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Abstract
We present an elementary approach for the computation of integrals of the form∫
P f (n)(s · x)dx over polytopes P , where f : C → C is analytic. The proof is
based on an independence theorem on exponential functions over the field of ratio-
nal functions and needs only simple facts from the theory of polyhedra. In particular
we present an explicit formula for generalized facet-simple polytopes. Here a convex
polytope is called facet-simple if each of its facets is simple and a set of points is called
a generalized facet-simple polytope if it is a finite union of n-dimensional facet-simple
convex polytopes such that any two distinct members are either disjoint or intersect in
a common facet.

Keywords Integration · Polytope · Facet-simple polytope · Rational function

1 Introduction

It is well-known that by the fundamental theorem of calculus for all a, b ∈ R with
a ≤ b

∫ b

a
f ′(x) dx = f (b) − f (a) (1)

if f : R → R is continuously differentiable. Moreover, if in addition s ∈ R, then

∫ b

a
f ′(s · x) dx = 1

s
( f (s · b) − f (s · a)), (2)

where the case s = 0 has to be interpreted as the limit s → 0. The equalities (1) and
(2) remain true if f : C → C is an analytic (holomorphic) function and s ∈ C. An
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important example is the case f (z) = ez . Then (2) reads

∫ b

a
es·x dx = 1

s
(es·b − es·a). (3)

This is (up to a replacement of −s by s) the Laplace transform of the function

g(x) =
{
1, if a ≤ x ≤ b,

0, otherwise.

In the special case s = −iω, where ω ∈ R, we have the Fourier transform. With
I = {x ∈ R : a ≤ x ≤ b} we can write the left side of (3) in the form

∫
I e

s·x dx .
Clearly, I is a polytope in R and it arises the question how (3) can be generalized to
polytopes P in Rn , i.e., how the integral

∫

P
es·x dx (4)

can be computed. Here bold symbols denote real or complex tuples, written as column
vectors, s · x = ∑

j s j x j and dx is an abbreviation for dx1 . . . dxn . In this context the
integral (4) is called the Fourier-Laplace transform of the polytope P . It has many
applications, see e.g. Barvinok (2008), Beck and Robins (2015), Engel and Laasch
(2022), Engel (2023).

More generally, instead of (4) we study the integral

∫

P
f (n)(s · x)dx, (5)

where f : R → R is an analytic function and s ∈ C
n , which corresponds to the left

side of (2).
We point out that in the case f (z) = zn/n! the integral (5) is equal to the volume

of P for all s ∈ C
n .

An analytical approach to compute such integrals is the application of Stoke’s
formula like in Komrska (1982), Baldoni et al. (2011), Wuttke (2017). The algebraic
approach is part of the theory on the exponential valuation of polytopes built by Brion
(1988), Lawrence (1991), Pukhlikov and Khovanskii (1992), Barvinok (1994) which
has origins in results of Motzkin and Schoenberg (mentioned by Davis 1964) as well
of Grunsky (1955). We recommend Barvinok (2008), Beck and Robins (2015) for
studying this theory.

The aim of this paper is to present an elementary way for the computation of the
integral (5) and to derive an explicit formula under some additional condition such
that all (non-self-intersecting) 2- and 3-dimensional polytopes are included.We do not
need much more than a suitable identity theorem, the computation for simplices using
Lagrange polynomials and a little bit polytope theory (triangulation and supporting
hyperplanes).
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2 Themain theorem

In order to formulate the main theorem we need some definitions and notations. For a
polytopeP let VP be the set of its vertices andFP be the set of its facets. We consider
the elements of VP as points in R

n . For a vertex v ∈ VP let NP,v be the set of its
neighbors, i.e., those vertices v′ that are connected with v by a 1-dimensional face,
and let EP,v = {v− v′ : v′ ∈ NP,v} be the set of edges with end point v. Let FP,v be
the set of facets containing the vertex v.

A vertex v of an n-dimensional polytope P is called simple if the set EP,v consists
of n linearly independent vectors, i.e., if the points from NP,v ∪ {v} form a simplex.
An n-dimensional convex polytope is called simple if all of its vertices are simple.

