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Abstract
Let f ∈ W 3,1

loc (�) be a function defined on a connected open subset � ⊆ R
2. We

will show that its graph is contained in a quadratic surface if and only if f is a weak
solution to a certain systemof 3rd order partial differential equations unless theHessian
determinant of f is non-positive on the whole �. Moreover, we will prove that the
system is in some sense the simplest possible in a wide class of differential equations,
which will lead to the classification of all polynomial partial differential equations
satisfied by parametrizations of generic quadratic surfaces. Although we will mainly
use the tools of linear and commutative algebra, the theorem itself is also somehow
related to holomorphic functions.
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1 Introduction

It was already known since the works of Blaschke (1923, p. 18) that conics are the
only planar curves with constant equiaffine curvature. In a special case of a graph
of a function of class C5, this condition is equivalent to a certain 5th order ordinary
differential equation, which reads

9 f ′′(x)2 f (5)(x) − 45 f ′′(x) f (3)(x) f (4)(x) + 40 f (3)(x)3 = 0. (1)

In higher dimensions, hyperquadrics are characterized by Maschke–Pick–Berwald
theorem (Nomizu et al. 1994, Theorem 4.5) as the only hypersurfaces with vanishing
cubic formC defined in Nomizu et al. (1994, Chpt. II, Sect. 4). However, the definition
implicitely uses the intrinsicBlaschke structure and thus the cubic formC can hardly be
expressed in an extrinsic coordinate system. It is also unclearwhatminimal smoothness
we need to assume. Nevertheless, such a result for 2-dimensional surfaces turns out
to be a consequence of two relatively simple partial differential equations. The aim of
this paper is to prove the following main theorem:

Theorem 1.1 Let f ∈ W 3,1
loc (�) be a function from the local Sobolev space,1 defined

on a connected open subset � ⊆ R
2. Suppose that the Hessian determinant of f is

somewhere positive. Then f is a weak solution to the system of partial differential
equations

f (3,0) f (0,2)2 − 3 f (1,2) f (2,0) f (0,2) + 2 f (0,3) f (1,1) f (2,0) = 0,

f (0,3) f (2,0)2 − 3 f (2,1) f (0,2) f (2,0) + 2 f (3,0) f (1,1) f (0,2) = 0
(2)

if and only if its graph is contained in a quadratic surface.

Therefore Theorem 1.1 can be considered a 2-dimensional analog of the afore-
mentioned result of Blaschke. Contrary to Maschke-Pick-Berwald, it is formulated
in terms of simple, explicit partial differential equations, with weaker smoothness
assumption. Moreover, we will show that the system (2) is minimal in the sense that
the left-hand sides form a minimal generating set (viz. a reduced Gröbner basis) of a
certain differential ideal.

Such a characterization of quadratic surfaces of positive Gaussian curvature as the
only solutions to some partial differential equations without boundary condition may
be useful when one wants to prove that some specific convex body is an ellipsoid
using e.g. the tools of differential geometry. Such problems arise naturally in convex

1 Fix 1 ≤ p ≤ ∞ and let k ∈ N. The local Sobolev space Wk,p
loc (�) consists of all locally integrable

functions f : � → R such that for every multi-index α with |α| ≤ k, the mixed partial derivative f (α)

exists in the weak sense and belongs to L p
loc(�) (cf. Evans 2010, Sect. 5.2.2).

123



Beitr Algebra Geom

geometry, especially in various characterizations of Hilbert spaces among all finite-
dimensional Banach spaces.

As superfluous as it may seem, the assumption on the Hessian determinant is not
purely technical, as the following holds:

Theorem 1.2 Let f ∈ W 3,1
loc (�) be a function from the local Sobolev space, defined

on a connected open subset � ⊆ R
2. Suppose that the Hessian determinant of f is

non-positive. Then f is a weak solution to the system of partial differential equations
(2) if and only if � contains a countable sum of disjoint open connected subsets �i

such that:

(1) on each �i the graph of f is contained in either:

(a) a doubly-ruled surface,2 or
(b) a developable surface,3 or
(c) a Catalan surface4 with directrix plane X Z, or
(d) a Catalan surface with directrix plane Y Z,

(2) the union
⋃

�i is dense in �.

Note that all of the above are particular examples of ruled surfaces.5 Regrettably,
the exact classification of solutions to (2) seems to be a tedious, technical task and
therefore will not be given here, so as not to overshadow the main idea.

To perform lengthy computations, we will employ a widely used technical comput-
ing system WolframMathematica (Wolfram Research2016). Nevertheless, they still
could have been done with pen and paper (albeit with some difficulty) and hence the
proof remains human-surveyable. A thorough discussion of this aspect can be found in
Appendix A. For transparency, all the results obtained with the help of a computer are
taggedwith “Spikey” ( ), followed by a reference to the relevant section of Appendix
A.

2 Notation and basic concepts

To prove the Theorem 1.1 we will need some very general facts concerning quadratic
surfaces, that are in themselves quite interesting.Webeginwith rephrasing the problem
in the language of commutative algebra.

Definition 1 Let

R := R

[
x, y, ∂(0,0), ∂(0,1), ∂(1,0), . . .

]

2 A ruled surface that contains two families of rulings.
3 A ruled surface having Gaussian curvature K = 0 everywhere.
4 A ruled surface all of whose rulings are parallel to a fixed plane, called the directrix plane of the surface.
5 A surface that can be swept out by moving a line in space. The straight lines themselves are called rulings.
The Gaussian curvature on a ruled regular surface is everywhere non-positive.
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be a ring of polynomials in variables x , y and formal partial derivatives ∂(i, j) and let

S :=
〈
∂(0,2), ∂(2,0), ∂(0,2)∂(2,0) − ∂(1,1)2

〉

be a submonoid of themultiplicativemonoid of R, with the listed generators. By S−1R
we denote a localisation of R at S (Eisenbud 1995, Sect. 2.1).

