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Abstract
Given an affine algebra R = K [x1, . . . , xn]/I over a field K , where I is an ideal in the
polynomial ring P = K [x1, . . . , xn], we examine the task of effectively calculating
re-embeddings of I , i.e., of presentations R = P ′/I ′ such that P ′ = K [y1, . . . , ym]
has fewer indeterminates. For cases when the number of indeterminates n is large
and Gröbner basis computations are infeasible, we have introduced the method of
Z -separating re-embeddings in Kreuzer et al. (J Algebra Appl 21, 2022) and Kreuzer,
et al. (São Paulo J Math Sci, 2022). This method tries to detect polynomials of a
special shape in I which allow us to eliminate the indeterminates in the tuple Z by a
simple substitution process. Here we improve this approach by showing that suitable
candidate tuples Z can be found using the Gröbner fan of the linear part of I . Then
we describe a method to compute the Gröbner fan of a linear ideal, and we improve
this computation in the case of binomial linear ideals using a cotangent equivalence
relation. Finally, we apply the improved technique in the case of the defining ideals
of border basis schemes.
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1 Introduction

Afinitely generated algebra R over a field K is also called an affine K -algebra. In order
to analyse an affine K -algebra and to perform basic operations effectively, we usually
assume that the algebra is given by generators and relations, i.e., that R = P/I where
P = K [x1, . . . , xn] is a polynomial ring over K and I is an explicitly given ideal in P .
The question of whether we can actually perform the intended calculations, many of
which are based on the theory of Gröbner bases, depends chiefly on the number n of
indeterminates involved in the presentation R = P/I . If the number n is too large,
essentially all computations, with the possible exception of those which require solely
linear algebra, become prohibitively expensive. Thus it is an important task to find
better presentations R ∼= P ′/I ′ where P ′ = K [y1, . . . , ym] is a polynomial ring in
fewer indeterminates and I ′ is an ideal in P ′.

In the language of Algebraic Geometry, we are given an affine scheme Spec(R)

embedded into an affine space A
n
K , and we are looking for a re-embedding of it into a

lower dimensional affine space A
m
K . In this setting, the topic has a long history, begin-

ningwith the classical result that a smooth variety of dimension d can be embedded into
A
2d+1 if the field K is infinite. In the fundamental paper (Srinivas 1991), this bound

is generalized to a bound for arbitrary affine schemes over infinite fields. The usual
way to achieve the desired improvements of an embedding in algebraic geometry is by
using generic projections. The obstruction is thenmainly given by the secant variety of
the scheme (see Holme 1975, Sect. 7). If we intend to perform actual computer calcu-
lations, computing projections corresponds to calculating elimination ideals, possibly
after a change of coordinates. Herein lies the heart of the problem: finding suitable
projections and calculating the resulting presentations R ∼= P ′/I ′ is traditionally done
by computing Gröbner bases with respect to elimination term orderings, and this is
usually infeasible when the number of indeterminates is large.

In two previous papers (Kreuzer et al. 2022a) and (Kreuzer et al. 2022b), the
authors introduced and developed a new method for re-embedding affine algebras
based on tuples of separating indeterminates. This method can be applied to any
finitely generated K -algebra R = P/I if I is an ideal contained in the maximal ideal
M = 〈x1, . . . , xn〉 of P . If this hypothesis is not satisfied from the outset, it may be
necessary to know a K -rational point of Spec(R) and to perform a suitable change of
coordinates. Then, for a tuple Z = (z1, . . . , zs) of indeterminates in P , we say that I
is Z -separating if there exist a tuple of non-zero polynomials ( f1, . . . , fs) of I and a
term ordering σ such that LTσ ( fi ) = zi for i = 1, . . . , s. Given a tuple Z such that I
is Z -separating, we can eliminate the indeterminates in Z and get a Z-separating re-
embedding Φ : P/I −→ K [Y ]/(I ∩ K [Y ]) where Y = {x1, . . . , xn}\{z1, . . . , zs}.
Here the actual elimination can be carried out by interreducing ( f1, . . . , fs) such that
they become coherently separating and performing substitutions in the remaining gen-
erators of I . Of course, in this way we will usually end up with a system of generators
of the elimination ideal, but not a Gröbner basis with respect to any term ordering.

Notice that the question of whether an ideal I in P is Z -separating for some tuple of
indeterminates Z is related to the famous Epimorphism Problem in Affine Geometry
(see for instance van den Essen 2004; Drensky 2005, or Gupta 2022). However, we
are looking for even more special generators of I than required in this problem, and
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therefore we generally cannot expect I to be Z -separating for some tuple Z . Our main
focus is to try to find such tuples Z computationally, even if we cannot know whether
they exist for a given ideal I , because for larger numbers of indeterminates this is our
best chance to effectively calculate good, and possibly optimal, re-embeddings.

Using the method of Z -separating re-embeddings, the task of finding good re-
embeddings is split into two steps:

(1) Find a suitable candidate tuple of indeterminates Z .
(2) Check if this tuple Z really works.

For the second step we can use a method based on Linear Programming Feasibility
(LPF), if we have a candidate tuple ( f1, . . . , fs) of polynomials fi ∈ I available (see
Kreuzer et al. 2022b, Section 3). Other algorithms for this task, which are efficient but
not guaranteed to succeed, are in development. The current paper is chiefly concerned
with the first step of finding suitable candidate tuples Z . A first idea of how to restrict
the number of tuples one has to consider was introduced in Kreuzer et al. (2022b,
Section 5), namely the idea is to use the Z -restricted Gröbner fan of I . However, this
approach may still be computationally heavy, and this is where the first new result of
the current paper comes in: it turns out that it is enough to consider the Gröbner fan
of the linear part LinM(I ) of I (see Propositions 2.6 and 3.1). The linear part of I is
the linear ideal generated by the linear parts of an arbitrary system of generators of I ,
and thus easy to compute.

In Sect. 2 we begin by recalling and extending the basic theory of Z -separating
re-embeddings. For the later applications, it is necessary to pay close attention to the
questions ofwhen the newly found re-embeddings areoptimal, i.e.,when the numberm
of indeterminates of P ′ is the minimal possible one (see Corollary 2.8), and when the
re-embedded ring is actually a polynomial ring, i.e., when I ′ = 〈0〉 and Spec(R) is
isomorphic to an affine space (see Corollary 2.9).

Thus we are led to examine the task of calculating the Gröbner fan of a linear
ideal IL in Sect. 3. First we reduce the problem to check whether a given tuple of
indeterminates Z consists of the leading terms of a reduced Gröbner basis of IL to
a linear algebra computation (see Proposition 3.1). Then we reduce the calculation
of the Gröbner fan of IL to the task of finding the maximal minors of a matrix (see
Theorem 3.5). We note that this step can also be tackled via any method for computing
the bases of a linear matroid (see Remark 3.7.b). Combining all steps, we present an
algorithm for finding Z -separating re-embeddings using the Gröbner fan of LinM(I )
in Sect. 4. Notice that Algorithm 4.1 also allows us to find optimal Z -separating
re-embeddings, if they exist.

As the calculation of the maximal minors of a matrix required by Theorem 3.5
could still be quite demanding, we look at a practically relevant special case in Sect. 5,
namely the case of binomial linear ideals. In this casewe define an equivalence relation
on the indeterminates in X = (x1, . . . , xn), called cotangent equivalence and based
on the equality of K · x̄i and K · x̄ j in the cotangent space Cotm(R) = m/m2,
where m = 〈x̄1, . . . , x̄n〉 is the maximal ideal of R generated by the residue classes
of the indeterminates. Using this equivalence relation, the indeterminates in X can
be divided into three types: basic indeterminates which can never by a part of any
separating tuple Z , trivial indeterminates which can be part of such a tuple Z , and
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proper equivalence classes of indeterminates for which a proper subset can be put
into Z . With the help of this equivalence relation we describe the leading termGröbner
fan of a linear ideal explicitly (seeTheorem5.5), apply it to the classification of possible
separating tuples Z (see Theorem 5.6), and spell out an explicit efficient algorithm to
compute those tuples (see Algorithm 5.7).