We call an n-dimensional convex polytope inRn facet-simple if each of its facets is
an (n−1)-dimensional simple polytope. But we admit also non-convex polytopes.We
define a set of points in Rn to be an n-dimensional generalized facet-simple polytope
if it is a finite union of n-dimensional facet-simple convex polytopes such that any
two distinct members are either disjoint or intersect in a common facet. We define
the vertex set VP of such a generalized facet-simple polytope P to be the union of
the vertex sets of its members. Note that 2- and 3-dimensional non-self-intersecting
polytopes are facet-simple and hence indeed the facet-simple polytopes are important
generalizations of polytopes from the real world.

For a simple vertex v of an n-dimensional convex polytope P inRn let DP,v be the
determinant of the matrix whose columns are formed by the n linearly independent
elements of EP,v in some fixed order. Note that |DP,v| is n!-times the volume of the
simplex with vertex set NP,v ∪ {v}. Let

�P,v(s) = |DP,v|∏
e∈EP,v

e · s . (6)

Here we have terms of the form e · s in the denominator. Hence we must exclude that
s is contained in the hyperplane given by e · s = 0, which is indeed a hyperplane
because e �= 0 for all e ∈ EP,v. Therefore we use the following notation: ∀hs ∈ C

n

means that we consider all s ∈ C
n up to those s that are contained in a finite union of

hyperplanes.
We mention that we may use (6) also if P is degenerated in the sense that it is

only (n−1)-dimensional, but EP,v still consists of n elements different from the zero
vector, which are in this case linearly dependent. Then DP,v as well as �P,v(s) are
equal to zero.

For a convex (k − 1)-dimensional polytope F in R
n , where k ∈ [n] = {1, . . . , n},

and a point p let F + p be the convex hull of F ∪ {p}. Note that F + p is a k-
dimensional pyramid if p is affinely independent of the vertices of F , otherwise F +p
is a (k − 1)-dimensional polytope.

Let P be a convex n-dimensional polytope in Rn and F a facet of P . Let H(F) be
the hyperplane defined by F . We put
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sgn
P

(F,p) =

⎧
⎪⎨

⎪⎩

1, if p and P are on the same side of F,

−1, if p and P are on different sides of F,

0, if p ∈ H(F).

For generalized facet-simple polytopes P we can proceed as follows: Recall that P
is a union of facet-simple convex polytopes Pi , where i belongs to some finite index
set I , such that any two distinct members are either disjoint or intersect in a common
facet. We say that a facet F of the union of the facets of all Pi , i ∈ I , is visible if it is
the facet of only one of the Pi and it is invisible if it is the intersection of two of the
polytopes Pi . We define FP to be the set of all visible facets. Let FP,v be the set of
all visible facets containg v. Now let F be visible, i.e., there is a unique Pi having F
as facet. Then we set

sgn
P

(F,p) =

⎧
⎪⎨

⎪⎩

1, if p and Pi are on the same side of F,

−1, if p and Pi are on different sides of F,

0, if p ∈ H(F).

Let P be an n-dimensional generalized facet-simple polytope in R
n , v a vertex,

F a visible facet containing v, i.e., F ∈ FP,v, and p /∈ H(F). Note that then v is a
simple vertex of F + p and hence the function �F+p,v(s) is defined by (6). In fact we
may even allow that p ∈ H(F), but p �= v, because in this case DF+p,v and hence
�F+p,v(s) is equal to zero. We emphasize that an equation defining the hyperplane
H(F) is given by DF+p,v = 0. This can be used to determine sgnP (F,p): Let v′ be
a vertex of Pi (see above) that is not contained in F . Then sgnP (F,p) = 1 resp. −1
if DF+p,v and DF+v′,v have the same sign resp. different signs.

Theorem 2.1 Let f : C → C be analytic and let P be an n-dimensional generalized
facet-simple polytope in R

n. Moreover let p be any point in R
n different from any

vertex of P . Then

∫

P
f (n)(s · x)dx =

∑

v∈VP

⎛

⎝
∑

F∈FP,v

sgn
P

(F,p)�F+p,v(s)

⎞

⎠ f (v · s) ∀hs ∈ C
n .

We mention that this theorem can also be considered as true for all s ∈ C
n if one

interprets the right side as a limit in those cases where a zero appears in one of the
denominators. This follows from the continuity of the integral.

