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Abstract
In the literature on finite groups of Lie type, there exist two different conventions about
the labelling of the irreducible characters of Weyl groups of type F4. We point out
some issues concerning these twoconventions and their effect on tables about unipotent
characters or the Springer correspondence. Using experiments related to these issues
with the computer algebra system CHEVIE, we spotted an error in Spaltenstein’s tables
for the generalised Springer correspondence in type E7.
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1 Introduction

This note is about certain notational conventions in the representation theory of finite
groups of Lie type. General references are the books by Carter (1985), Digne and
Michel (2020) and Lusztig (1984a); see also Geck and Malle (2020) for a more recent
survey. There are some issues in relation toWeyl groups of type F4. These groups (and
related data like generic degrees, Springer representations etc.) occur in a substantial
way in a number of situations including:

• The parametrisation of unipotent characters of a Chevalley group F4(q).
• Degree formulae for unipotent principal series characters of a twisted Chevalley
group 2E6(q).
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• Degrees of unipotent characters of E8(q) in the Harish-Chandra series above a
cuspidal unipotent character of a Levi subgroup of type D4.

• The Springer correspondence for a simple algebraic group of type F4.
• The generalised Springer correspondence for a simple algebraic group of type E7
with respect to a cuspidal datum in a Levi subgroup of type A1×A1×A1.

• The generalised Springer correspondence for a simple algebraic group of type E8
with respect to a cuspidal datum in a Levi subgroup of type D4.

In a root system of type F4 there are long roots and short roots, but the picture is highly
symmetric and, hence, it often requires some extra care to fix notation and conventions.
Unfortunately, this is not always done consistently in the existing literature, which
prompted us to write this note. In fact, during the work on Hetz (2023a), there actually
occurred some delicate contradictions as a result of a misunderstanding regarding the
conventions used in existing tables. (This will be briefly explained in Example 5.2.).
Our purpose here is to try to clarify some points in relation to the long/short root issue
in type F4. In the course of verifying a number of tables, we actually discovered an
error in Spaltenstein’s table for the generalised Springer correspondence in type E7;
see Lemma 6.2.

2 Characters of a Coxeter group of type F4

Let W be a Coxeter group of type F4. The basic and widely used reference for the
character table ofW isKondo (1965). In that article,W is constructed in a purely group-
theoretical way, without reference to an underlying root system. With the notation of
Kondo (1965, Prop. 5.1), we have W = 〈d, a, τ, τσ 〉 where d, a, τ, τσ are elements
of order 2 that satisfy the following braid relations:

(d·a)3 = (τ ·τσ )3 = (a·τ)4 = 1, d·τ = τ ·d, d·τσ = τσ ·d, a·τσ = τσ ·a.

Thus, the corresponding Coxeter diagram is as follows.

d a τ τσ
� � � �

4

The groupW has 25 irreducible characters, of degrees 1, 2, 4, 6, 8, 9, 12, 16; we shall
denote by n j the j-th character of degree n in the table in Kondo (1965, p. 152).
(This is a standard notation in the existing literature, e.g., Alvis (2005); Carter (1985);
Lusztig (1984a); note that Shoji (1980); Spaltenstein (1985) use a slightly different
notation for the characters of degree 4.)

Table 1 contains some information about the values of the characters on d, a, τ, τσ

and aτ . The second column of that table refers to the notation introduced by Carter
(1985, p. 413) (where one can also find the complete character table); the third column
refers to the a-function, as defined in Lusztig (1984a, 4.1), and printed in Lusztig
(1984a, 4.10).

Remark 2.1 There is a group automorphism ι : W → W such that ι(d) = τσ ,
ι(a) = τ , ι(τ ) = a and ι(τσ ) = d. This automorphism has order 2 and it induces a
permutation of the irreducible characters of W as follows:
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Table 1 Irreducible characters
for type F4

φ aφ d,a τ, τσ aτ

11 φ1,0 0 1 1 1

42 φ4,1 1 2 2 2

21 φ′′
2,4 1 2 0 0

23 φ′
2,4 1 0 2 0

91 φ9,2 2 3 3 1

81 φ′′
8,3 3 4 0 0

83 φ′
8,3 3 0 4 0

121 φ12,4 4 0 0 0

161 φ16,5 4 0 0 0

92 φ′′
9,6 4 3 − 3 − 1

62 φ′′
6,6 4 0 0 2

93 φ′
9,6 4 − 3 3 − 1

61 φ′
6,6 4 0 0 − 2

44 φ′
4,7 4 − 2 2 − 2

43 φ′′
4,7 4 2 − 2 − 2

41 φ4,8 4 0 0 0

13 φ′
1,12 4 − 1 1 − 1

12 φ′′
1,12 4 1 − 1 − 1

82 φ′
8,9 9 − 4 0 0

84 φ′′
8,9 9 0 − 4 0

94 φ9,10 10 − 3 − 3 1

45 φ4,13 13 − 2 − 2 2

22 φ′
2,16 13 − 2 0 0

24 φ′′
2,16 13 0 − 2 0

14 φ1,24 24 − 1 − 1 1

12 ↔ 13, 21 ↔ 23, 22 ↔ 24, 43 ↔ 44, 81 ↔ 83, 82 ↔ 84, 92 ↔ 93;

or, with Carter’s notation:

φ′
1,12 ↔ φ′′

1,12, φ′
2,4 ↔ φ′′

2,4, φ′
2,16 ↔ φ′′

2,16, φ′
4,7 ↔ φ′′

4,7,

φ′
8,3 ↔ φ′′

8,3, φ′
8,9 ↔ φ′′

8,9, φ′
9,6 ↔ φ′′

9,6.

(All other characters are fixed.)

Remark 2.2 Let (φ′, φ′′) be a pair of characters that are permuted by the above
automorphism ι : W → W . By inspection of Table 1 we see that we always have
φ′(a) = φ′(d) ≤ 0 and φ′′(a) = φ′′(d) ≥ 0. (Hence, this property characterises φ′
and φ′′.)
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Remark 2.3 In the following sections, the Coxeter group W will typically arise as the
Weyl group of a (crystallographic) root system� of type F4 in somefinite-dimensional
Euclidean vector space E with scalar product ( , ) : E × E → R. Such a root system
contains roots of different lengths, which gives rise to the long/short root issue men-
tioned in the introduction. Let us fix a set of simple roots � = {α1, α2, α3, α4} ⊆ �,
labelled in such a way that α1, α2 are long and α3, α4 are short:

α1 α2 α3 α4
� � � �>

Then, denoting by si ∈ GL(E) the reflection with root αi (1 ≤ i ≤ 4), we have
W ∼= 〈s1, s2, s3, s4〉 ⊆ GL(E). Hence, when referring to the labelling of Irr(W )

in Table 1, it is necessary to match the above generators s1, s2, s3, s4 to Kondo’s
generators d, a, τ, τσ ; in other words, one has to specify which of Kondo’s generators
should correspond to long roots, and which to short roots. There are precisely two
possibilities:

(AC): s1=d, s2=a, s3=τ , s4=τσ, that is, d, a are reflections in long roots;
or (L): s1=τσ , s2=τ , s3=a, s4=d, that is, d, a are reflections in short roots.

Both (AC) and (L) exist in the literature: Lusztig (1984a, 4.10) explicitly identifies
d, a with reflections in long simple coroots and τ, τσ with reflections in short simple
coroots. Recall that the coroots are defined by α∨ := 2α/(α, α) ∈ E for α ∈ �. Then
�∨ = {α∨ | α ∈ �} also is a root system of type F4 in E , with simple roots given by
�∨ = {α∨

1 , α∨
2 , α∨

3 , α∨
4 } where now α∨

1 , α∨
2 are short, while α∨

3 , α∨
4 are long. Hence,

Lusztig (1984a, 4.10) chooses (L), while Alvis (2005, p. 6/22), Carter (1985, p. 414)
and Geck et al. (1996); Michel (2015) choose (AC).

Working with (AC) or (L) leads to different labels precisely for those irreducible
characters that are permuted by the automorphism ι : W → W in Remark 2.1. Con-
cretely, this means for example that the character 23 has value 2 on s1, s2 with respect
to (L), and value 0 on s1, s2 with respect to (AC).

3 The Iwahori–Hecke algebra of type F4

We shall also need the generic Iwahori–Hecke algebraH associated with the Coxeter
groupW of type F4 as defined in Sect. 2. Let K = Q(u, v) where u, v are commuting
indeterminates. ThenH is an associative K -algebra with basis {Tw | w ∈ W }. As an
algebra, H is generated by the basis elements Td , Ta, Tτ , Tτσ , subject to the above
braid relations and the following quadratic relations:

T 2
d = uT1 + (u − 1)Td , T 2

a = uT1 + (u − 1)Ta,

T 2
τ = vT1 + (v − 1)Tτ , T 2

τσ = vT1 + (v − 1)Tτσ .

It is known that H is abstractly isomorphic to the group algebra of W over K (an
explicit isomorphism is provided by Geck (2011)); furthermore, the specialisation
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(u, v) → (1, 1) induces a bijection between the irreducible representations ofH and
those of W . To give an example (which will also serve as a useful test case later on),
we construct representations ofH which specialise to the representations of W with
characters 21 and 23.