In the final section we apply the new theory to the case which prompted its devel-
opment in the first place, namely to the coordinate rings of border basis schemes.
These schemes are importantmoduli spaces inAlgebraicGeometrywhich parametrize
0-dimensional polynomial ideals. Their vanishing ideals have exactly the correct struc-
ture to make Z -separating re-embeddings work: they are contained in the maximal
ideal generated by the indeterminates, their linear part is a binomial linear ideal, and
the cotangent equivalence classes can be calculated quickly (using the algorithm given
in Kreuzer et al. 2020). In this setting the indeterminates of the underlying polynomial
ring can be classified further into interior indeterminates and rim indeterminates, and
we are able to provide additional information about their distribution in the cotangent
equivalence classes (see Theorem 6.7). Our final Example 6.8 shows the machinery
of Z -separating re-embeddings at work and verifies some claims in Huibregtse (2002,
Remark 7.5.3).

All algorithms mentioned in this paper were implemented in the computer algebra
system CoCoA (see [1]) and are available as a package for ApCoCoA (see [20]) on
the first author’s web page1 This package can be applied to perform the calculations
underlying most examples. Their use was essential in the discovery of properties and
features which eventually evolved into theorems or disproved previous conjectures.
The general notation and definitions in this paper follow (Kreuzer and Robbiano 2000)
and (Kreuzer and Robbiano 2005).

2 Z-Separating Re-embeddings

In this paper we let K be an arbitrary field, let P = K [x1, . . . , xn], and let
M = 〈x1, . . . , xn〉. The tuple formed by the indeterminates of P is denoted by
X = (x1, . . . , xn). Moreover, let 1 ≤ s ≤ n, let z1, . . . , zs be pairwise distinct
indeterminates in X , and let Z = (z1, . . . , zs). Denote the remaining indeterminates
by {y1, . . . , yn−s} = {x1, . . . , xn}\{z1, . . . , zs}, and let Y = (y1, . . . , yn−s). Commit-
ting a slight abuse of notation, we shall also write Y = X \ Z . The monoid of terms
in P is denoted by T

n = {xα1
1 · · · xαn

n | αi ≥ 0}. Given a term ordering σ on T
n , its

restriction to T(y1, . . . , yn−s) is denoted by σY .
Recall that an algebra of type R = P/I where P = K [x1, . . . , xn] is a polynomial

ring over a field K and I is a proper ideal in P is called an affine K -algebra. In this
setting, re-embeddings are defined as follows.

Definition 2.1 Let P = K [x1, . . . , xn] be a polynomial ring over a field K , let I be a
proper ideal in P , and let R = P/I .

(a) A K -algebra isomorphism Ψ : R −→ P ′/I ′, where P ′ is a polynomial ring
over K and I ′ is an ideal in P ′, is called a re-embedding of I .

1 https://symbcomp.fim.uni-passau.de/en/symbolic-computation/projects.
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(b) A re-embedding Ψ : R −→ P ′/I ′ of I is called optimal if every K -algebra
isomorphism R −→ P ′′/I ′′ with a polynomial ring P ′′ over K and an ideal I ′′
in P ′′ satisfies the inequality dim(P ′′) ≥ dim(P ′).

In Kreuzer et al. (2022a) and Kreuzer et al. (2022b), the authors examined re-
embeddings of affine K -algebras, i.e., isomorphisms with presentations requiring
fewer K -algebra generators. For these techniques to work, we need to assume that
the given ideal I is contained in a linear maximal ideal of P . As explained in Kreuzer
et al. (2022a, Sect. 1), we can then perform a linear change of coordinates and assume
that I is contained inM = 〈x1, . . . , xn〉. In particular, it was shown that the following
situation leads to such re-embeddings.

Definition 2.2 Let I be an ideal in P with I ⊆ M, and let Z = (z1, . . . , zs) be a tuple
of distinct indeterminates in X .

(a) We say that the ideal I is Z -separating if there exist a term ordering σ on T
n and

f1, . . . , fs ∈ I\{0} such that LTσ ( fi ) = zi for i = 1, . . . , s. In this situation σ is
called a Z -separating term ordering for I , and the tuple ( f1, . . . , fs) is called a
Z -separating tuple.

(b) The ideal I is called coherently Z -separating if it contains a Z -separating tuple
( f1, . . . , fs) such that for i �= j the indeterminate zi does not divide any term in
the support of f j .

Given a Z -separating term ordering σ for I , the reduced σ -Gröbner basis of I is of
the form G = {z1−h1, . . . , zs −hs, g1, . . . , gr }with hi , g j ∈ K [Y ]. In this case the
K -algebra homomorphism Φ : P/I −→ K [Y ]/(I ∩ K [Y ]) given by Φ(x̄i ) = x̄i for
xi ∈ Y and Φ(x̄i ) = h̄ j for xi = z j ∈ Z is an isomorphism of K -algebras. It is called
the Z -separating re-embedding of I (seeKreuzer et al. 2022a, Theorem2.13). Notice
that themapΦ is a re-embedding of I such that the new polynomial ring K [Y ] involves
fewer indeterminates, and the size of Z measures the improvement #Z = #X − #Y
we achieved. Geometrically, the original variety can be viewed as the graph of the
functions h1, . . . , hs over the re-embedded variety.

For the choice of a Z -separating term ordering, we have the following observation.

Proposition 2.3 Let I be an ideal in P which is contained in M, and let Z =
(z1, . . . , zs) be a tuple of distinct indeterminates in X. Then the following conditions
are equivalent.

(a) The ideal I is Z-separating.
(b) For every elimination ordering σ for Z, we have 〈Z〉 ⊆ LTσ (I ).
(c) There exists an elimination ordering σ for Z such that 〈Z〉 ⊆ LTσ (I ).

Proof To show that (a) implies (b), we note that, by definition, there exists a Z -
separating term ordering σ for I . By Kreuzer et al. (2022b, Remark 4.3), it follows
that any elimination ordering for Z is then also a Z -separating term ordering for I .
Now the claim follows from Kreuzer et al. (2022b, Proposition 4.2).

Condition (b) obviously implies (c), and the remaining implication (c)⇒(a) follows
from the definition. ��
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The following example illustrates this proposition.

Example 2.4 Consider the ring P = Q[x, y, z], the tuple Z = (x), and the ideal
I = 〈 f1, . . . , f10〉, where

f1 = xy2 + 1
2 y

3 − 1
2 y

2z − x2 − 1
2 xy − y2 + 1

2 xz + x,
f2 = y2z2 + 3y3 − 4y2z − xz2 − 3xy + 4xz,
f3 = y3z − xyz − y2z + xz,
f4 = y4 − xy2 − y3 + xy,
f5 = x2y2 − x3,
f6 = x3 + 1

2 x
2y + xy2 + 1

2 y
3 − 1

2 x
2z − 1

2 y
2z − x2 − y2,

f7 = x2z2 + y2z2 + 3x2y + 3y3 − 4x2z − 4y2z,
f8 = x2yz + y3z − x2z − y2z,
f9 = x2y2 + y4 − x2y − y3,
f10 = x4 + x2y2.

At first glance, the ideal I does not appear to be Z -separating, even if we use linear
combinations of the generators. However, for any elimination ordering σ for Z , the
reduced σ -Gröbner basis of the ideal I is {x − y2, y4 + y2}, and this proves that I is
indeed Z -separating.

The above proposition provides one way to solve the following task.

Remark 2.5 (Checking Z -Separating Tuples) Given a tuple of indeterminates Z , there
are several methods for checking whether the ideal I is Z -separating.

(a) Condition (b) of the last proposition says that we can check 〈Z〉 ⊆ LTσ (I ) for any
elimination ordering σ for Z . However, the required Gröbner basis computation
may be too costly, in particular if the given ideal I is not Z -separating.

(b) If we have a tuple of polynomials ( f1, . . . , fs) with fi ∈ I and want to check
whether it is Z -separating, we can use the methods explained in Kreuzer et al.
(2022b, Sect. 4). They use Linear Programming Feasibility solvers and are usually
very fast.

In the following, our main focus is the possibility to weed out many candidate
tuples Z beforehand. In Kreuzer et al. (2022b) it was suggested to use the Gröbner
fan of I for this purpose. Actually, as we shall see later, it suffices to use the Gröbner
fan of the linear part of I which we introduce now. Recall that LinM( f ) denotes
the homogeneous component of standard degree 1 of a polynomial f ∈ M. It is
called the linear part of f . Given an ideal I contained in M, the K -vector space
LinM(I ) = 〈LinM( f ) | f ∈ I 〉K is called the linear part of I .

In Kreuzer et al. (2022a, Proposition 1.6), we showed that LinM(I ) is easy to
compute, since it is equal to 〈LinM( f1), ...,LinM( fs)〉K , where { f1, . . . , fs} is any
set of generators of I . In this setting we make the following useful observation.