The ring S−1R can be viewed as an algebra of a certain type of differential operators
T defined for those smooth functions f : R

2 ⊇ � → R for which all the expressions

f (0,2)(x, y), f (2,0)(x, y), f (0,2)(x, y) f (2,0)(x, y) − f (1,1)(x, y)2 (3)

do not take a zero value on � and thus have reciprocals. We will call such func-
tions generic. Examples include but are not limited to functions with positive Hessian
determinant, i.e. whose graphs have positive Gaussian curvature.

Notation Let � ⊆ R
2 be a connected open subset of R

2. Denote by G(�) the set of
generic functions f : � → R and by Q(�) its subset consisting of parametrizations
of quadratic surfaces.

Definition 2 Let Dx , Dy : S−1R → S−1R be derivations (Eisenbud 1995, Chpt. 16),
i.e.R-linear endomorphisms of additive group of S−1R satisfying the Leibniz product
rule

D(r1r2) = D(r1)r2 + r1D(r2), r1, r2 ∈ S−1R,

and thus uniquely determined by their values on indeterminates:

Dx (x) := 1, Dx (y) := 0, Dx

(
∂(i, j)

)
:= ∂(i+1, j),

Dy(x) := 0, Dy(y) := 1, Dy

(
∂(i, j)

)
:= ∂(i, j+1).

In particular, the well-known formula for differentiating fractions

D
(r

s

)
= D(r)s − r D(s)

s2

follows from the Leibniz product rule. A ring S−1R equipped with derivations Dx , Dy

forms a differential ring.

Definition 3 A differential ideal a in a differential ring R is an ideal that is mapped to
itself by each derivation.

Definition 4 Let X be a subset of G(�). The annihilator of X in S−1R, denoted by
X†, is a collection of differential operators T ∈ S−1R such that T f = 0 for all f ∈ X .
The annihilator of any subset is clearly a differential ideal. The annihilator of an empty
set is the whole S−1R and the annihilator of the whole G(�) is just the zero operator.
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3 Polynomial PDEs satisfied by generic quadratic surfaces

Observe that a graph of a function f is contained in a quadratic surface if and only if
its every point satisfies a quadratic equation

a11x
2 + a12xy + a13x f + a22y

2 + a23y f + a33 f
2 + b1x + b2y + b3 f + c = 0

(4)

with constant coefficients ai j , bk, c. This is equivalent to the fact that the set of func-
tions

{
x2, xy, x f (x, y), y2, y f (x, y), f (x, y)2, x, y, f (x, y), 1

}
(5)

is linearly dependent. That is how the concept of generalized Wronskian for functions
of several variables enters play. For clarity, we adopt the notation fromWolsson (1989).

Definition 5 (Wolsson 1989, Definition 1) A generalised Wronskian of φ =
(φ1(t), . . . , φn(t)), where t = (t1, . . . , tm), is any determinant of the type

∣
∣
∣
∣
∣
∣
∣
∣
∣

φ

∂1φ
...

∂n−1φ

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where φ, ∂ iφ are row vectors, ∂ i is any partial derivative of order not greater that i
and all ∂ i are distinct.

Remark Note that in the realmof functions inm ≥ 2variables a generalizedWronskian
of ϕ is no longer unique, since there are many possible ways of choosing row vectors
∂ iφ satisfying all the imposed conditions. More precisely, there are

(
m + i

m

)

partial derivatives of order not greater than i and hence there are exactly

n−1∏

i=0

((
m + i

m

)

− i

)

generalised Wronskians of n functions inm variables. However, from now henceforth
we will identify all generalized Wronskians that differ only in the order of rows as it
does not affect the rank of the matrix.

Notation Denote by φ the tuple of functions (5).
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Assertion 3.1 Each generalizedWronskian of φ can be viewed as an element of S−1R.
Moreover, by the very definition, it belongs to Q(�)†. Indeed, if the set of functions
(5) is linearly dependent, then all its generalized Wronskians vanish identically since
their columns are themselves linearly dependent.

The following key proposition characterizes the set of polynomial differential equa-
tions satisfied by the parametrization of any generic quadratic surface.

Proposition 3.2 Let � ⊆ R
2 be a connected open subset of R

2. Then the annihilator
Q(�)† ⊆ S−1R is a differential ideal generated by

∂(3,0)∂(0,2)2 − 3∂(1,2)∂(2,0)∂(0,2) + 2∂(0,3)∂(1,1)∂(2,0),

∂(0,3)∂(2,0)2 − 3∂(2,1)∂(0,2)∂(2,0) + 2∂(3,0)∂(1,1)∂(0,2).
(6)

Proof ClearlyQ(�)† is a differential ideal in S−1R. Denote by a the differential ideal
generated by (6). We have to show that Q(�)† = a. We will do this by proving both
inclusions.