Example 3.1 By checking that the defining relations for the above generators of H
hold, one obtains two-dimensional matrix representations σ, σ ′ : H → M2(K ) via
the following assignments:

σ : Td →
(
u 0
0 u

)
, Ta →

(
u 0
0 u

)
, Tτ →

(−1 1
0 v

)
, Tτσ →

(
v 0
v −1

)
;

σ ′ : Td →
(
u 0
u −1

)
, Ta →

(−1 1
0 u

)
, Tτ →

(
v 0
0 v

)
, Tτσ →

(
v 0
0 v

)
.

One easily sees that these are irreducible. We have

trace(σ (Td)) = trace(σ (Ta)) = 2u and trace(σ (Tτ )) = trace(σ (Tτσ )) = v − 1.

Hence, if we specialise (u, v) → (1, 1), then the character of σ becomes the character
21 of W . Similarly, σ ′ specialises to the character 23 of W .

Now, we have the one-dimensional representation ind : H → K such that
Td , Ta → u and Tτ , Tτσ → v (which specialises to the trivial character 11 ofW ). Then
the “generic degree” associated with an irreducible representation φ : H → Md(K )

is defined by

Dφ := d
∑

w∈W ind(Tw)∑
w∈W ind(Tw)−1trace(φ(Tw))trace(φ(Tw−1))

∈ K (see Carter (1985, p. 361))

All of these have been computed previously (see Carter (1985, §13.5) and the refer-
ences there) but, in the above two cases, we can just perform an explicit computation
(using a computer) and obtain:

Dσ = D21 = v3(v + 1)(uv2 + 1)(u2v2 + 1)(u3v3 + 1)

(u3 + 1)(u + v)(u2 + v)
,

Dσ ′ = D23 = same formula but with the roles of u, v exchanged.

(See also Carter (1985, p. 450).) Specialising (u, v) to powers of q, where q is a power
of a prime, we obtain actual degrees of characters of certain Chevalley groups over
Fq ; see Carter (1985, Theorem 10.11.5) and Lusztig (1984a, Corollary 8.7).

4 Harish–Chandra series of unipotent characters

Let p be a prime andG be a simple algebraic group over an algebraic closure ofFp. Let
q be a power of p and F : G → G be a Frobenius map with respect to an Fq -rational
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structure. Let B ⊆ G be an F-stable Borel subgroup and T ⊆ G be an F-stable
maximal torus contained in B. Let � be the root system of G with respect to T and
� ⊆ � be the set of simple roots determined by B. Then F induces an action on �

which preserves �. Let GF = G(Fq) and Uch(GF ) be the set of unipotent characters
of GF . We have a partition of Uch(GF ) into Harish–Chandra series; furthermore,
there is a collection of bijections

{S ↔ Irr(WS ) | S Harish-Chandra series of Uch(GF )}

where WS is a certain finite Coxeter group associated to each S . Following Lusztig
(1977, 3.25), this is further specified as follows.

• There is a well-defined F-invariant subset�′ ⊆ � such that the simple reflections
of WS are indexed by the set � of F-orbits on � \ �′; furthermore, there is a
certain “parameter function” λ : � → {qn | n ∈ Z≥1}.

• The pair (WS , λ) determines an Iwahori–Hecke algebra with parameters given
by {λ(ᾱ) | ᾱ ∈ �} (see Lusztig (1977, 3.6)); the degrees of the characters in S
are obtained from the generic degrees of that algebra using the formula in Lusztig
(1977, (3.26.1)).

The possibilities for �′ ⊆ �,�, λ are explicitly listed in Table II (p. 35) of Lusztig
(1977). Let nowS ⊆ Uch(GF ) be aHarish–Chandra serieswhere the associatedCox-
eter group WS is of type F4; this situation occurs for GF ∈ {F4(q), 2E6(q), E8(q)}.
Example 4.1 Let GF = F4(q), where we fix the labelling of the simple roots � ⊆ �

as in Sect. 2:
α1 α2 α3 α4
� � � �>

Let S ⊆ Uch(GF ) be the Harish–Chandra series containing the trivial character of
GF . Then �′ = ∅, � = � and λ(αi ) = q for i = 1, 2, 3, 4. Thus, WS = W =
〈s1, s2, s3, s4〉 is theWeyl group ofG (where si denotes the reflection with root αi ); the
characters inS are in bijection with Irr(W ). As discussed in Sect. 2, Lusztig (1984a,
4.10) chooses (L), while Carter (1985, p. 414) chooses (AC), so one has to apply the
automorphism in Remark 2.1 in order to pass from the notation concerning Uch(GF )

in Lusztig (1984a, p. 371) to Carter’s notation in Table 1.