Proposition 2.6 Let I be an ideal in P which is contained in M. Suppose that I is
Z-separating for some tuple of indeterminates Z in X, let σ be a Z-separating term
ordering for I , and let Y = X \ Z.
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(a) We have 〈Z〉 ⊆ LTσ (〈LinM(I )〉),
(b) Let Sσ be the set of indeterminates which generate LTσ (〈LinM(I )〉). Then we

have Y ⊇ X\Sσ .
(c) We have Z ⊆ LTτ (〈LinM(I )〉) for every elimination ordering τ for Z.

Proof First we show (a). By assumption, there exists a tuple ( f1, . . . , fs) of poly-
nomials in I which is the reduced σ -Gröbner basis of 〈 f1, . . . , fs〉 and such that
zi = LTσ ( fi ) for i = 1, . . . , s. Then we have zi = LTσ (LinM( fi )) for i = 1, . . . , s,
and thus 〈Z〉 ⊆ LTσ (〈LinM(I )〉).

Claim (b) follows from (a) and the definition of Y , and claim (c) is a consequence
of (a) and Proposition 2.3. ��

Let us denote the image of M in P/I by m. Recall that the K -vector space
Cotm(R) = m/m2 is called the cotangent space of P/I at the origin.

Remark 2.7 As shown in Kreuzer et al. (2022a, Proposition 1.8.b), the canonical map
P1 −→ m/m2 induces an isomorphism of K -vector spaces P1/LinM(I ) ∼= m/m2.
In the setting of the proposition, the set of the residue classes of the elements in X\Sσ

is a K -basis of P1/LinM(I ). Therefore the residue classes of the indeterminates in
Y = X\Sσ generate the cotangent space Cotm(R) ∼= m/m2 of P/I at the origin.

When we are only looking for Z -separating re-embeddings of I which are optimal,
the above proposition yields the following characterization.

Corollary 2.8 In the setting of the proposition, assume that s = #Z is equal to the
K -vector space dimension of LinM(I ). Then the following claims hold.

(a) The map Φ : P/I −→ K [Y ]/(I ∩ K [Y ]) is an optimal re-embedding of I .
(b) We have 〈Z〉 = LTσ (〈LinM(I )〉), and hence Y = X \ Sσ .
(c) The residue classes of the indeterminates in Y = X \ Z form a K-vector space

basis of the cotangent space Cotm(R) ∼= m/m2 of P/I at the origin.

Proof Claim (a) is a consequence of Kreuzer et al. (2022a, Corollary 4.2). Let us
prove (b). By claim (a) of the proposition, we have 〈Z〉 ⊆ LTσ (〈LinM(I )〉). Since we
have the equality s = dimK (〈Z〉K ) = dimK (LinM(I )), we deduce that Z minimally
generates LTσ (〈LinM(I )〉).

Finally, let us prove (c). By (b), we have Z = Sσ . As mentioned in the preced-
ing remark, the set of the residue classes of the elements in X \ Sσ is a K -basis of
P1/LinM(I ). This implies the claim. ��

An important situation in which we obtain an optimal re-embedding is described
by the following corollary.

Corollary 2.9 In the setting of the preceding corollary, the following claims hold.

(a) The localization PM/IM is a regular local ring if and only if I ∩ K [Y ] = {0}.
Now assume that these conditions are satisfied.

(b) The map Φ : P/I −→ K [Y ] is an isomorphism with a polynomial ring and the
scheme Spec(P/I ) is isomorphic to an affine space.
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(c) The reduced σ -Gröbner basis of I is of the form G = {z1 − h1, . . . , zs − hs} with
hi ∈ K [Y ] and it is a minimal set of generators of I .

(d) Every Z-separating tuple F = ( f1, . . . , fs) is a Gröbner basis of I with respect
to any elimination ordering for Z. It is a minimal system of generators of I and a
permutable regular sequence in P.

(e) The reduced Gröbner bases of I for all elimination orderings for Z coincide.

Proof Claim (a) follows from Kreuzer et al. (2022b, Proposition 6.7). Parts (b) and (c)
are immediate consequences of (a).

Now we show (d). Since F is separating, we have 〈Z〉 = LTσ (〈FZ 〉) for every
elimination ordering σ for Z . The theorem on the computation of elimination modules
(cf. Kreuzer and Robbiano 2000, Theorem 3.4.5) implies that every σ -Gröbner basis
of I consists of polynomials with leading terms in 〈Z〉 and polynomials in K [Y ]
generating I ∩ K [Y ]. By (a), we have I ∩ K [Y ] = {0}, whence it follows that F is
in fact a minimal σ -Gröbner basis of I . Consequently, F is a system of generators
of I . Moreover, since the leading terms of f1, . . . , fs form a regular sequence, also
F = ( f1, . . . , fs) is a regular sequence.

Finally, to prove (e), we use the definitions and results of Kreuzer et al. (2022b,
Section 5). By Thm. 5.5, the map �Z : GFanZ (I ) −→ GFan(I ∩ K [Y ]) is bijec-
tive. Since we have I ∩ K [Y ] = {0}, we obtain GFan(I ∩ K [Y ]) = {∅}. Therefore
GFanZ (I ), which is not empty, has cardinality one. ��

Let us apply this corollary in a concrete case.

Example 2.10 Let P = Q[x, y, z, w], let f1 = w2 + x − y + 3z, f2 = zw2 +w3 + y,
f3 = w3 − xz + yz − 3z2 + y, and let I = 〈 f1, f2, f3〉. By substituting y with
− f2 + y = −zw2 − w3 in f1, we get f ′

1 = zw2 + w3 + w2 + x + 3z. Then, by
substituting y with −zw2 − w3 and x with − f ′

1 + x = −zw2 − w3 − w2 − 3z in f3
we get 0.

Consequently, we have I = 〈 f ′
1, f2〉 and ( f ′

1, f2) is clearly the reduced Gröbner
basis of I with respect to every elimination ordering for (x, y). According to the above
corollary, we obtain an isomorphism P/I ∼= Q[z, w], and ( f ′

1, f2) is a permutable
regular sequence.

The final example in this section shows that not all optimal embeddings fall into
the area of application of the above corollary.

Example 2.11 In Q[x, y], consider the polynomial F = 2x8 + 8x6y + 12x4y2 +
8x2y3+2y4+x Then theQ-algebra homomorphismα : Q[x, y] −→ Q[x] defined by
α(x) = −2x4and α(y) = x −4x8 satisfies α(x2+ y) = x as well as Ker(α) = 〈F〉. It
follows that ᾱ : Q[x, y]/〈F〉 −→ Q[x] is an optimal re-embedding of 〈F〉, although F
is not x-separating.Unlike the case of Example 2.4, there is no separating termordering
for the ideal 〈F〉 here at all.

Another example of this type is the famous Koras-Russel cubic threefold whose
coordinate ring is R = K [x, y, z, t]/〈x + x2y + z2 + t3〉. Using completely differ-
ent techniques, it was shown that R is not isomorphic to a polynomial ring in three
indeterminates (see Makar-Limanov 2005 and Crachiola 2005).
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3 Gröbner fans of linear ideals

As before, let K be a field, let P = K [x1, . . . , xn], and let I be an ideal of P
which is contained in M = 〈x1, . . . , xn〉. In the preceding section we saw that for
the existence of a Z -separating re-embedding of I it is necessary that we have 〈Z〉 ⊆
LTσ (〈LinM(I )〉) for some term ordering σ . Here 〈LinM(I )〉 is a linear ideal, i.e.,
an ideal generated by linear polynomials. The possible ideals LTσ (〈LinM(I )〉) are
classified by theGröbner fan (seeMora andRobbiano 1988) of 〈LinM(I )〉. Therefore
we study Gröbner fans of linear ideals in this section with a special emphasis on the
task of computing them efficiently.

In the following we let L = (�1, . . . , �r ) be a tuple of linear forms in P , and
we let IL = 〈L〉 be the linear ideal generated by L . For i = 1, . . . , r , we write
�i = ai1x1 + · · · + ainxn with ai j ∈ K . Then the matrix A = (ai j ) ∈ Matr ,n(K ) is
called the coefficient matrix of L . In view of Proposition 2.6, we are interested in the
condition 〈Z〉 ⊆ LTσ (IL). It can be rephrased as follows.