First, we will show a simpler inclusion Q(�)† ⊇ a. Since both Q(�)† and a are
differential ideals, it is enough to prove that the generators of a are contained inQ(�)†.
Let f ∈ Q(�) be a parametrization of some generic quadratic surface. By Assertion
3.1, all the generalized Wronskians of φ vanish identically on �. Denote by Wi, j the
generalised Wronskian of φ formed by deleting the row φ(i, j) from

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ

φ(0,1)

φ(1,0)

φ(0,2)

φ(1,1)

φ(2,0)

φ(0,3)

φ(1,2)

φ(2,1)

φ(3,0)

φ(0,4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The only non-trivial (i.e. not vanishing algebraically) ones are the following:

W3,0 = 24 f (0,2)2
(
3 f (2,1) f (0,2)2 − 6 f (1,1) f (1,2) f (0,2) − f (0,3) f (2,0) f (0,2) + 4 f (0,3) f (1,1)2

)

W2,1 = 72 f (0,2)2
(
f (3,0) f (0,2)2 − 3 f (1,2) f (2,0) f (0,2) + 2 f (0,3) f (1,1) f (2,0)

)

W1,2 = 72 f (0,2)2
(
f (0,3) f (2,0)2 − 3 f (0,2) f (2,1) f (2,0) + 2 f (0,2) f (1,1) f (3,0)

)

W0,3 = 24 f (0,2)2
(
4 f (3,0) f (1,1)2 − 6 f (2,0) f (2,1) f (1,1) + 3 f (1,2) f (2,0)2 − f (0,2) f (2,0) f (3,0)

)

Note that although the underlying matrices depend on 4th order partial derivatives,
their determinants do not, which is somehow intriguing.
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Remark Since φ consists of n = 10 functions and inm = 2 variables there are exactly
10 partial derivatives of at most 3rd order, there is a unique generalized Wronskian of
φ using partial derivatives of at most 3rd order, namely W0,4. However, it turns out
that φ(3,0),φ(2,1),φ(1,2),φ(0,3) are always linearly dependent. Indeed, observe that
the 4 × 10 matrix

A.1

⎛

⎜
⎜
⎝

φ(3,0)

φ(2,1)

φ(1,2)

φ(0,3)

⎞

⎟
⎟
⎠

has only 4 non-zero columns corresponding to x f (x, y), y f (x, y), f (x, y)2, f (x, y)
and a direct computation shows that the determinant of this only non-trivial 4×4minor
is zero anyway. Thus every generalized Wronskian of φ vanishes identically unless
it is missing some 3rd order partial derivative. In particular, there is no non-trivial
generalized Wronskian of φ using partial derivatives of order at most 3. Moreover,
there are (a priori at most) only 4 non-trivial generalized Wronskians of φ using a
single partial derivative order greater than 3, since it must replace one of the 4 partial
derivatives of order 3.

Now, since f is assumed to be generic, its 2nd order pure derivative f (0,2) is non-
zero. Hence from the vanishing of W2,1 and W1,2 we obtain that a parametrization of
any generic quadratic surface satisfies (2). This concludes the first part of the proof.

Remark Note that for any generic function f , ifW2,1 andW1,2 vanish, then the remain-
ing two generalized Wronskians also vanish. Indeed, we have

3 f (2,0)W3,0 = 2 f (1,1)W2,1 − f (0,2)W1,2,

3 f (0,2)W0,3 = 2 f (1,1)W1,2 − f (2,0)W2,1,
(7)

while both f (2,0) and f (0,2) are non-zero. Furthermore, the same holds for any pair of
featured generalized Wronskians except forW3,0 andW0,3, when the above equations
(7) in variables W2,1 and W1,2 may turn out to be linearly dependent. This is the case
exactly when

f (0,2) f (2,0) − 4 f (1,1)2 = 0,

which together with W3,0 = 0 and W0,3 = 0 forms a system of partial differen-
tial equations. This time, however, apart from parametrizations of certain quadratic
surfaces (including degenerate), it admits a single family of exotic solutions of the
form

f (x, y) = a

(x + x0)(y + y0)
+ b1x + b2y + c,
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which arise as parametrizations of certain cubic surfaces. Moreover, note that all these
functions are generic, unless a = 0. Therefore the choice of equations (2) was arbitrary
only to some extent.

Remark Observe that the last factors of W3,0 and W0,3 as well as W2,1 and W1,2 are
equivalent up to the order of variables. However, the overall symmetry is broken by

the common factor f (0,2)2, which is the result of choosing φ(0,4) as a supplementary
row. Exactly as we should expect, if we had chosen φ(4,0), we would have obtained the

same set of generalized Wronskians, but this time with common factor f (2,0)2 instead

of f (0,2)2.

Let

Q := S−1
R

[
x, y, ∂(0,0), ∂(0,1), ∂(1,0), ∂(0,2), ∂(1,1), ∂(2,0), ∂(0,3), ∂(1,2), ∂(0,4)

]

be the localization of a real polynomial ring in selected 11 variables at S. Since
localization commuteswith adding new external elements, there is a ring isomorphism

S−1R 
 Q
[
∂(2,1), ∂(3,0), ∂(1,3), . . .

]
,

where the latter is already a polynomial ring over Q in the remaining infinitely many
variables. Let us choose a graded lexicographic order on variables ∂(i, j) and then
graded reverse lexicographic order on monomials. We will find a Gröbner basis of a
with respect to this monomial ordering. For more details on Gröbner bases including
definitions and examples we recommend the reader to go through (Cox et al. 2016,
Chpt. 2).