Remark 4.2 In the setting of Example 4.1, let us write [φ] ∈ S for the unipotent
character corresponding to φ ∈ Irr(W ). If (φ′, φ′′) is one of the pairs of characters
that are permuted as in Remark 2.1, then [φ′], [φ′′] have the same degree. Thus, as
far as unipotent character degrees are concerned, it is irrelevant whether convention
(AC) or convention (L) is chosen. However, a difference occurs when we consider
the partition of the unipotent characters into “families” and the parametrisation of the
characters inside the various families in terms of finite sets M (G ) (of certain pairs
(x, σ )), as defined inLusztig (1984a, 4.14) (see alsoCarter (1985, §13.6)). There are 11
families, two of which contain 4 characters, one of which contains 21 characters, and
all the remaining families contain just one character. The 4-element families contain
3 characters of the form [φ] for φ ∈ Irr(W ). For example, one of them is given as
follows:
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(Lusztig, 1984a, p. 371)

[42] (1, 1)
[21] (g2, 1)
[23] (1, ε)

(Carter, 1985, p. 479)
[
φ4,1

]
(1, 1)[

φ′′
2,4

]
(g2, 1)[

φ′
2,4

]
(1, ε)

Thus, the two labels φ′′
2,4 and φ′

2,4 in Carter’s table should be exchanged, since Lusztig
uses convention (L) and Carter uses convention (AC). The same applies to the other
4-element family, and also to the 21-element family.

Example 4.3 LetGF = 2E6(q). Then� is of type E6 and F induces an automorphism
of order 2 on �. Let again S ⊆ Uch(GF ) be the Harish-Chandra series containing
the trivial character of GF . Then �′ = ∅ and �,λ are given as follows.

α2

α1 α3 α4 α5 α6

�

� � � � � �
λ : q q q2 q2

{α2} {α4} {α3, α5} {α1, α6}
� � � �

Again, WS is a Coxeter group of type F4. When referring to Kondo’s article for the
labelling of Irr(WS ), one has to specify whether Kondo’s generators d, a correspond
to {α2}, {α4} or to {α3, α5}, {α1, α6}. In other words, one has to specify whether λ

takes value q on d, a and value q2 on τ, τσ , or vice versa. This specification can be
reconstructed from the existing tables, as follows.

By Lusztig (1980, Theorem 1.15), there is a bijection between the unipotent char-
acters of the (untwisted) group E6(q) and those of 2E6(q); if ρ ∈ Uch(E6(q))

corresponds to ρ′ ∈ Uch(2E6(q)), then the polynomial in q which gives ρ′(1) is
obtained from the polynomial which gives ρ(1) by replacing q by −q (and adjusting
the sign). The bijection ρ ↔ ρ′ is defined by the tables in Lusztig (1980, 1.10, 1.16).
In Lusztig (1980), the characters ofS are denoted [φ] for φ ∈ Irr(WS ). For example,
using the information on character degrees in Lusztig (1984a, p. 363), we find that

dim[21] = 1
2q

3 + higher powers of q,

dim[23] = q + higher powers of q.

On the other hand, as discussed above, the degrees of these two characters can also
be obtained using the generic degrees of the Iwahori–Hecke algebra H associated
with WS and the parameter function λ. Using the results of the computations at the
end of Sect. 3, and assuming λ(d) = λ(a) = q, λ(τ) = λ(τσ ) = q2, we get the same
result as above. (If we assume λ(d) = λ(a) = q2, λ(τ) = λ(τσ ) = q, then we get a
different result.) Thus, Lusztig must have been using the convention:

λ(d) = λ(a) = q and λ(τ) = λ(τσ ) = q2;

and a comparison with the table in Carter (1985, p. 481) shows that the same is also
true for Carter. Hence, both Lusztig (1984a) and Carter (1985) use the convention
(AC) for the groups GF = 2E6(q).
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Example 4.4 Let GF = E8(q). There is a Harish–Chandra series S ⊆ Uch(GF )

with corresponding �′ ⊆ �, �,λ as follows (where �′ is the subdiagram of type D4
indicated by open circles in the diagram for E8):

α2

α1 α3 α4 α5 α6 α7 α8

�

� � � � � � � �
λ : q q q4 q4

ᾱ8 ᾱ7 ᾱ6 ᾱ1

� � � �

Again, WS is a Coxeter group of type F4. As in the previous example, one has to
specify whether λ takes value q on Kondo’s generators d, a and value q4 on τ, τσ ,
or vice versa. Actually, this is specified in Lusztig (1984a, p. 361); it is the same
convention as in the previous example:

λ(d) = λ(a) = q and λ(τ) = λ(τσ ) = q4;

a comparison with the table in Carter (1985, pp. 484–488) shows that the same is also
true for Carter. So both Lusztig (1984a) and Carter (1985) use the convention (AC) in
the present situation.