Proposition 3.1 Let L = (�1, . . . , �r ) be a tuple of K -linearly independent linear
forms in P, let IL = 〈L〉, and let A = (ai j ) be the coefficient matrix of L. Moreover, let
s ≤ r , let Z = (z1, . . . , zs) be a tuple of distinct indeterminates in X = (x1, . . . , xn),
and let Y = X \ Z. Then the following conditions are equivalent.

(a) There exists a term ordering σ such that 〈Z〉 ⊆ LTσ (IL).
(b) The residue classes of the elements of Y generate the K -vector space P1/〈L〉K .
(c) Let i1, . . . , is ∈ {1, . . . , n} be the indices such that z j = xi j for j = 1, . . . , s.

Then the columns i1, . . . , is of A are linearly independent.

Proof To show (a)⇒(b), we first note that 〈Z〉 ⊆ LTσ (IL) implies that the canonical
map K [Y ] ∼= P/〈Z〉 −→ P/LTσ (IL) is surjective. Hence the residue classes of the
elements ofY generate the K -algebra P/LTσ (IL). ByMacaulay’s Basis Theorem (see
Kreuzer and Robbiano 2000, Theorem 1.5.7), it follows that the residue classes of the
elements of Y generate the K -algebra P/IL . We observe that that IL is generated by
linear forms, and therefore P/IL is isomorphic to a polynomial ring. Thus the residue
classes of a tuple of indeterminates Y are a K -algebra system of generators of the ring
P/IL if and only if they are a system of generators of the K -vector space given by its
homogeneous component P1/(IL)1 of degree one, where (IL)1 = 〈L〉K .

The assumption in (b) implies that the indeterminates in Z can be expressed as linear
combinations of the indeterminates in Y . Consequently, any elimination ordering σ

for Z satisfies 〈Z〉 ⊆ LTσ (IL). This proves (b)⇒(a).
Finally, we show that (b) and (c) are equivalent. Notice that both conditions imply

s ≤ r . The tuple Y = X \ Z is a system of generators of the vector space P1/〈L〉K if
and only if {�1, . . . , �r } together with Y is a system of generators of P1. This means
that, if we extend A with n− s rows that are unit vectors having their non-zero entries
at the positions of the indeterminates in Y , the resultingmatrix A of size (r+n−s)×n
has the maximal rank n. Now we consider the matrix A(i1,...,is ) consisting of columns
i1, . . . , is of A. By renumbering the indeterminates, we may assume that i1 = 1, . . . ,
is = s, and hence that the extended matrix is upper block triangular of the form
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A =
(
A(i1,...,is ) ∗

0 In−s

)

where In−s is the identity matrix of size n − s. Now it is clear that the rows of A
generate Kn if and only if the rows of A(i1,...,is ) generate K

s , and this is equivalent to
A(i1,...,is ) having maximal rank s. This concludes the proof of the proposition. ��

Asa special case of the proposition,weget the following characterizationof tuples Z
which are leading term tuples of a marked reduced Gröbner basis in GFan(IL). Recall
that a marked Gröbner basis of an ideal J is a set of pairs

G = { (LTσ (g1), g1), . . . , (LTσ (gk), gk) }

where σ is a term ordering andG = {g1, . . . , gk} is the reduced σ -Gröbner basis of J .
The set of all marked reduced Gröbner bases of J is the Gröbner fan GFan(J ) of J .

Corollary 3.2 In the setting of the proposition, assume that s = r . Then the following
conditions are equivalent.

(a) There exists a term ordering σ such that 〈Z〉 = LTσ (IL).
(b) The residue classes of the elements of Y are a K -basis of P1/〈L〉K .
(c) Let i1, . . . , is ∈ {1, . . . , n} be the indices such that z j = xi j for j = 1, . . . , s.

Then the columns i1, . . . , is of A form an invertible matrix of size s × s.

Our next goal is to construct a bijection between the Gröbner fan of IL and the
non-zero maximal minors of A. The following terminology will prove useful.

Definition 3.3 Let J be an ideal in P .

(a) For a marked reduced Gröbner basis G = {(LTσ (g1), g1), . . . , (LTσ (gk), gk)}
of J , we call LTσ (G) = {LTσ (gk), . . . ,LTσ (gk)} the leading term set of G.

(b) The set LTGFan(J ) of all leading term sets of marked reduced Gröbner bases in
GFan(J ) is called the leading term Gröbner fan of J .

The following lemma provides some information about changing the basis of IL .
As above, by A(i1,...,is ) we denote the matrix consisting of columns i1, . . . , is of a
matrix A.

Lemma 3.4 Let L = (�1, . . . , �s) be a tuple of K -linearly independent linear forms
in P, let IL = 〈L〉, and let A = (ai j ) be the coefficient matrix of L. Moreover, let
L ′ = (�′

1, . . . , �
′
r ) be a further tuple of linear forms in IL , and let A′ ∈ Matr ,n(K ) be

its coefficient matrix.

(a) The tuple L ′ is a minimal system of generators of IL if and only if r = s and there
exists a matrix U ∈ GLs(K ) such that A′ = U · A.

(b) A set of pairs {(xi1 , �′
1) . . . , (xir , �

′
r )}, where 1 ≤ i1 < · · · < ir ≤ n, is a marked

reduced Gröbner basis of IL , if and only if r = s, the matrix A(i1,...,is ) is invertible,
and A′ = (A(i1,...,is ))

−1 · A.
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Proof Claim (a) follows from the fact that every tuple of minimal generators of IL is
also a basis of the K -vector space (IL)1.

To prove (b) we observe that a minimal Gröbner basis of a linear ideal is also a
minimal set of generators of IL . This yields r = s. Moreover, it is reduced if and
only if the submatrix A′

(i1,...,is )
of A′ is the identity matrix, and hence the conclusion

follows from (a). ��
This lemma can also be interpreted in terms of the Plücker embedding of the Graß-

mannianGr(s, n). Nowwe are ready to present the key result for computingGFan(IL).

Theorem 3.5 (The Gröbner Fan of a Linear Ideal) Let L = (�1, . . . , �s) be a tuple
of K -linearly independent linear forms in P, let IL = 〈L〉, and let A = (ai j ) be the
coefficient matrix of L. Furthermore, let M be the set of tuples (i1, . . . , is) such that
1 ≤ i1 < · · · < is ≤ n and such that the corresponding maximal minor of the matrix
A = (ai j ) is non-zero.

(a) The map ϕ : LTGFan(IL) −→ M given by ϕ(Z) = (i1, . . . , is) for a tuple
Z = (xi1 , . . . , xis ) ∈ LTGFan(IL) with 1 ≤ i1 < · · · < is ≤ n is well-defined
and bijective.

(b) The map ψ : GFan(IL) −→ M given by ψ(G) = ϕ(LTσ (G)) for every G ∈
GFan(IL) is well-defined and bijective.

Proof First we prove (a). To begin with, let us check that ϕ is well-defined. For
an element G ∈ GFan(IL), the tuple Z = LTσ (G) satisfies 〈Z〉 = LTσ (IL). Let
Z = (xi1 , . . . , xis ) with 1 ≤ i1 < · · · < is ≤ n. Then Corollary 3.2.c shows
det(A(i1,...,is )) �= 0, and therefore ϕ is well-defined.

Since the map ϕ is clearly injective, we still need to show that it is surjective. Given
(i1, . . . , is) ∈ M , part (b) of the lemma implies that (L ′)tr = A−1

(i1,...,is )
·L tr is a reduced

Gröbner basis of IL with leading term tuple Z = (xi1 , . . . , xis ). Therefore we have
ϕ(Z) = (i1, . . . , is), and this proves the desired surjectivity.

To show (b), we note that the map ψ is clearly well-defined and injective. By the
definition of LTGFan(IL), it is also surjective. ��

Based on this theorem, we can compute the Gröbner fan of a linear ideal as follows.

Corollary 3.6 (Computing the Gröbner Fan of a Linear Ideal) Let IL = 〈�1, . . . , �s〉
be an ideal in P generated by linearly independent linear forms �1, . . . , �s ∈ P1. Then
we can compute GFan(IL) as follows.

(1) Let A be the coefficient matrix of L, and let S = ∅.
(2) For every tuple (i1, . . . , is) ∈ M, compute the maximal minor det(A(i1,...,is )) of A.
(3) If det(A(i1,...,is )) �= 0, compute the vector (L ′)tr = (A(i1,...,is ))

−1 · L tr whose tuple
of leading terms is Z = (xi1 , . . . , xis ). Append the corresponding marked reduced
Gröbner basis of IL to S. Continue with the next tuple in Step (2).