Since DF+p1,v and DF+p2,v aswell as sgnP (F,p1) and sgnP (F,p2) have different
signs iff p1 and p2 are on different sides of F , the product |DF+p,v| sgnP (F,p) equals
+DF+p,v for all p ∈ R

n or −DF+p,v for all p ∈ R
n . The sign depends on the order

of the columns in the determinant. Thus in concrete examples we do not need the
absolute value function or the sign function.

In order to become acquainted with the formula in Theorem 2.1 we choose f (z) =
ez and study the integration over a triangle inR2 which is illustrated with all necessary
informations in Fig. 1.
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Fig. 1 Example for the computation of the integral using Theorem 2.1

We have

sgn
P

(F2,p)�F2+p,v1(s) = 2p1
(−p1s1 − p2s2)(−2s2)

,

sgn
P

(F3,p)�F3+p,v1(s) = p2
(−p1s1 − p2s2)(−s1)

,

sgn
P

(F3,p)�F3+p,v2(s) = p2
((1 − p1)s1 − p2s2)(s1)

,

sgn
P

(F1,p)�F1+p,v2(s) = −(2p1 + p2 − 2)

((1 − p1)s1 − p2s2)(s1 − 2s2)
,

sgn
P

(F1,p)�F1+p,v3(s) = −(2p1 + p2 − 2)

(−p1s1 + (2 − p2)s2)(−s1 + 2s2)
,

sgn
P

(F2,p)�F2+p,v3(s) = 2p1
(−p1s1 + (2 − p2)s2)(2s2)

.

Consequently,

∫

P
es1x1+s2x2 dx1dx2 = 1

s1s2
e0 + 2

s1(s1 − 2s2)
es1 + 1

s2(−s1 + 2s2)
e2s2 .

In this special case, this result can be obtained also easily by iterated integration.
Note that in the final summation the terms with p cancel each other. This must be

the case since the result does not depend on p. But the use of p enables a short closed
formula and an easy implementation if one has the necessary informations for P .
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3 An independence theorem on exponential functions over the field
of rational functions

Let, as usual,C(x) (resp.C(x)) be the set of rational functions in the variable x (resp. in
the variables that are the components of x) with complex coefficients. In the following
let O be the zero function, i.e., the function that is everywhere 0 on a certain domain
which is given by functions that are included in the concrete context. The following
lemma is a special case of Theorem 3.1 of Engel (2023), but can be proved in this
situation much more easily.

Lemma 3.1 Let a1, . . . , am be distinct real numbers, b1, . . . , bm be real numbers and
p1, . . . , pm be rational functions. Let I be an open interval in R. If

m∑

k=1

pk(x)e
ak x+bk = 0 ∀x ∈ I , (7)

then

pk = O ∀k ∈ [m]. (8)

Proof We may assume that the pk are polynomials (if necessary, multiply by the
common denominator) and that (7) holds for all x ∈ R (use the identity theorem for
analytic functions). We proceed by induction on m. The base case m = 1 is trivial.
For the induction step m − 1 → m let, without loss of generality, a1 < · · · < am .

If we divide (7) by eamx+bm , we obtain after a rearrangement

pm(x) = −
m−1∑

k=1

pk(x)e
(ak−am )x+(bk−bm ) ∀x ∈ R. (9)

Since ak − am < 0 for all k ∈ [m − 1], the right side tends to 0 for x → ∞. Hence

lim
x→∞ pm(x) = 0.

The only polynomial with this property is the zero polynomial, and hence pm = O.
By the induction hypothesis and (9) also pk = O for all k ∈ [m − 1]. 
�
The following lemma is well-known and follows easily from the fundamental theorem
of algebra, see e.g. Lemma 3.2 in Engel (2023).

Lemma 3.2 Let P ∈ C(x). If there is an open subset O of Rn such that

P(x) = 0 ∀x ∈ O,

then P = O.

Our main auxiliary theorem is the following:
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Theorem 3.1 Let vk , k ∈ [m], be distinct points in R
n and let Pk ∈ C(x) for all

k ∈ [m]. Let O be an open subset of Rn. If

m∑

k=1

Pk(x)evk ·x = 0 ∀x ∈ O,

then

Pk = O ∀k ∈ [m].