One can also do a consistency check, as above. The characters in S are denoted
by D4[φ] for φ ∈ Irr(WS ). For example, according to the table in Lusztig (1984a,
p. 366), the degrees of D4[21] and D4[23] should be

dim D4[21] = 1
2q

12 + higher powers of q,

dim D4[23] = 1
2q

4 + higher powers ofq,

On the other hand, we can also determine these degrees using the generic degrees
of the Iwahori–Hecke algebra associated with WS , λ; we get the same result for the
degrees precisely when we specify the values of λ as above.

Remark 4.5 Let WS be the finite Coxeter group associated with a Harish–Chandra
series S ⊆ Uch(GF ). Then Lusztig (1976, Theorem 5.9) and Lusztig (1976, (7.7))
do not only show how the type of WS and the parameter function λ are determined
from �′ ⊆ �, but Lusztig (1976, Theorem 5.9) also describes a natural root system
� for WS . One can then check the following:

(a) In Example 4.3 (where GF = 2E6(q)), the simple roots in � corresponding to
the F-orbits {α2}, {α4} are long, and the other two are short.

(b) In Example 4.4 (where GF = E8(q)), the simple roots in � corresponding to ᾱ8,
ᾱ7 are long, and the other two are short.

Thus, as noted before, in both (a) and (b), the choice (AC) is made for matching the
simple reflections in WS (corresponding to the roots in �) with Kondo’s generators
d, a, τ, τσ .

5 The (generalised) Springer correspondence

Let again p be a prime and G be a simple algebraic group over an algebraic closure
of Fp. Let NG be the set of all pairs (C,E ) where C is a unipotent conjugacy class
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of G and E is an irreducible Q�-local system on C , equivariant for the conjugation
action of G. (Here, � is a prime �= p.) Let MG be the set of all triples (L,C0,E0)
(up to G-conjugacy) where L is a Levi subgroup of some parabolic subgroup of G
and (C0,E0) ∈ NL is “cuspidal” (see Lusztig (1984b, 2.4, 6.2)). Using intersection
cohomologymethods, Lusztig (1984b, §6) has defined a natural surjectivemapNG →
MG . FollowingLusztig (2020), the fibres of thatmapwill be called “unipotent blocks”;
they form a partition of NG . Furthermore, there is a collection of bijections

{I ↔ Irr(WI ) | I unipotent block of NG}

where WI is a certain finite Coxeter group associated to each I ; in fact, by Lusztig
(1984b, §9), we haveWI = NG(L)/L where (L,C0,E0) is the triple corresponding to
I under themapNG → MG . This is called the generalised Springer correspondence;
note that all this does not require an Fq -rational structure on G. IfI1 is the unipotent
block containing the pair ({1}, Q�), then WI1 = W is the Weyl group of G and the
bijectionI1 ↔ Irr(W ) is the correspondence defined earlier by Springer in the 1970s
(up to tensoring by the sign character ofW ). For example, it is known thatI1 contains
all pairs (C, Q�) where C is a unipotent conjugacy class of G and Q� stands for the
trivial local system. We call I1 the “principal unipotent block” of NG .

Now assume that G is of exceptional type. The basic reference for the generalised
Springer correspondence in this case is Spaltenstein (1985), which completes and
extends to small characteristics p earlierworkofSpringer (forG of typeG2), Shoji (F4)
and Alvis–Lusztig (E6, E7, E8); see the detailed references in Spaltenstein (1985).
According to Lusztig (1984b, §15), there are three cases in which there are unipotent
blocks I ⊆ NG such that WI is of type F4; these occur for G of type

F4 (any p), E8 (p = 2), E7 (simply connected and p �= 2).

As in the previous section, there are certain issues concerning the conventions used
when referring to Kondo’s labelling of Irr(WI ).