Denote polynomials (6) respectively by p1, p2. Observe that for every i, j ≥ 0 and
k = 1, 2, Dx

i Dy
j pk is linear in highest order partial derivatives and thus we can write

e.g.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dx Dx p1
Dx Dy p1
DyDy p1
Dx Dx p2
Dx Dy p2
DyDy p2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= A5

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂(0,5)

∂(1,4)

∂(2,3)

∂(3,2)

∂(4,1)

∂(5,0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ b5, (8)

where

A5:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 2∂(1,1)∂(2,0) −3∂(0,2)∂(2,0) 0 ∂(0,2)2

0 2∂(1,1)∂(2,0) −3∂(0,2)∂(2,0) 0 ∂(0,2)2 0

2∂(1,1)∂(2,0) −3∂(0,2)∂(2,0) 0 ∂(0,2)2 0 0

0 0 ∂(2,0)2 0 −3∂(0,2)∂(2,0) 2∂(0,2)∂(1,1)

0 ∂(2,0)2 0 −3∂(0,2)∂(2,0) 2∂(0,2)∂(1,1) 0

∂(2,0)2 0 −3∂(0,2)∂(2,0) 2∂(0,2)∂(1,1) 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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is a 6 × 6 matrix and b5 (the definition of which is irrelevant and therefore has been
omitted for brevity) is a 6 × 1 vector over S−1R. Moreover, A5 and b5 contain only
partial derivatives of order at most 4. One can easily verify that the determinant of A5
is equal to

A.2 − 64∂(0,2)3∂(2,0)3
(
∂(0,2)∂(2,0) − ∂(1,1)2

)3

and thus is a unit in S−1R. It follows that A5 is invertible over S−1R and we can
rewrite (8) as

A5
−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dx Dx p1
Dx Dy p1
DyDy p1
Dx Dx p2
Dx Dy p2
DyDy p2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂(0,5)

∂(1,4)

∂(2,3)

∂(3,2)

∂(4,1)

∂(5,0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ A5
−1b5. (9)

Now, the left-hand side is a vector of elements from a and hence so is also the right-
hand side. Moreover, since A5

−1b5 contains only partial derivatives of order at most
4, the leading term of each polynomial on the right-hand side is a corresponding 5th
order partial derivative. By definition, the ideal a is closed under derivations and thus
by differentiating these polynomials we can obtain an element of a with the leading
term being any partial derivative of higher order. Using right the same argument we
can likewise write

A4
−1

⎛

⎜
⎜
⎝

Dx p1
Dy p1
Dx p2
Dy p2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

∂(1,3)

∂(2,2)

∂(3,1)

∂(4,0)

⎞

⎟
⎟
⎠ + A4

−1b4, A3
−1

(
p1
p2

)

=
(

∂(2,1)

∂(3,0)

)

+ A3
−1b3,

since the determinant of

A4:=

⎛

⎜
⎜
⎜
⎝

2∂(1,1)∂(2,0) −3∂(0,2)∂(2,0) 0 ∂(0,2)2

−3∂(0,2)∂(2,0) 0 ∂(0,2)2 0

∂(2,0)2 0 −3∂(0,2)∂(2,0) 2∂(0,2)∂(1,1)

0 −3∂(0,2)∂(2,0) 2∂(0,2)∂(1,1) 0

⎞

⎟
⎟
⎟
⎠

is equal to

A.2 − 24∂(0,2)4∂(2,0)2
(
∂(0,2)∂(2,0) − ∂(1,1)2

)

and the determinant of

A3:=
(

0 ∂(0,2)2

−3∂(0,2)∂(2,0) 2∂(0,2)∂(1,1)

)
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is equal to

A.2 3∂(0,2)3∂(2,0).

Hence all the partial derivatives ∂(2,1), ∂(3,0), ∂(1,3), . . ., which are exactly those not
included in the definition of Q, are contained in the ideal of leading terms 〈LT(a)〉
(Cox et al. 2016, Definition 2.5.1).

Remark It is a mere coincidence that after computing 2nd order partial derivatives
of p1 and p2 the number of independent equations is equal to the number of 5th
order partial derivatives of f and thus the matrix A5 is uniquely determined. The
multiplicative monoid S ⊆ R was devised to contain all the prime factors of det A5.
However, to obtain A4 and A3 we had to arbitrarily choose some subset of variables,
and this time it was not a coincidence that both det A4 and det A3 share the same
prime factors as det A5. Indeed, there are other choices for which it is no longer the
case. Thus the set of variables to the polynomial ring Q was carefully selected so that
both A4 and A5 are already invertible in S−1R.

Denote by G the set of polynomials constructed above, such that every monomial
∂(2,1), ∂(3,0), ∂(1,3), . . . is a leading term LT(g) of some polynomial g ∈ G. Suppose
thatQ(�)† � 〈G〉 and let p ∈ Q(�)† \ 〈G〉. After a complete reduction of p by G we
obtain a remainder r ∈ Q(�)† \ 〈G〉, which is irreducible by G, i.e. its leading term
LT(r) is not a multiple of any LT(g), g ∈ G (Cox et al. 2016, Theorem 2.3.3). Thus
r is an element of the coefficient ring Q and corresponds to some rational function
in selected 11 variables. We will prove that r = 0, which will eventually give us the
desired contradiction. By definition, it vanishes for any tuple consisting of x , y, and
relevant partial derivatives of some function parametrizing a generic quadratic surface
at (x, y). Since r is rational, it is enough to show that the set of such arguments has a
non-empty interior as a subset of R

11.
For this, we define an implicit function ψ : R

11 → R
11 in the following way. Let

f be a parametrization of some quadratic surface satisfying (4) with a33 = 1. Then ψ

maps the tuple of parameters

(x, y, a11, a12, a13, a22, a23, b1, b2, b3, c) (10)

to the tuple

(
x, y, f , f (0,1), f (1,0), f (0,2), f (1,1), f (2,0), f (0,3), f (1,2), f (0,4)

)

consisting of x , y and relevant partial derivatives of f at (x, y). We can obtain an
explicit formula forψ by symbolically solving the quadratic equation (4) first and then
symbolically differentiating the result. Since in general there are two possible solutions
for f , we have to locally select an arbitrary branch of the square root function, so that
ψ is smooth.
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Now, consider a generic function

f (x, y) =
√

1 + x2 + y2

parametrizing a quadratic surface represented by the tuple of parameters

(x, y, −1, 0, 0, −1, 0, 0, 0, 0, −1) . (11)