(4) Return the set S = GFan(IL).

Of course, depending on the numbers n and s, computing
(n
s

)
determinants could

be quite costly. The following remark may help us out.
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Remark 3.7 Let IL = 〈�1, . . . , �s〉 be an ideal in P generated by linearly independent
linear forms �1, . . . , �s ∈ P1 as above.

An alternativeway of viewing the task to computeGFan(IL) is obtained by applying
Corollary 3.2. The complements of the leading term sets of reduced Gröbner bases
of IL correspond uniquely to sets of indeterminates whose residue classes form a
K -basis of P1/(IL)1. All sets of indeterminates whose residue classes are linearly
independent in P1/(IL)1 are the independent sets of a linear matroid, and maximal
such sets are the bases of the matroid. The task of computing the bases of a linear
matroid has been studied intensively, and many algorithms are known, see for instance
the reverse search technique of D. Avis and K. Fukuda (cf. Avis and Fukuda 1996).

Let us calculate the Gröbner fan of an explicit linear ideal.

Example 3.8 Let P = Q[x, y, z, w], let �1 = x + y − z + 4w, �2 = x − y − z, and let
IL = 〈�1, �2〉. The set {�1, �2} is a set of minimal generators of IL and its coefficient
matrix is

A =
(
1 1 −1 4
1 −1 −1 0

)
.

One 2 × 2-submatrix is singular. The others are

A12 = (
1 1
1 −1

)
, A14 = (

1 4
1 0

)
, A23 = ( 1 −1

−1 −1

)
, A24 = (

1 4−1 0

)
, A34 = ( −1 4

−1 0

)
.

Multiplying their inverses by A we get the matrices

(
1 0 −1 2
0 1 0 2

)
,
(
1 −1 −1 0
0 1/2 0 1

)
,
(

0 1 0 2−1 0 1 −2

)
,
( −1 1 1 0

1/2 0 −1/2 1

)
,
( −1 1 1 0

0 1/2 0 1

)
.

They correspond to the following marked reduced Gröbner bases of IL which form
the Gröbner fan of IL :

{(x, x − z + 2w), (y, y + 2w)}, {(x, x − y − z), (w,w + 1
2 y)},

{(y, y + 2w), (z, z − x − 2w)}, {(y, y − x + z), (w,w + 1
2 x − 1

2 z},
{(z, z − x + y), (w,w + 1

2 y)}.

4 Finding Z-separating re-embeddings

In this section we show how to apply the Gröbner fan of the linear part of an ideal to
find tuples Z which are good candidates for providing Z -separating re-embeddings of
the ideal. InKreuzer et al. (2022a)we gave some answers to this questionwhich use the
computation of the Gröbner fan of the ideal I itself. Unfortunately, the computation of
GFan(I )may be infeasible for large examples. The Gröbner fan of the ideal generated
by the linear part of I is in general much smaller and thus provides a better set of
candidate tuples Z .
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Using the definitions and notation introduced in the preceding sections, the follow-
ing algorithm uses the Gröbner fan of the linear part of I in order to find Z -separating
re-embeddings.

Algorithm 4.1 (Z-Separating Re-embeddings via GFan (〈LinM(I )〉)) Let I ⊆ M
be an ideal of P, and let s ≤ dimK (LinM(I )). Consider the following sequence of
instructions.

(1) Using Corollary 3.6, compute GFan(〈LinM(I )〉).
(2) Form the set S of all tuples Z = (z1, . . . , zs) such that there is marked reduced

Gröbner basis G inGFan(〈LinM(I )〉) for which z1, . . . , zs are among the marked
terms.

(3) If S = ∅, return "No re-embedding found". While S �= ∅, perform the
following steps.

(4) Choose a tuple Z = (z1, . . . , zs) ∈ S and remove it from S.
(5) Using Remark 2.5, check whether the ideal I is Z-separating. If it is, return Z and

stop. Otherwise, continue with Step (3).

This is an algorithm which, if successful, finds a tuple of distinct indeterminates Z =
(z1, . . . , zs) in X such that I is Z-separating.

Moreover, if s = dimK (LinM(I )) and the algorithm is successful then the output
tuple Z defines an optimal re-embedding of I .

Proof Every tuple Z such that there exists a Z -separating re-embedding of I is con-
tained in the tuple of leading terms of a marked reduced Gröbner basis of LinM(I )
by Proposition 2.6.c. The set of all possible such tuples Z is computed in Steps (1)
and (2). If the loop in Steps (3)-(5) finds a tuple Z such that I is Z -separating, we are
done.

In addition, if s = dimK (LinM(I )) and the algorithm is successful, then Kreuzer et
al. (2022a, Corollary 4.2), shows that the Z -separating re-embedding of I is optimal.

��
If we are looking for optimal re-embeddings and use the method of Remark 2.5.a

to perform Step (5), then Algorithm 4.1 is able to certify that no optimal Z -separating
re-embedding of I exists. However, we may have to compute some huge Gröbner
bases. Moreover, the next remark points out some further limitations.

Remark 4.2 Notice thatAlgorithm4.1 provides only a sufficient condition for detecting
optimal re-embeddings of I . On one side, it can happen that an optimal re-embedding
is obtained using a subset of generators of a leading term ideal of LinM(I ) (see
Kreuzer et al. 2022b, Example 6.6). On the other side, it can happen that an opti-
mal re-embedding cannot be achieved by a separating re-embedding, as shown in
Example 2.11.

The following example illustrates Algorithm 4.1 at work.

Example 4.3 Let P = Q[x, y, z, w], let F = ( f1, f2, f3), where f1 = x − y − w2,
f2 = x + y − z2, and f3 = z + w + z3, and let I = 〈 f1, f2, f3〉.
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(1) We obtain LinM(I ) = 〈z + w, x, y〉K and the methods explained below
return the two marked reduced Gröbner bases {(x, x), (y, y), (z, z + w)} and
{(x, x), (y, y), (w,w + z)}.

(2) We get S = {(x, y, z), (x, y, w)}.
(4) We pick Z = (x, y, z) and delete it from S.
(5) We construct an elimination ordering σ for Z and find that the minimal set of

generators of LinM(LTσ (I )) is L = {x}. Therefore L �= {x, y, z} and continue
with the next iteration.

(4) Next we let Z = (x, y, w) and let S = ∅.
(5) We construct an elimination ordering σ for Z and compute the minimal set of

generators L of LinM(LTσ (I )). Since L = {x, y, w}, we return Z = (x, y, w)

and stop.

To get Z -separating polynomials, it suffices to replace f2 with f ′
2 = f2 − f1.

To find the actual polynomials defining the optimal re-embedding, we compute the
reduced σ -Gröbner basis of I . It is

(
x − 1

2 z
6 − z4 − z2, y + 1

2 z
6 + z4, w + z3 + z

)
.

This tuple gives rise to a Q-algebra isomorphism P/I ∼= Q[z] via x �→ 1
2 z

6+ z4+ z2,
y �→ − 1

2 z
6 − z4, and w �→ −z3 − z.

5 Cotangent equivalence classes

The task to compute the Gröbner fan of 〈LinM(I )〉 in Algorithm 4.1 can be simplified
when 〈LinM(I )〉 is a binomial linear ideal. Recall that an ideal J in P = K [x1, . . . , xn]
is called a binomial ideal if it is generated by polynomials containing at most two
terms in their support.

As before, we let I = 〈 f1, . . . , fr 〉 be an ideal in P with fi ∈ M. Letting �i =
LinM( fi ) for i = 1, . . . , r and L = (�1, . . . , �r ), the linear part of I is LinM(I ) =
〈L〉K and it generates the ideal IL = 〈LinM(I )〉.

In the following we assume that the linear forms �i are binomials, i.e., for i =
1, . . . , r , we have �i = ai xi1 + bi xi2 with ai , bi ∈ K and i1, i2 ∈ {1, . . . , n}. In this
case the ideal IL is called a binomial linear ideal.

Recall that, by Remark 2.7 and Corollary 2.8.c, we can detect whether an ideal I
is Z -separating by looking at the residue classes of the entries of Y = X \ Z in the
cotangent space Cotm(R) = m/m2, where m is the image of M = 〈x1, . . . , xn〉 in
R = P/I . Moreover, we have Cotm(R) ∼= P1/〈L〉K . This point of view leads us to
the following definition.