Example 5.1 Let G be of type F4, where we fix the labelling of the simple roots as in
the previous section, that is,

α1 α2 α3 α4
� � � �>

As above, let I1 ⊆ NG be the principal unipotent block. Then WI1 = W =
〈s1, s2, s3, s4〉 is the Weyl group of G (where si is the reflection with root αi ). The
correspondenceI1 ↔ Irr(W )was determined by Shoji (1980), with some conditions
on the characteristic which were later removed by Spaltenstein (1985). As before,
one has to specify which of Kondo’s generators d, a, τ, τσ should correspond to long
roots, and which to short roots. Now Shoji explicitly describes the restrictions of the
irreducible characters of W to a parabolic subgroup of type C3. So one can deduce
from Shoji (1980, 4.3 and Table 4) that Shoji uses the choice (AC) for the labelling
of Irr(W ). A comparison with the table in Spaltenstein (1985, p. 330) shows that
Spaltenstein uses the same choice.
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Example 5.2 Let G be of type E8, where p = 2. By Lusztig (1984b, 15.3), there is a
unique unipotent block I ⊆ NG such that WI is a Coxeter group of type F4. Under
the map NG → MG , this block corresponds to a triple (L,C0,E0) where L is of
type D4 (indicated by open circles in the diagram below). The generators of WI are
indexed by the simple roots indicated by full circles in the diagram below (similarly
to Example 4.4):

α2

α1 α3 α4 α5 α6 α7 α8

�

� � � � � � � �
ᾱ8 ᾱ7 ᾱ6 ᾱ1

� � � �

Again, one has to match ᾱ8, ᾱ7, ᾱ6, ᾱ1 to Kondo’s generators d, a, τ, τσ . Now Spal-
tenstein (1985, p. 327) writes that it makes sense to assign relative root lengths to ᾱ8,
ᾱ7, ᾱ6, ᾱ1. In this case, he declares ᾱ6, ᾱ1 to be long, and ᾱ8, ᾱ7 to be short. Since he
also refers to Alvis (2005) (with convention (AC)), we are led to the assumption that
Spaltenstein uses the following matching with Kondo’s generators:

ᾱ1 ↔ d, ᾱ6 ↔ a, ᾱ7 ↔ τ, ᾱ8 ↔ τσ.

Note that this is the matching opposite to that in Example 4.4; note also that
Spaltenstein’s declaration of relative root lengths for WI is opposite to that in
Remark 4.5(b). (These different declarations actually caused the “delicate contra-
dictions” mentioned in the introduction, and prompted this note.)

That the above assumption is correct has been independently confirmed by the sec-
ond author in Hetz (2023a, §4.5), via a computation involving characteristic functions
of character sheaves and the intersection of Bruhat cells with conjugacy classes. (If the
opposite matching is used, then those computations result in a contradiction; see Hetz
(2023a, Remark 4.5.33).) The fact that computations of that kind are able to detect
properties of the generalised Springer correspondence was subsequently used in order
to resolve the last open question concerning the generalised Springer correspondence
for G of type E8; see Hetz (2023b).

Example 5.3 Let G be simply connected of type E7, where p �= 2. By Lusztig (1984b,
15.2), there is a unique unipotent blockI ⊆ NG such thatWI is a Coxeter group of
type F4. Under the map NG → MG , this block corresponds to a triple (L,C0,E0)
where L is of type A1+A1+A1 (indicated by open circles in the diagram below).
The generators of WI are indexed by the simple roots indicated by full circles in the
diagram below:

α2

α1 α3 α4 α5 α6 α7

�

� � � � � � �
ᾱ1 ᾱ3 ᾱ4 ᾱ6

� � � �

Similarly to the previous example, Spaltenstein (1985, p. 327) declares ᾱ4, ᾱ6 to be
long, and ᾱ1, ᾱ3 to be short. (Note again that this declaration of relative root lengths
is opposite to that provided by Lusztig (1976, Theorem 5.9).) Again, we are led to
assume that Spaltenstein uses the following matching with Kondo’s generators:

ᾱ6 ↔ d, ᾱ4 ↔ a, ᾱ3 ↔ τ, ᾱ1 ↔ τσ.
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This is confirmed by the computations in the proof of Lemma 6.2 below, in which also
one error in Spaltenstein’s table will be corrected. We came across that error via the
following remark.

Remark 5.4 Let I ⊆ NG be a unipotent block. Using the bijection I ↔ Irr(WI ),
we introduce an equivalence relation ∼ on Irr(WI ) as follows. Let χ, χ ′ ∈ Irr(WI )

and assume that (C,E ) ↔ χ and (C ′,E ′) ↔ χ ′ under the above bijection; then we
write χ ∼ χ ′ if C = C ′. It is shown in Lusztig (2023), that the equivalence classes
under ∼ for the principal unipotent block I1 ⊆ NG can be recovered in a purely
algebraic way, using operations with characters of Weyl groups. In Lusztig (2020,
Conj. 6.11), there is a conjecture in a similar spirit for arbitrary unipotent blocks of
NG . Using CHEVIE, see Michel (2015), we computed the algebraic version of ∼ for
the unipotent block I ⊆ NG in Example 5.3, where G is of type E7; and we found
an inconsistency with the table in Spaltenstein (1985).