Since (3) depend continuously on (10), any point in some open neighborhood U of
(11) also corresponds to a parametrization of some generic quadratic surface and thus
r ◦ ψ vanishes on U . Hence it is enough to show that ψ(U ) has a non-empty interior.
Computing the Jacobian determinant of ψ at (11) yields

A.3
9
(
x2 + 1

)4

128
(
x2 + y2 + 1

)11 ,

which is non-zero. Hence ψ is a local diffeomorphism and so there exists an open
subset V ⊆ U such that ψ |V : V → ψ(V ) is a diffeomorphism. In particular, ψ(V )

is open. However, recall that it is contained in the zero set of r , which must therefore
be a zero function, a contradiction. It follows that a ⊆ Q(�)† = 〈G〉 ⊆ a, which
means that Q(�)† = a and moreover G is, in fact, a reduced Gröbner basis of a,
which concludes the proof. ��
Remark Now we are able to clarify in what sense equations (2) are minimal. Namely,
(6) form a reduced Gröbner basis ofQ(�)†, while, as it will turn out, we would obtain
the same results as in Theorem 1.1 and Theorem 1.2 for any generating set ofQ(�)†.
Although the elements (6) seem to be the best choice, the reduced Gröbner basis is by
no means unique. Besides, with Proposition 3.2 at hand, finding other generating sets
becomes a purely algorithmic task.

4 Smoothing properties and their connection with holomorphicity

At some point in the future, we will want to deduce a linear dependence of a set of
functions from the vanishing of their generalizedWronskians. For this, we will use the
main result from Wolsson (1989), where the necessary and sufficient conditions are
established. Although the author roughly requires that all the generalized Wronskians
must vanish, in the course of the inherently constructive proof he considers only finitely
many generalized Wronskians of bounded order. Nevertheless, our initial assumption
that the function f is merely an element of W 3,1

loc (�) is too weak for any non-trivial
generalized Wronskian to be well-defined. Therefore we need to somehow improve
the smoothness of f . As it turns out, the differentiability of class C5 will be sufficient
and thus we will not use the following fact in its full generality.

Lemma 4.1 Let f ∈ W 3,1
loc (�) be a function defined on a connected open subset

� ⊆ R
2. Suppose that f is generic and is a weak solution to the system of partial

differential equations (2). Then f is infinitely differentiable.
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Proof Let u, v : � → R be the functions defined as follows:

u(x, y) := f (2,0)(x, y) − f (0,2)(x, y)
∣
∣ f (0,2)(x, y) f (2,0)(x, y) − f (1,1)(x, y)2

∣
∣3/4

v(x, y) := 2 f (1,1)(x, y)
∣
∣ f (0,2)(x, y) f (2,0)(x, y) − f (1,1)(x, y)2

∣
∣3/4

.

(12)

Note that they are well-defined, by the assumption that f is generic. Since they depend
only on the 2nd order partial derivatives of f , which are assumed to be elements of
W 1,1

loc (�), and moreover the Hessian determinant of f is locally bounded away from 0,

both functions u, v are elements ofW 1,1
loc (�). Computing their weak partial derivatives

and applying (2) one can find out that they satisfy the Cauchy–Riemann equations:

u(1,0)(x, y) − v(0,1)(x, y)

= ±
(
3 f (0,2)(x, y) + f (2,0)(x, y)

)
p1 − 2 f (1,1)(x, y)p2

4 f (0,2)(x, y)
∣
∣ f (0,2)(x, y) f (2,0)(x, y) − f (1,1)(x, y)2

∣
∣7/4

= 0,

A.4 u(0,1)(x, y) + v(1,0)(x, y)

= ± 2 f (1,1)(x, y)p1 − (
3 f (2,0)(x, y) + f (0,2)(x, y)

)
p2

4 f (2,0)(x, y)
∣
∣ f (0,2)(x, y) f (2,0)(x, y) − f (1,1)(x, y)2

∣
∣7/4

= 0,

where p1, p2 denote respectively the left-hand sides of (2) and ± is the sign of the
Hessian determinant. Again, the above formulas are well-defined, by the assumption
that f is generic. Thus u, v are analytic on � (Gray and Morris 1978, Theorem 9).
This is actually a special case of a more general result on the regularity of solutions
of hypo-elliptic partial differential equations (Hörmander 1961).

Now, observe that the 1st order partial derivatives of u, v as well as the left-hand
sides of (2) are linear in 3rd order partial derivatives of f and thus we can write e.g.

⎛

⎜
⎜
⎝

u(1,0)

u(0,1)

p1
p2

⎞

⎟
⎟
⎠ = A

⎛

⎜
⎜
⎝

f (0,3)

f (1,2)

f (2,1)

f (3,0)

⎞

⎟
⎟
⎠ ,

which allows us to express all the 3rd order partial derivatives of f in terms of the 1st
order partial derivatives of u and the 2st order partial derivatives of f . To do this, we
only need to verify that the matrix A is invertible. Indeed, its determinant is equal to

A.4 ± 4 f (0,2)(x, y) f (2,0)(x, y)
∣
∣ f (0,2)(x, y) f (2,0)(x, y) − f (1,1)(x, y)2

∣
∣1/2

,
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where ± is the sign of the Hessian determinant. Therefore we have

⎛

⎜
⎜
⎝

f (0,3)

f (1,2)

f (2,1)

f (3,0)

⎞

⎟
⎟
⎠ = A−1

⎛

⎜
⎜
⎝

u(1,0)

u(0,1)

p1
p2

⎞

⎟
⎟
⎠ = A−1

⎛

⎜
⎜
⎝

u(1,0)

u(0,1)