Proof Let x ∈ O . Obviously, we can choose some z ∈ R
n in such a way that (vk −

v′
k) ·z �= 0 whenever k �= k′. Since x is an inner point of O there is some open interval
I ⊆ R such that 0 ∈ I and x + λz ∈ O for all λ ∈ I . Consequently,

m∑

k=1

Pk(x + λz)eakλ+bk = 0 ∀λ ∈ I ,

where ak = vk ·z and bk = vk ·x. Clearly, pk(λ) = Pk(x+λz) ∈ C(λ) for all k ∈ [m].
From Lemma 3.1 we obtain pk(0) = Pk(x) = 0 for all k ∈ [m]. Now Lemma 3.2
implies Pk = O for all k ∈ [m]. 
�

4 Proof of Theorem 2.1

First we need some preparation for the case of simplices. We apply iterated integration
as in Baldoni et al. (2011), but use Lagrange polynomials.

For distinct numbers s0, s1, . . . , sn let

l j,n(x; s0, . . . , sn) =
n∏

k=0,k �= j

(x − sk).

Recall that the Lagrange polynomials are given by

L j,n(x; s0, . . . , sn) = l j,n(x; s0, . . . , sn)
l j,n(s j ; s0, . . . , sn) .

Interpolating the function that is constant 1 leads to

n∑

j=0

l j,n(x; s0, . . . , sn)
l j,n(s j ; s0, . . . , sn) = 1 ∀x ∈ C
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and comparing the coefficient of xn yields

n∑

j=0

1

l j,n(s j ; s0, . . . , sn) = 0. (10)

Let 
n = {x ∈ R
n : 1 · x ≤ 1 and x ≥ 0} and let λ
n = {λx : x ∈ 
n}. Note that the

vertices of the simplex 
n are given by the zero vector and standard basis vectors.

Lemma 4.1 Let f : C → C be analytic, let s0, s1, . . . , sn be distinct complex numbers
with s0 = 0, let s = (s1, . . . , sn)T and let c be a complex number. Then

∫


n

f (n)(s · x + c)dx =
n∑

j=0

f (s j + c)

l j,n(s j ; s0, . . . , sn) ∀hs ∈ C
n .

Proof We proceed by induction on n. The base of induction n = 1 is trivial. For the
induction step n − 1 → n we use the notation x = (x1, . . . , xn−1)

T and analogously
s, y.Using the changeof variablesx = λywith 0 < λ ≤ 1 and the induction hypothesis
we obtain

∫

λ
n−1

f (n)(s · x + c)dx = λn−1
∫


n−1

f (n)(λs · y + c)dy

= λn−1
n−1∑

j=0

f ′(λs j + c)

l j,n−1(λs j ; λs0, . . . , λsn−1)

=
n−1∑

j=0

f ′(λs j + c)

l j,n−1(s j ; s0, . . . , sn−1)
.

In view of (10) this equality is also true for λ = 0. Iterated integration gives

∫


n

f (n)(s · x + c)dx =
∫ 1

0

(∫

(1−xn)
n−1

f (n)(s · x + snxn + c)dx
)

dxn

=
n−1∑

j=0

∫ 1

0

f ′((1 − xn)s j + snxn + c)

l j,n−1(s j ; s0, . . . , sn−1)
dxn

=
n−1∑

j=0

f (s j + c) − f (sn + c)

(s j − sn)l j,n−1(s j ; s0, . . . , sn−1)

=
n−1∑

j=0

f (s j + c)

l j,n(s j ; s0, . . . , sn) −
n−1∑

j=0

f (sn + c)

l j,n(s j ; s0, . . . , sn)

=
n∑

j=0

f (s j + c)

l j,n(s j ; s0, . . . , sn) .
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Here the last equality follows from (10). 
�
Lemma 4.2 Let f : C → C be analytic and let P be an n-dimensional simplex in Rn.
Then

∫

P
f (n)(s · x)dx =

∑

v∈VP
�P,v(s) f (v · s) ∀hs ∈ C

n .