6 Computing unipotent blocks

In this section we briefly discuss the explicit computation of unipotent blocks and the
generalised Springer correspondence. In particular, this will allow us to resolve the
inconsistency in the table in Spaltenstein (1985) mentioned in Remark 5.4.

The main tool is the “multiplicity formula” in Spaltenstein (1985, 1.2(II)) (which
is a reformulation of a formula that originally appeared in Lusztig (1984b, §8)). It
relates the collection of bijections

{I ↔ Irr(WI ) | I unipotent block of NG}

to the analogous collection of bijections

{I ′ ↔ Irr(WI ′) | I ′ unipotent block of NM }

where M is a Levi subgroup of some parabolic subgroup of G. Recall that we have
surjective mapsNG → MG andNM → MM . Let us fix unipotent blocks I ⊆ NG

andI ′ ⊆ NM which correspond to the same triple inMM . (Note thatMM ⊆ MG .)
The latter condition implies thatWI ′ can be naturally regarded as a parabolic subgroup
ofWI . To state the multiplicity formula, we need to introduce some further notation.

Let (C,E ) ∈ I and ρ ∈ Irr(WI ) correspond to (C,E ) under the above bijection.
Furthermore, we set AG(u) := CG(u)/C◦

G(u)where u ∈ C ; then E corresponds to an
irreducible characterφ ∈ Irr(AG(u)) (seeLusztig (1984b, §0)). Let also (C ′,E ′) ∈ I ′
and ρ′ ∈ Irr(WI ′) correspond to (C ′,E ′) under the above bijection. Furthermore, we
set AM (u′) := CM (u′)/C◦

M (u′) where u′ ∈ C ′; then E ′ corresponds to an irreducible
character φ′ ∈ Irr(AM (u′)). In this setting, the multiplicity formula states:

multiplicity of ρ′ ∈ Irr(WI ′) in the restriction of ρ ∈ Irr(WI ) to WI ′

= multiplicity of φ ⊗ φ
′ ∈ Irr(AG(u) × AM (u′)) in εu,u′ ,
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where εu,u′ is the character of a permutation representation of the direct product
AG(u) × AM (u′) on a certain finite set Xu,u′ (defined in Spaltenstein (1985, 1.2)).

Example 6.1 In the above setting, letI1 be the principal unipotent block ofNG andI ′
1

be the principal unipotent block of NM . Assume that the bijections I1 ↔ Irr(WI1)

and I ′
1 ↔ Irr(WI ′

1
) (that is, the ordinary Springer correspondences) are already

known. Now, as remarked earlier, we have (C, Q�) ∈ I1 and (C ′, Q�) ∈ I ′
1. The

corresponding characters of AG(u) and AM (u′) are the trivial characters. So, since εu,u′
is the character of a permutation representation, the right hand side of the multiplicity
formula will be a positive integer if Xu,u′ �= ∅, and 0 otherwise. Via the left hand side
of themultiplicity formula, this condition can be checked using a computation with the
characters ofWI1 and ofWI ′

1
. Assume now that we have a situation where Xu,u′ = ∅

and I �= I1, I ′ �= I ′
1. Then the right hand side of the multiplicity formula for the

pairs (C,E ) ∈ I and (C ′,E ′) ∈ I ′ will still be 0 (because Xu,u′ = ∅) and so the
multiplicity of ρ′ ∈ Irr(WI ′) in the restriction of ρ ∈ Irr(WI ) to WI ′ must be 0. If
the bijection I ′ ↔ Irr(WI ′) is already known, then this rules out many cases on the
level of the bijection I ↔ Irr(WI )—as pointed out in Spaltenstein (1985, 4.3).

Lemma 6.2 Let G and I ⊆ NG be as in Example 5.3, where G is simply connected
of type E7 (with p �= 2) and WI is of type F4.

(a) In the table in Spaltenstein (1985, p. 331/332), the characters χ2,3 and χ8,3 of
WI should be interchanged in the column labelled 3A′′

1 (p �= 2).
(b) With the adjustment in (a), the statements in Lusztig (2020, Conj. 6.11) are correct

for I .

(Here, we use Spaltenstein’s notation for the irreducible characters of WI .)