0
0

⎞

⎟
⎟
⎠ , (13)

where the right-hand side is linear in 1st order partial derivatives of u and algebraic
in 2nd order partial derivatives of f . Since A−1 = (det A)−1(adj A), where det A is
locally bounded away from 0 and adj A is a polynomial in 2nd order partial derivatives
of f , we have A−1 ∈ W 1,1

loc (�). It follows that the left-hand side (and hence also the

right-hand side) is an element of W 1,1
loc (�), which means by the very definition that

f ∈ W 4,1
loc (�). Now we are able to weakly differentiate the equalities (13) and iterate

the same argument to see that f is indeed infinitely differentiable on �. This ends the
proof. ��

5 Proofs of themain theorems

Before we move on to the essential part of this section, we will prove the following
lemma, which will play a key role in the proofs of both main theorems:

Lemma 5.1 Let f ∈ W 3,1
loc (�) be a function defined on a connected open subset

� ⊆ R
2. Suppose that f is generic. Then f satisfies the system of partial differential

equations (2) if and only if its graph is contained in a quadratic surface.

Proof Left implication ( ⇐� ) follows immediately from Proposition 3.2. A proof
of the right implication ( �⇒ ) is not so straightforward, since we want to deduce a
linear dependence of a set of functions fromvanishing of their generalizedWronskians,
which fails to be true in general (Peano 1889) and therefore needs specific arguments.

Again we adopt the notation from Wolsson (1989).

Definition 6 (Wolsson 1989, Definition 2)A critical point ofφ is a point of the domain
at which all generalized Wronskians of φ vanish.

Definition 7 (Wolsson 1989, Definition 3) An r × r generalised sub-Wronskian of φ,
1 ≤ r ≤ n, is a generalised Wronskian of any subsequence of φ.

Note that not every minor of a generalized Wronskian is a generalized sub-
Wronskian. Indeed, the above definition requires that it also satisfies the additional
condition for orders of partial derivatives.

Definition 8 (Wolsson 1989, Definition 4) The order of a critical point t of φ is the
largest positive integer r for which some r × r generalized sub-Wronskian of φ is not
zero at t . Should all sub-Wronskians vanish at t , the order is defined to be zero.
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We will show that every t ∈ � is a critical point of φ of order 9. First, observe that
all 10×10 generalizedWronskians of φ vanish identically on�. Indeed, from Lemma
4.1 we infer that f is smooth and thus all its generalizedWronskians are well-defined.
Moreover, by Assertion 3.1 they belong to Q(�)† and hence they vanish identically
on � since both generators of Q(�)† do.

We are left to prove that for every t ∈ � there exists a 9 × 9 generalized sub-
Wronskian of φ that is non-zero at t . Observe that i.a. every 9 × 9 minor of the
following 9 × 10 matrix

W :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ

φ(0,1)

φ(1,0)

φ(0,2)

φ(1,1)

φ(2,0)

φ(0,3)

φ(1,2)

φ(0,4)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

that comprises the first row is a valid sub-Wronskian of φ and thus it is enough to show
that W = W(t) has full rank at every t ∈ �. Denote by Wi the minor of W obtained
by deleting i th column and suppose that all Wi are zero. A direct computation shows
that

A.1 W6 = 4 f (0,2)
(
3 f (0,2) f (0,4) − 4 f (0,3)2

)
,

which implies

f (0,4) = 4 f (0,3)2

3 f (0,2)
.

Applying the above result to the definition of W5 yields

A.1 W5 = −24 f (0,2)3 f (0,3)

and consequently

f (0,3) = 0.

It follows that

A.1 W4 = 36 f (0,2)5,

which finally gives us the desired contradiction.
We are now at a point where we can apply the following fundamental theorem:
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Lemma 5.2 (Wolsson 1989, Theorem 2) If G is an open connected set consisting of
critical points of the same order r > 0, then φ has a linearly independent subset
Sr = {φ1, . . . , φr }, say, which is a basis of span(φ), and consequently φ is linearly
dependent on G.

By Lemma 5.2 we know that φ is linearly dependent on �. This concludes the
proof. ��
Remark Observe that the system of partial differential equations (2) is satisfied if and
only if a pair of functions (12) satisfies Cauchy-Riemann equations. Thus the graph of
f is contained in a quadratic surface if and only if u + iv is holomorphic. Moreover,
if f satisfies (4), then a direct computation shows that u + iv is simply a quadratic
polynomial:

A.4 u + iv = ((Q1,1 − Q2,2) − 2i Q1,2) + 2(Q1,4 − i Q2,4)z + Q4,4z2

| det Q|3/4 , (14)

where

Q:=

⎛

⎜
⎜
⎜
⎜
⎝

a11
1
2a12

1
2a13

1
2b1

1
2a12 a22

1
2a23

1
2b2

1
2a13

1
2a23 a33

1
2b3

1
2b1

1
2b2

1
2b3 c

⎞

⎟
⎟
⎟
⎟
⎠

(15)

is a symmetric matrix defining an affine quadratic form (4) and Qi, j is the (i, j)minor
of Q, i.e. the determinant of the submatrix formed by deleting the i th row and j th
column.

Remark Since a quadratic surface is uniquely determined by 9 parameters and the
quadratic polynomial (14) has only 5 parameters, a natural question arises which
functions correspond to the same quadratic polynomial? Note that u, v depend only
on 2nd order partial derivatives of f , which means that adding linear terms does not
change (14). For completeness, we still need one more parameter. Careful inspection
of (14) shows e.g. that every function of the form

f (x, y):=a
√

1 − ax2 − ay2 + bx + cy + d

gives rise to the same quadratic polynomial u + iv = z2. Unfortunately, the general
answer is far more complicated and will not be given here.