Proof Let VP = {v0, . . . , vn}. Let T be the matrix whose j-th column is v j − v0,
j ∈ [n]. Then the affine transformation

x = T y + v0

maps 
n onto P . Consequently, using Lemma 4.1

∫

P
f (n)(s · x)dx = | det(T )|

∫


n

f (n)(s · (T y + v0))dy

= | det(T )|
∫


n

f (n)(TTs · y + v0 · s)dy

= | det(T )|
n∑

j=0

f ((v j − v0) · s + v0 · s)
l j,n((v j − v0) · s; (v0 − v0) · s, . . . , (vn − v0) · s)

=
∑

v∈VP

| det(T )|
∏

v′∈V \{v}(v − v′) · s f (v · s)

=
∑

v∈VP
�P,v(s) f (v · s) .


�
Note that the coefficients �P,v(s) in Lemma 4.2 do not depend on f .

Corollary 4.1 Let P be an n-dimensional convex polytope in R
n. Then there exist

unique rational functions QP,v(s), v ∈ VP , such that for all analytic functions f :
C → C

∫

P
f (n)(s · x)dx =

∑

v∈VP
QP,v(s) f (v · s) ∀hs ∈ C

n .

Proof The assertion on the existence follows immediately from Lemma 4.2 and a
triangulation ofP because the functions�P,v(s) are rational. But triangulations are not
unique. Hence we have to prove that each triangulation leads to the same coefficients.
Assume that we have two representations of this form with functions QP,v(s) and
Q′
P,v(s), v ∈ VP . Then for all analytic functions f : C → C

∑

v∈VP
QP,v(s) f (v · s) =

∑

v∈VP
Q′
P,v(s) f (v · s) ∀hs ∈ C

n .
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We use the special function f (z) = ez and obtain

∑

v∈VP
QP,v(s)e

v·s =
∑

v∈VP
Q′
P,v(s)e

v·s ∀hs ∈ C
n .

Now QP,v − Q′
P,v = O for all v ∈ VP follows from Theorem 3.1. 
�

For afixedvertexv of then-dimensional convexpolytopeP letCP,v be ahyperplane
with the following properties:

• It is parallel to a supporting hyperplane meeting P only in v.
• All other vertices of P are on the other side of CP,v as v.

Obviously, CP,v indeed exists. Then CP,v cuts P into a pyramid Pv containing the
vertex v and into a remainder polytope Pv not containing v. Here Pv and Pv share
only a facet. We call CP,v a truncating hyperplane and Pv the separated pyramid.

Lemma 4.3 Let v be a vertex of the n-dimensional convex polytope P in R
n and Pv

be the separated pyramid by a truncating hyperplane. Then

QP,v(s) = QPv,v(s) ∀hs ∈ C
n ∀v ∈ VP .

Proof Let v ∈ VP be fixed. Clearly, for all analytic functions f : C → C

∫

P
f (n)(s · x)dx =

∫

Pv

f (n)(s · x)dx +
∫

Pv

f (n)(s · x)dx ∀hs ∈ C
n .

We use again the special function f (z) = ez and expand both sides according to
Corollary 4.1. Then the coefficient of ev·s on the left side is QP,v(s) and the coefficient
of ev·s on the right side is QPv,v(s). Now the assertion follows immediately from
Theorem 3.1. 
�
Lemma 4.4 If v is a simple vertex of the convex polytope P , then

QP,v(s) = �P,v(s) ∀hs ∈ C
n .

Proof Since Pv is a simplex we obtain from Lemmas 4.2 and 4.3 that

QP,v(s) = �Pv,v(s) ∀hs ∈ C
n .

But we have also

�Pv,v(s) = �P,v(s) ∀hs ∈ C
n

because the corresponding edges in EPv,v and in EP,v differ only by a scalar and these
scalars cancel each other in (6). 
�
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Now Corollary 4.1 and Lemma 4.4 immediately yield the following known result
for simple polytopes. An accessible sketch of proof using cones can be found inGravin
et al. (2012).

Theorem 4.1 Let f : C → C be analytic and letP be an n-dimensional convex simple
polytope in Rn. Then

∫

P
f (n)(s · x)dx =

∑

v∈VP
�P,v(s) f (v · s) ∀hs ∈ C

n .

We need some further definitions for n-dimensional convex polytopes P . The
characteristic function χP : Rn → R of P is defined by

χP (x) =
{
1, if x ∈ P,

0, otherwise.