Definition 5.1 For every indeterminate xi ∈ X , let x̄i denote its residue class in the
cotangent space m/m2 of R = P/I at the origin.

(a) The relation ∼ on X defined by xi ∼ x j ⇔ 〈x̄i 〉K = 〈x̄ j 〉K is an equivalence
relation called cotangent equivalence.
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(b) An indeterminate xi ∈ X is called trivial if x̄i = 0. The trivial indeterminates
form the trivial cotangent equivalence class in X .

(c) A non-trivial indeterminate xi ∈ X is called basic if its cotangent equivalence
class consists only of xi . In this case, the cotangent equivalence class {xi } is also
called basic.

(d) A non-trivial indeterminate xi ∈ X is called proper if its cotangent equivalence
class contains at least two elements. In this case, the cotangent equivalence class
of xi is also called proper.

The meaning of these notions will become clear in the next theorems. First we need
a lemma which provides further information about the above definition.

Lemma 5.2 Let us assume to be in the above setting.

(a) The union U of the supports of the elements in a minimal set of generators of the
ideal IL does not depend on the choice of a minimal set of generators.

(b) The set of basic indeterminates is X \U.
(c) The union of the sets of trivial and proper indeterminates is U.

Proof To prove (a) we note that any minimal set of generators of the ideal 〈LinM(I )〉
is also a minimal set of generators of the K -vector space LinM(I ). Let A and B be
two such sets. Since every linear form � in A is a linear combination of linear forms
in B, each indeterminate in Supp(�) is in the support of some linear form in B. By
interchanging the roles of A and B, the conclusion follows.

Since ∼ is an equivalence relation on X , to prove claims (b) and (c) it suffices to
show that basic indeterminates are not in U , while trivial and proper indeterminates
are in U . Firstly, let xi be a basic indeterminate. For a contradiction, assume that
xi ∈ U . From xi ∈ U and the fact that xi is the only element in its equivalence class,
we deduce that there is a polynomial in I of the form xi + q with q ∈ M2. Hence we
get x̄i = 0, a contradiction to the fact that xi is basic. Secondly, let xi be trivial. Then
there is a polynomial in I of the form xi + q with q ∈ M2, and hence we get xi ∈ U .
Thirdly, let xi be proper. Then there exist another indeterminate x j and a polynomial
in I of the form axi + bx j + q with a, b ∈ K\{0} and q ∈ M2. Hence we get xi ∈ U .

��
Our next step is to order the indeterminates in the cotangent equivalence classes

using a term ordering. The following definition will come in handy.

Definition 5.3 Let E = {xi1 , . . . , xi p } be a proper equivalence class in X , and let σ

be a term ordering on T
n with xi1 >σ · · · >σ xi p . Then the set E \ {xi p } is called the

σ -leading set of E and denoted by Eσ .

Notation 5.4 Let σ be a term ordering on T
n . In accordance with the notation intro-

duced in Proposition 2.6, the uniqueminimal set of indeterminates generating the ideal
LTσ (IL) will be denoted by Sσ .

In the following theorem we give an explicit representation of Sσ for every term
ordering σ onT

n and show the importance of σ -leading sets. This implies a description
of LTGFan(IL) which has several advantages compared to the general description
given in Theorem 3.5. For instance, it does not have to deal with huge matrices.
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Theorem 5.5 Let E0 be the trivial equivalence class, and let E1, . . . , Eq be the proper
equivalence classes in X. Let IL = 〈LinM(I )〉 be the ideal generated by the linear
parts of the polynomials in I .

(a) Let σ be a term ordering on T
n. Then we have Sσ = E0 ∪ Eσ

1 ∪ · · · ∪ Eσ
q , and

hence #Sσ = #E0 + ∑q
i=1 #Ei − q.

(b) For i = 1, . . . , q, let E∗
i be a set obtained from Ei by deleting one of its elements.

Then there exists a term ordering σ on T
n such that we have Sσ = E0 ∪ E∗

1 ∪
· · · ∪ E∗

q .
(c) Let� be the set of all sets of the form E0∪E∗

1 ∪· · ·∪E∗
q , where E

∗
i is obtained from

the set Ei by deleting one of its elements. Then the map ϕ : LTGFan(IL) −→ �

given by ϕ(Sσ ) = E0 ∪ Eσ
1 ∪ · · · ∪ Eσ

q is well-defined and bijective.

(d) We have # LTGFan(IL) = # GFan(IL) =
q∏

i=1
#Ei .

Proof To prove claim (a) we observe that the inclusion E0 ⊆ Sσ follows from E0 ⊆
LinM(I ), and that the inclusion Sσ ⊆ E0 ∪ E1 ∪ · · · ∪ Eq follows from Lemma 5.2.c.

For k ∈ {1, . . . , q}, we write the proper equivalence class Ek = {xi1 , . . . , xi p } such
that xi1 >σ · · · >σ xi p . Using the definition of a proper equivalence class, it follows
that xim − xi p ∈ LinM(I ), so that LTσ (xim − xi p ) = xim for everym ∈ {1, . . . , p−1}.
Hence we have proved

E0 ∪ Eσ
1 ∪ · · · ∪ Eσ

q ⊆ Sσ ⊆ E0 ∪ E1 ∪ · · · ∪ Eq .

As the σ -smallest element in each proper equivalence class does not belong to Sσ ,
claim (a) follows.

Claim (b) follows from (a) if we show that there exists a term ordering σ such
that Eσ

i = E∗
i for i = 1, . . . , q. By definition, the sets Ei are pairwise disjoint.

Consequently, a term ordering which solves the problem can be chosen as a block term
ordering, and hence it suffices to consider the case q = 1. So, let E1 = {xi1 , . . . , xi p }.
W.l.o.g. assume that E∗

1 = {xi2 , . . . , xi p }. As we observed before, we have xik − xi1 ∈
LinM(I ) for k = 2, . . . , p. To finish the proof it suffices to take a term ordering σ

such that xik >σ xi1 for k = 2, . . . , p.
Claim (c) follows immediately from (b). To prove claim (d) we note that the first

equality is obvious. To show# LTGFan(IL) = ∏q
i=1 #Ei , it suffices to deduce from (b)

that the number of the leading term ideals of IL equals the number of q-tuples of
indeterminates xi , exactly one chosen in each proper equivalence class. ��

Now we are ready to classify the indeterminates in X which can be used for a
Z -separating re-embedding of I as follows.

Theorem 5.6 Let Z be a tuple of indeterminates from X such that there exists a Z-
separating re-embedding of I , and let Y = X \ Z.

(a) The basic indeterminates of X are contained in Y .
(b) Each proper equivalence class in X contains at least one element of Y .
(c) If #Z = dimK (LinM(I )), then the Z-separating re-embedding of I is optimal,

the trivial indeterminates of X are contained in Z, and each proper equivalence
class in X contains exactly one element of Y .
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Proof To prove (a), let σ be a Z -separating term ordering for I , let Sσ be the minimal
set of indeterminates generating LTσ (IL), and let U be the union of the supports of
the elements in a minimal set of generators of IL . Note that Proposition 2.6.c implies
Y ⊇ X\Sσ . From Sσ ⊆ X we deduce the inclusion Y ⊇ X \ U , and thus the claim
follows from Lemma 5.2.b.

Claim (b) follows from the mentioned relation Y ⊇ X\Sσ and Theorem 5.5.a.
Finally, we prove (c). If #(Z) = dimK (LinM(I )) then Corollary 2.8.a implies that

the Z -separating re-embedding of I is optimal. Moreover, Corollary 2.8.b implies that
Z = Sσ , and hence the claim follows from Theorem 5.5.a. ��

Based on the preceding results and on Algorithm 3.8 in Kreuzer et al. (2020) for
computing the cotangent equivalence classes, we can now check effectively whether
a given ideal I admits a Z -separating embedding. Notice that we are excluding some
trivial cases (namely n = 1 and I = M) in order to be able to apply Kreuzer et al.
(2020, Algorithm 3.8), but these cases can be dealt with easily by a direct computation.

Algorithm 5.7 (Z-sep. Re-embeddings Via Cotangent Equivalence) Let I � M be an
ideal in P = K [x1, . . . , xn], where n ≥ 2, and let X = (x1, . . . , xn). Consider the
following sequence of instructions.

(1) Compute the trivial cotangent equivalence class E0 and also the proper cotangent
equivalence classes E1, . . . , Eq.