Finally, we still will need one more simple fact, which can be verified by a direct
computation:
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Assertion 5.3 (Zawalski 2022, Theorem 1)

Let f : R
2 ⊃ � → R be a function of class C2 defined on an open subset of R

2

and satisfying a quadratic equation (4). Then the following formula holds:

A.4 det H f (x, y) · � f (x, y)
2 = −16 det Q,

where H f is the Hessian matrix of f , � f is the discriminant of (4) with respect to
the variable f and Q is just as defined in (15). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 DefineU ⊆ � to be the subset consisting of those points, where
the Hessian determinant of f is positive. Note that U is open, which immediately
follows from the continuity of partial derivatives. Moreover, the assumption on f
asserts that it is also non-empty.

First, we will show the right implication ( �⇒ ). Since f |U is generic, by Lemma
5.1 its graph is contained in a quadratic surface. Let t ∈ � be a limit point of U ,
i.e. such that there exists a sequence t• of points in U whose limit is t . Now, if
� f vanishes identically on U then f is affine, a contradiction. Thus there exists
u ∈ U such that � f (u) > 0, which implies −16 det Q > 0. Moreover, since � f

is a quadratic polynomial, the sequence � f (t•)2 is bounded from above. It follows
that det H f (t•) = −16 det Q · � f (t•)−2 is bounded from below by some positive
constant ε > 0. In particular, we have det H f (t) ≥ ε > 0 and hence t ∈ U , by the
very definition. Thus we have shown thatU contains all its limit points, which makes
it closed in �. However, recall that U is also open, in which case we have simply
U = �. This concludes the first part of the proof.

The remaining left implication ( ⇐� ) follows right the same way. Since the graph
of f |U is by assumption contained in a quadratic surface, we repeat the above limit
point argument to see that likewise U = �. With this result at hand, we once again
apply Lemma 5.1 to conclude the proof. ��

Finally, we are in a position to clear out the assumption on the Hessian determinant.
However, it turns out to be important, since (2) is also satisfied by parametrizations of
some ruled surfaces, the Hessian determinant of which is non-positive.

Proof of Theorem 1.2 Define the following open sets:

�a:=
{
f (0,2) �= 0, f (2,0) �= 0, f (0,2) f (2,0) − f (1,1)2 < 0

}
,

�b:= Int
{
f (0,2) f (2,0) − f (1,1)2 = 0

}
,

�c:= Int
{
f (2,0) = 0

}
,

�d:= Int
{
f (0,2) = 0

}
.
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Clearly their sum �a ∪ �b ∪ �c ∪ �d is dense in �. By definition, on each connected
component of �b the graph of f is contained in a developable surface. Moreover, on
each connected component of �c (respectively: �d) f is linear along every straight
line parallel to the OX (respectively: OY ) axis and thus, again by definition, its graph
is contained in a Catalan surface with directrix plane X Z (respectively: Y Z ). Hence to
prove the right implication ( �⇒ ) it remains for us to show that on every connected
component of �a the graph of f satisfying (2) is contained in a doubly-ruled surface,
which readily follows from Lemma 5.1. Indeed, we immediately obtain that the graph
of f is contained in a quadratic surface of negative Gaussian curvature. The only two
are hyperbolic paraboloid and single-sheeted hyperboloid, both of which are doubly-
ruled (Hilbert and Cohn-Vossen 1999, p. 15). This concludes the first part of the proof.

On the other hand, observe that f |�b automatically satisfies (2). Indeed, denote

H f (x, y):= f (0,2)(x, y) f (2,0)(x, y) − f (1,1)(x, y)2

and observe that

p1 = −4 f (1,2)H f + f (0,2) ∂H f

∂x
+ 2 f (1,1) ∂H f

∂ y
= 0,

p2 = −4 f (2,1)H f + f (2,0) ∂H f

∂ y
+ 2 f (1,1) ∂H f

∂x
= 0,

where p1, p2 again stand for the left-hand sides of (2), respectively. Moreover, f |�c

(respectively: f |�d ) satisfies f (2,0) ≡ 0 and consequently f (3,0) ≡ 0 (respectively:
f (0,2) ≡ 0 and consequently f (0,3) ≡ 0), in which case a simple check shows that it
satisfies (2) as well. Hence to prove the left implication ( ⇐� ) it remains for us to
show that for each �i , f |�i∩�a satisfies (2). However, �i ∩ �a is non-empty if and
only if the graph of f |�i is contained in a doubly-ruled surface of negative Gaussian
curvature. The only two are hyperbolic paraboloid and single-sheeted hyperboloid
(Hilbert and Cohn-Vossen 1999, p. 15), both of which are quadratic. The assertion
follows from Lemma 5.1, which concludes the proof. ��

Remark Denote by

f (t + h)=:
3∑

k=0

1

k! fk(t)[h] + o(‖h‖)3

the series expansion of f at t ∈ �, where fk(t) stands for its kth order homogeneous
Taylor polynomial in h. Generally, any 2nd order homogeneous polynomial vanishes
on at most two lines in RP

1. Therefore if the graph of f is contained in a doubly-
ruled surface, f2(t) vanishes exactly on the two rulings that pass through t . Moreover,
f3(t) likewise must vanish on the same two rulings. In particular, it follows that f2(t)
divides f3(t) as a polynomial. So it should come as no surprise to us that, for a generic
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function f , equations (2) are satisfied if and only if f2(t) divides f3(t). Indeed,

f3(t)[h1, h2] =
(

f (3,0)(t)
f (2,0)(t)

h1 + f (0,3)(t)
f (0,2)(t)

h2

)

f2(t)[h1, h2]

− h1h2

(
p2(t)

f (2,0)(t) f (0,2)(t)
h1 + p1(t)

f (2,0)(t) f (0,2)(t)
h2

)

,

where p1, p2 again stand for the left-hand sides of (2), respectively. Observe that the
remainder is a product of h1, h2 and some linear homogeneous polynomial, whereas
f2(t)[h1, h2] is divisible by neither h1 nor h2, which means it can not divide the
remainder unless the latter is zero. Thus we have found yet another way of looking
on (2): for, in generic case, it arises as generalized Wronskians of a certain set of
functions, as Cauchy-Riemann equations for a certain pair of functions and now as
coefficients of a certain remainder from dividing f3(t) by f2(t).