Proof (a)We only sketch this. First of all, by Lusztig (1984b, 15.2),NG is the union of
I1,I and one block consisting of a cuspidal pair when p �= 2, 3 (where, as usual,I1
denotes the principal unipotent block); if p = 3, then NG is the union of I1,I ,I2
and three blocks consisting of cuspidal pairs, where I2 is a block with WI2 of type
A1. We shall assume that I1 has been determined. By Spaltenstein (1985, 5.5), the
block I2 is also easily determined since WI2 is of type A1; the cuspidal pairs are
listed in the last table of Spaltenstein (1985, p. 337). Thus, we can assume that the
subset I ⊆ NG is known.

Now let C be the unipotent class of G denoted by D5+A1, where dimBu = 6 and
AG(u) ∼= Z/2Z for u ∈ C . Consider the pair (C,E ) ∈ NG , where E corresponds to
the non-trivial character of AG(u). We have (C,E ) ∈ I . According to Spaltenstein
(1982, p. 174), C is obtained by the process of induction (Lusztig and Spaltenstein
1979) from the trivial class of a Levi of type A2+A2. By the transitivity of induction,
it will also be induced from a class C ′ of a Levi M of type A5 containing A2+A2.
We choose M such that it contains the Levi L of type A1+A1+A1 (indicated by open
circles inExample 5.3).UsingweightedDynkin diagrams andLusztig andSpaltenstein
(1979, Prop. 1.9(b)),we see thatC ′ is the uniqueunipotent class ofM withdimBu′ = 6
und AM (u′) ∼= Z/2Z (u′ ∈ C ′).

Consider the pair (C ′,E ′) ∈ NM where E ′ corresponds to the non-trivial char-
acter of AM (u′). The following information on (C ′,E ′) is obtained via the CHEVIE
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function UnipotentClasses, see Michel (2015). The pair (C ′,E ′) belongs to the
unipotent block I ′ ⊆ NM which corresponds to the same triple in MM ⊆ MG

as I . Furthermore, the parabolic subgroup WI ′ ⊆ WI is of type A2, with simple
roots corresponding to ᾱ4, ᾱ6 (long roots, as in Example 5.3). Under the bijection
I ′ ↔ Irr(WI ′), the corresponding character is the sign character of WI ′ .

Since C is obtained from C ′ by induction, we are in the set-up of Spaltenstein
(1985, 1.3). This shows that there are subgroups H ⊆ N ⊆ AG(u) such that H
is normal in N with N/H ∼= AM (u′); furthermore, the sets Xu,u′ and AG(u)/H are
isomorphic as sets with (AG(u)× AM (u′))-actions. Since AG(u) and AM (u′) are both
isomorphic to Z/2Z, we must have H = {1}. Thus, Xu,u′ and AG(u) are isomorphic
as sets with (AG(u) × AM (u′))-actions. Consequently, we find that the right hand
side of the multiplicity formula evaluates to 1. Working out the left hand side of that
formula (using the CHEVIE function InductionTable), see Michel (2015) we see
that only the following characters of WI can correspond to C : χ1,3, χ1,4, χ6,1, χ6,2,
χ8,3, χ8,4. Using also induction of suitable classes from Levi subgroups M of type
A5+A1 and D6, one rules out further characters from the above list until the only
remaining possibility is χ8,3. Thus, under the bijectionI ↔ Irr(WI ), the pair (C,E )

must correspond to the character χ8,3.
For the remaining characters of WI , one proceeds as follows. First one considers

all unipotent classes C such that |AG(u)| = 2 for u ∈ C . Using similar arguments as
above, plus the highly efficient method in Example 6.1, one checks that the entries for
these classes in Spaltenstein’s table are correct. It then remains to consider the classes
C denoted

D6+A1, D6(a1)+A1, D6(a2)+A1, D4(a1)+A1,

where only the following characters of WI can correspond to any of these classes:

χ1,2, χ2,3, χ2,4, χ4,2, χ6,2, χ8,1, χ9,4, χ12.

We now use the method in Example 6.1, with respect to a Levi M ⊆ G of type D6,
in order to rule out a number of possibilities. Firstly, we find that only χ1,2, χ8,1 from
the above list can correspond to D6+A1 (in accordance with Spaltenstein’s table);
next, one finds that only χ1,2, χ2,3, χ4,2 can correspond to D6(a1)+A1. So the con-
clusion is that χ2,3, χ4,2 must correspond to D6(a1)+A1. Similarly, one finds that
only χ2,4, χ9,4 can correspond to D4(a1)+A1 and that only χ2,4, χ6,2, χ12 can corre-
spond to D6(a2)+A1. Hence, again, the conclusion is that χ6,2, χ12 must correspond
to D6(a2)+A1. Thus, all entries in Spaltenstein’s table for E7 are found to be correct,
with the exception that χ2,3 and χ8,3 need to be exchanged.

(b) This simply follows by inspection of the results of the computation. ��
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