(2) Let S = ∅.
(3) Turn each set Z0∪ Z1∪· · ·∪ Zq such that Z0 ⊆ E0 and Zi � Ei for i = 1, . . . , q

into a tuple Z and perform the following steps.
(4) Using Remark 2.5, check whether the ideal I is Z-separating. If it is, append Z

to S.
(5) Continue with Step (3) using the next tuple Z until all tuples have been dealt with.

Then return S and stop.

Then the following two claims hold.

(a) This is an algorithm which computes the set S of all tuples Z of distinct indeter-
minates in X such that there exists a Z-separating re-embedding of I .

(b) Assume that Step (3) is replaced by the following step.

(3’) Turn each set E0 ∪ E∗
1 ∪ · · · ∪ E∗

q , where E∗
i is obtained from Ei by deleting

one element, into a tuple Z and perform the following steps.

Then the result is an algorithm which computes the set S of all tuples Z of distinct
indeterminates in X such that there exists an optimal Z-separating re-embedding
of I .

Proof Both claims follow from Theorem 5.5 and Theorem 5.6. ��
For an example to illustrate this algorithm, we refer the reader to the next section.

6 Application to border basis schemes

In this section we apply the methods developed above to the ideals defining border
basis schemes. These affine schemes are moduli spaces of 0-dimensional ideals which
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are canonically embedded into very high dimensional affine spaces. To study them
carefully, it is imperative to re-embed them into lower dimensional affine spaces. For
instance, one important question is whether a given border basis scheme is an affine
cell, i.e., isomorphic to an affine space. As we shall recall below, the natural generators
of the defining ideals of border basis schemes have binomial linear parts, so that the
theory developed in the preceding section is perfectly suited to re-embed border basis
schemes. In fact, we also provide some information complementing Theorem 5.6 in
this situation.

In the following we assume that the reader has a basic knowledge of border basis
theory, e.g., to the extent it is covered in Kreuzer and Robbiano (2005, Section 6.4).
Let O = {t1, . . . , tμ} be an order ideal of terms in T

n , and let ∂O = {b1, . . . , bν} be
its border. By replacing the coefficients of an O-border prebasis with indeterminates
ci j , we obtain the generic O-border prebasis G = {g1, . . . , gν}, where g j = b j −∑μ

i=1 ci j ti for i = 1, . . . , μ and j = 1, . . . , ν. Furthermore, let C be the set of
indeterminates C = {ci j | i = 1, . . . , μ; j = 1, . . . , ν}. The ideal I (BO) in K [C]
defining the border basis scheme BO can be constructed in several ways (see Kreuzer
and Robbiano 2008, 2011; Kreuzer et al. 2020):

(1) As inKreuzer andRobbiano (2008,Definition 3.1), construct the genericmultipli-
cation matrices A1, . . . ,An ∈ Matμ(K [C]) and let I (BO) be the ideal in K [C]
generated by all entries of all commutators Ai A j − A j Ai with 1 ≤ i < j ≤ n.

(2) Construct the set of next-door generators NDO and the set of across-the-rim gen-
erators ARO of I (BO) and take the union NDO ∪ARO (see below).

For us, the most important properties of these sets of polynomials { f1, . . . , fr } are
that fi consists for i = 1, . . . , r of a linear and a quadratic part. In the following
we describe these homogeneous components in more detail. We begin by making the
construction in (2) explicit.

Definition 6.1 (Neighbour Generators) Let O = {t1, . . . , tμ} be an order ideal in T
n

with border ∂O = {b1, . . . , bν}. Let A1, . . . ,An be the generic multiplication matri-
ces, and for j = 1, . . . , μ let c j = (c1 j , . . . , cμ j )

tr be the j-th column of (ci j ).

(a) Let j, j ′ ∈ {1, . . . , ν} be such that b j = x�b j ′ for some � ∈ {1, . . . , n}.
Then b j , b j ′ are called next-door neighbours and the tuple of polynomials
(c j − A�c j ′) tr is denoted by ND( j, j ′).

(b) The union of all entries of the tuples ND( j, j ′) is called the set of next-door
generators of I (BO) and is denoted by NDO.

(c) Let j, j ′ ∈ {1, . . . , ν} be such that b j = x�bm and b j ′ = xkbm for some m ∈
{1, . . . , ν}. Then b j , b j ′ are called across-the-corner neighbours.

(d) Let j, j ′ ∈ {1, . . . , ν} be such that b j = x�tm and b j ′ = xktm for some m ∈
{1, . . . , μ}. Then b j , b j ′ are called across-the-rim neighbours and the tuple of
polynomials (Akc j − A�c j ′) tr is denoted by AR( j, j ′).

(e) The union of all entries of the tuples AR( j, j ′) is called the set of across-the-rim
generators of I (BO) and is denoted by ARO.

(f) The polynomials in NDO ∪ARO are called the neighbour generators of I (BO).

In Kreuzer and Robbiano (2008, Proposition 4.1), it is shown that the polynomials
corresponding to across-the-corner neighbours are not necessary to generate I (BO)
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and that the neighbour generators are precisely the non-trivial entries of the commu-
tators Ai A j − A j Ai .

An important property of the neighbour generators is that they are homogeneous
with respect to the following multigrading. Recall that the logarithm of a term t =
xα1
1 · · · xαn

n is defined by log(t) = (α1, . . . , αn).

Definition 6.2 The Z
n-grading on K [C] defined by degW (ci j ) = log(b j )− log(ti ) for

i = 1, . . . , μ and j = 1, . . . , ν is called the arrow grading.

As mentioned above, the neighbour generators of I (BO) have (standard) degree
two and no constant term. Their linear parts can be described in detail as follows.

Proposition 6.3 (Linear Parts of Neighbour Polynomials) LetO = {t1, . . . , tμ} be an
order ideal in T

n with border ∂O = {b1, . . . , bν}.
(a) Let j, j ′ ∈ {1, . . . , ν} be such that b j , b j ′ are next-door neighbours, i.e., such that

b j = x�b j ′ , and let i ∈ {1, . . . , μ}. Then the linear part of the corresponding
next-door generator N D( j, j ′)i is (up to sign) given by

{
ci j − ci ′ j ′ if x� divides ti ,

ci j otherwise.

The polynomial f = ND( j, j ′)i is homogeneous with respect to the arrow degree
with degW ( f ) = degW (ci j ).

(b) Let j, j ′ ∈ {1, . . . , ν} be such that b j , b j ′ are across-the-rim neighbours, i.e., such
that b j = x�tm′ and b j ′ = xktm′ for some m′ ∈ {1, . . . , μ}. For m ∈ {1, . . . , μ},
the non-zero linear part of the corresponding across-the-rimgeneratorAR( j, j ′)m
is (up to sign) given by

⎧⎪⎨
⎪⎩
ci j − ci ′ j ′ if tm = xkti = x�ti ′ ,

ci j if tm = xkti , but x� does not divide tm,

ci ′ j ′ if tm = x�ti ′ , but xk does not divide tm .

The polynomial g = AR( j, j ′)m is homogeneous with respect to the arrow degree
with degW (g) = degW (cmj ) + ek = deg(cmj ′) + e�.

Proof The claims for the linear parts are shown in Kreuzer et al. (2020, Corollary 2.8).
The claims for the arrow degree follow from Kreuzer et al. (2020, Lemma 3.4), and
the description of the linear parts. ��

To describe the quadratic parts of the neighbour generators in detail, the following
concepts are convenient.

Definition 6.4 Let O = {t1, . . . , tμ} be an order ideal in T
n .

(a) The rim O∇ of O consists of all terms ti such that xkti ∈ ∂O for some k ∈
{1, . . . , n}. The indeterminate ci j is called a rim indeterminate if ti ∈ O∇ , and
the set of all rim indeterminates is denoted by C∇ .
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(b) The interior of O is O◦ = O \ O∇ . The indeterminate ci j is called an interior
indeterminate if ti ∈ O◦, and the set of all interior indeterminates is denoted
by C◦.

Clearly, we have a disjoint union C = C∇ ·∪ C◦. One more definition, and we are
ready to go. The following notion was introduced in Huibregtse (2002, Section 4.1).

Definition 6.5 Let j ∈ {1, . . . , ν}, and let � ∈ {1, . . . , n}. Then the border term b j is
called x�-exposed if it is of the form b j = x� ti with i ∈ {1, . . . , μ}. In this case we
also say that ti x�-exposes the border term b j .