Remark Since the proofs of both theorems were mainly algebraic, the same results
hold also in a complex setting, if we assume f : C

2 ⊇ � → C to be holomorphic.
Although the author did not point it out, the same applies likewise to the cited work
of Wolsson (1989) concerning generalized Wronskians, which allows us to apply the
results in an analogous manner. Only smoothing Lemma 4.1 ceases to make sense,
but actually it is not needed anymore.

Let us conclude our considerations with an alternative proof of a well-known corol-
lary from the aforementioned theoremofMaschke–Pick–Berwald (Nomizu et al. 1994,
Theorem 4.5):

Corollary 5.4 Let S ⊂ R
3 be a convex surface of class C3 such that for every x ∈ S

there is a quadratic surface having 3rd order contact with S at x. Then S is itself a
quadratic surface.

Proof Define f : R
2 ⊇ U → R to be a function such that its graph contains an open

subset of S. Fix x ∈ U and define g : R
2 ⊇ V → R to be a parametrization of a

quadratic surface having 3rd order contact with S at x. It follows from the ‘if’ part of
Theorem 1.1 that g satisfies (2) at x. Moreover, by assumption, we have the equality
of jets J 3x g = J 3x f and hence f likewise satisfies (2) at x. Now, since x was arbitrary,
it means that f satisfies (2) on the whole domain U and finally from the ‘only if’
part of Theorem 1.1 we obtain that its graph is contained in a quadratic surface. This
concludes the proof. ��

The above differential characterization of quadratic surfaces is expressed in the
language of differential geometry rather than differential equations. However, unlike
Theorem 1.1, the assumption of Corollary 5.4 is clearly invariant under affine change
of coordinate system, which is a highly desirable property.
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Appendix A Computer assistance in symbolic computations

All functions were implemented in Wolfram Mathematica (Wolfram Research
2016). The code itself is available online at https://drive.google.com/drive/folders/
1-pCxC69RI0g10bmWQdHiZ26d3faswKYX?usp=sharing. Computations were per-
formed on a Linux x86 (64-bit) machine with a single Intel® Xeon® CPU E5-2697 v3
processor and 64GB memory. The total execution time was negligible.

A.1 Notebook-1.nb

In the beginning, we use symbolic differentiation D to obtain the Wronskian matrix of
(5). Afterward, we use Minors to compute 210 symbolic determinants of order 4 and
thus find out that the four rows corresponding to 3rd order partial derivatives are indeed
linearly dependent. Then we again use Minors to compute 11 symbolic determinants
of order 10, among which the only non-trivial ones are W3,0, W2,1, W1,2 and W0,3.
Finally, we useMinors to compute 10 symbolic determinants of order 9 and select the
simplest-looking ones. Based on them, we solve some simple linear equations to find
out that all the featured minors can not vanish simultaneously. Performing the same
calculations with pen and paper would be tedious, however possible. Although we
sometimes applied Factor to factorize the results, in all cases the factorization turned
out to be trivial.

A.2 Notebook-2.nb

In the beginning, we use symbolic differentiation D to compute the left-hand side of
(8). Afterward, we use CoefficientArrays to extract the explicit form of the matrix
A5 of order 6. Then we apply Det and Factor to obtain its determinant in the form
from which we can readily see that it is an element of the multiplicative submonoid
S. Finally, we repeat the same steps for A4 of order 5 and A3 of order 4. The same
calculations could well be done with pen and paper, though it is pointless.
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A.3 Notebook-3.nb

At the beginning, we solve the quadratic equation (4) for f , assuming previously that
a33 = 1. Afterward, we use symbolic differentiation to obtain the explicit formula for
ψ . Then we use Grad to compute the Jacobian matrix of ψ with respect to the 11-
dimensional vector (10). Now, since its symbolic determinant is difficult to compute
even for a supercomputer, we instantiate the matrix at (11) and only then we apply
Det and Factor to obtain its determinant of order 11 in the simplest form. The content
of this notebook is by far the most demanding computational task because, in addition
to the heavy workload, it also requires manipulating algebraic expressions containing
square roots.

A.4 Notebook-4.nb

In the beginning, we define p1, p2, u, v and verify that u, v satisfy (12), which
requires symbolic differentiation and manipulating algebraic expressions containing
square roots. Afterward, we use CoefficientArrays to extract the explicit form of the
matrix A of order 4. Then we apply Det and Together to obtain its determinant in
the simplest form. Further, we solve the quadratic equation (4) for f and then put the
result into the formula for u + iv. We apply Together and PowerExpand to bring
the result to a simpler form. Finally, we define the matrix Q of order 4 and verify the
formula (14), usingMinors to compute 16 symbolic determinants of order 3 along the
way. Then we apply Together to force the expansion of the underlying expression.
At the very end, we verify Assertion 5.3, using symbolic differentiation D composed
with Det to obtain the Hessian determinant of f and Discriminant to compute the
discriminant of (4) with respect to the variable f . Again, we apply Together to force
the expansion of the underlying expression. The same calculations could well be done
with pen and paper, though it is pointless.
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