Let F ′
P be the (finite) set of all faces of P of dimension at most n − 2. For a point p

we set

Sp =
⋃

F∈F ′
P

(F + p).

Lemma 4.5 Let P be an n-dimensional convex polytope inRn and p be a point. Then

χP (x) =
∑

F∈FP

sgn
P

(F,p)χF+p(x) ∀x ∈ (P + p) \ Sp. (11)

Proof First let p ∈ P . Then P + p = P .
If x ∈ P \ Sp, then the open ray

−→px meets exactly one facet Fx (using that x /∈ Sp)
and Fx is the only facet F of P such that x ∈ F + p. Hence both sides of (11) are
equal to 1.

Now let p /∈ P and x ∈ (P + p) \ Sp. Then the ray −→px meets exactly two facets
Fin
x (where P is entered) and Fout

x (where P is left). If x ∈ P , then Fout
x is the

only facet F of P such that x ∈ F + p. Hence both sides of (11) are equal to 1.
If x /∈ P , then Fin

x and Fout
x are the only facets F of P such that x ∈ F + p, but

− sgnP (Fin
x ,p) = + sgnP (Fout

x ,p) = 1. Hence both sides of (11) are equal to 0. 
�
In the example given in Fig. 1 (with the illustrated position of p) we have

χP (x) = −χF1+p(x) + χF2+p(x) + χF3+p(x) ∀x ∈ (P + p) \ Sp.

Proof of Theorem 2.1 First we assume that P is a convex facet-simple polytope. By
Corollary 4.1 it is sufficient to compute the rational function QP,v(s) for each fixed
vertex v of P .
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Let p be any point in R
n different from any vertex of P . First we assume that

p /∈ H(F) for all facets F of P . Note that Sp is a set of measure zero since it is a finite
union of at most (n − 1)-dimensional polytopes.

Let f : C → Cbe an analytic function. Ifwe integrate (11),multiplied by f (n)(s·x),
over P + p, we obtain

∫

P
f (n)(s · x)dx =

∑

F∈FP

sgn
P

(F,p)

∫

F+p
f (n)(s · x)dx ∀hs ∈ C

n . (12)

Expanding these integrals according to Corollary 4.1 yields for a fixed vertex v of P

QP,v(s) =
∑

F∈FP,v

sgn
P

(F,p)QF+p,v(s) ∀hs ∈ C
n .

But since all facets F are simple and p /∈ H(F), the vertex v is a simple vertex of
F + p for all facets F ∈ FP,v. Lemma 4.4 gives

QP,v(s) =
∑

F∈FP,v

sgn
P

(F,p)�F+p,v(s) ∀hs ∈ C
n . (13)

If there are facets F such that p ∈ H(F), the result remains true because the
contribution of the corresponding items in (12) is zero since the integral over the
(n − 1)-dimensional polytope F + p is zero and also the contribution of the corre-
sponding items in (13) is zero. Thus the assertion of Theorem 2.1 is proved for convex
facet-simple polytopes.

Now let P be a not necessarily convex facet-simple polytope. Recall that P is a
union of facet-simple convex polytopesPi , where i belongs to some finite index set I ,
such that any two distinct members are either disjoint or intersect in a common facet.
Let F be the set of the facets of all Pi , i ∈ I . Recall that FP is the set of all visible
facets from F which implies that F ′

P = F \ FP is the set of all invisible facets. Let
as before FP,v and F ′

P,v be the corresponding subsets of facets containing the vertex
v.

Since
∫

P
f (n)(s · x)dx =

∑

i∈I

∫

Pi

f (n)(s · x)dx ∀hs ∈ C
n

we have by (13)

QP,v(s) =
∑

i∈I

∑

F∈FPi ,v

sgn
Pi

(F,p)�F+p,v(s) ∀hs ∈ C
n . (14)

If F is invisible and is a facet of P j and Pk , then obviously

sgn
P j

(F,p)�F+p,v = − sgn
Pk

(F,p)�F+p,v. (15)
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Hence invisible facets cancel each other in (14) and thus the summation is only over
visible facets.

If F ∈ FPi ,v is visible, then by definion

sgn
Pi

(F,p) = sgn
P

(F,p). (16)

Now (13) follows from (14)–(16) and the whole theorem is proved. 
�
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