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article.
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