Finally we are ready to describe the homogeneous components of (standard) degree
two of the neighbour generators of I (BO).

Proposition 6.6 (Quadratic Parts of Neighbour Generators) Let O = {t1, . . . , tμ} be
an order ideal in T

n with border ∂O = {b1, . . . , bν}.
(a) Let j, j ′ ∈ {1, . . . , ν} be such that b j , b j ′ are next-door neighbours with b j =

x�b j ′ , and let i ∈ {1, . . . , μ}. Assume that bλ1 , . . . , bλs ∈ ∂O are the x�-exposed
border terms, and let bλp = x� t�p for p = 1, . . . , s. Then the quadratic terms in
the support of ND( j, j ′)i are the products ciλp c�p j ′ with p = 1, . . . , s.
In particular, all terms in the quadratic part are of the form ciλc� j ′ with λ ∈
{1, . . . , ν} and a rim indeterminate c� j ′ .

(b) Let j, j ′ ∈ {1, . . . , ν} be such that b j , b j ′ are across-the-rim neighbours with
b j = x�tm′ and b j ′ = xktm′ for some m′ ∈ {1, . . . , μ}. For every m ∈ {1, . . . , μ},
the quadratic terms in the support of AR( j, j ′)m are of the following types.

(1) Let bκ1 , . . . , bκs ∈ ∂O be the xk-exposed border terms, and let us write bκp =
x� t�p for p = 1, . . . , s. Then the terms cmκp c�p j may appear in the support
of AR( j, j ′)m.

(2) Let bλ1 , . . . , bλu ∈ ∂O be the x�-exposed border terms, and let us write bλq =
x�tσq for q = 1, . . . , u. Then the terms cmλq cσq j ′ may appear in the support
of AR( j, j ′)m.

In particular, all terms in the quadratic part are of the form cmλc� j or cmλc� j ′
with λ ∈ {1, . . . , ν} and rim indeterminates c� j and c� j ′ , respectively.

Proof Let G = {g1, . . . , gν} be the generic O-border prebasis. We shall use the
construction of the neighbour generators using the lifting of neighbour syzygies
(see Kehrein and Kreuzer 2005, Sect. 5 and Kreuzer and Robbiano 2005, Proposi-
tion 6.4.34).

First we prove (a). The polynomials in ND( j, j ′) are the coefficients of t1, . . . , tμ in
the reduction of x�g j ′ − g j , viewed as a polynomial in K [C][x1, . . . , xn]. The leading
terms x�b j ′ and b j cancel by definition. Hence we only have to reduce the x�-exposed
border terms in x�g j ′ . The coefficient of bλp in x�g j ′ is c�p j ′ . The coefficient of ti
in gλp is ciλp . Therefore the coefficient of ti in c�p j ′ gλp is c�p j ′ciλp and it will be a
part of the coefficient of ti in the final result of the reduction, i.e., in ND( j, j ′)i .

Next we prove (b). Again the entries of AR( j, j ′) are obtained as the coefficients of
t1, . . . , tμ in the reduction of xkg j − x�g j ′ , and again the highest terms xkb j and x�b j ′

123



Beitr Algebra Geom

cancel. To reduce xkg j , we have to reduce the xk-exposed border terms bκ1 , . . . , bκs .
The coefficient of bκp in xkg j is c�p j . The polynomial AR( j, j ′)m has arrow degree
degW (cmj ) + ek . It is therefore the coefficient of tm in the reduction of xkg j − x�g j ′ .
The coefficient of tm in gκp is cmκp . Hence the coefficient of tm in c�p j gκp is c�p j cmκp ,
and it may appear in AR( j, j ′)m . These quadratic terms are the ones listed in case (1).

The analysis of the terms in the reduction of x�g j ′ is completely analogous and
leads to the quadratic terms in case (2). ��

Based on this detailed study of the support of the neighbour generators, we are now
able to provide some additional information on the distribution of the rim indetermi-
nates in the cotangent equivalence classes.

Theorem 6.7 Let Z be a tuple of indeterminates from C such that there exists a Z-
separating re-embedding of I (BO) and let Y = C\Z.
(a) All basic indeterminates of C are rim indeterminates.
(b) Each proper cotangent equivalence class in C contains a rim indeterminate.

Proof For the proof of (a), we assume that ci j ∈ C is a basic indeterminate and
that ti ∈ O◦. If there exists an indeterminate x� such that x�b j ∈ ∂O then we let
j ′ ∈ {1, . . . , ν} such that b j ′ = x�b j . As we have ti ∈ O◦, there exists an index
i ′ ∈ {1, . . . , μ} such that ti ′ = x�ti ∈ O. Hence we have a next-door neighbour pair
(b j , b j ′) and Proposition 6.3 implies ci j ∼ ci ′ j ′ . This contradicts the hypothesis that
ci j is a basic indeterminate. Thus no next-door neighbour pair (b j , b j ′) exists.

Since the border ∂O is connected with respect to the neighbour relations (see
Kehrein and Kreuzer 2005, Proposition 19), there exists an across-the-rim neigh-
bour pair (b j , b j ′). Thus we may assume that there are m′ ∈ {1, . . . , μ} and
k, � ∈ {1, . . . , n} such that b j = x�tm′ and b j ′ = xktm′ ∈ ∂O for some j ′ ∈ {1, . . . , ν}.
Now, if ti is not divisible by x�, then Proposition 6.6 implies that ci j is a trivial indeter-
minate, in contradiction to the hypothesis. Hence ti has to be divisible by x�. The term
ti xk/x� cannot be in the border of O, because then also ti xk would be outside O, in
contradiction to the hypothesis ti ∈ O◦. Therefore there exists an index i ′ ∈ {1, . . . , μ}
such that x�ti ′ = xkti . By Proposition 6.3, we get ci j ∼ ci ′ j ′ , in contradiction to the
hypothesis that ci j is basic.

Now we show (b). For a contradiction, assume that ci j ∈ C is proper and that every
element in the cotangent equivalence class of ci j is an interior indeterminate. SinceO
is an order ideal, the term ti is not a multiple of b j /∈ O. Thus there exists an index
� ∈ {1, . . . , n} such that the arrow degree degW (ci j ) = log(b j ) − log(ti ) of ci j has
a positive �-th component. Let j ′ ∈ {1, . . . , ν} be such that the �-th component of
log(b j ′) is zero. (For instance, let k �= � and consider the unique term of the form
b j ′ = xNk ∈ ∂O with N ≥ 1.) Since the border is connected, we can find a sequence
of border terms b j = b j1 ∼ · · · ∼ b jq = b j ′ such that b jp and b jp+1 are next-door or
across-the-rim neighbours for p = 1, . . . , q − 1.

Notice that it is not possible to find indeterminates ci1 ∼ · · · ∼ ciq jq because the
equality of arrow degrees degW (ciq jq ) = degW (ci1 j1) would imply that the x�-degree
of tiq is negative. Let us try to construct such a sequence of cotangent equivalences
inductively. When we have found terms ti1 , . . . , ti p ∈ O with the property that ci1 j1 ∼
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· · · ∼ ci p jp and try to find a term ti p+1 ∈ O such that ci p jp ∼ ci p+1 jp+1 , three things
can happen:

(1) A term ti p+1 of the desired kind exists in O◦.
(2) A term ti p+1 of the desired kind exists in O∇ .
(3) No term ti p+1 of the desired kind exists in O because one of the components of

log(ti p+1) would be negative.

In case (1), we can continue our inductive construction for one further step. By the
hypothesis that ci j is not equivalent to a rim indeterminate, case (2) never occurs.Hence
case (3) has to happen for some p ∈ {1, . . . , q − 1}. In this case we have c̄i p jp = 0
by Proposition 6.3, and thus c̄i j = 0. Hence we have arrived at a contradiction to the
hypothesis that ci j is proper, and the proof is complete. ��

The following example illustrates the results of this section and the preceding
one. The readers may also check that it verifies some claims in Huibregtse (2002,
Remark 7.5.3).

Example 6.8 In P = Q[x, y], consider the order ideal O = {t1, . . . , t8} given by
t1 = 1, t2 = y, t3 = x , t4 = y2, t5 = xy, t6 = x2, t7 = y3, and t8 = xy2. Then we
have ∂O = {b1, . . . , b5}with b1 = x2y, b2 = x3, b3 = y4, b4 = xy3, and b5 = x2y2.
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Thus Q[C] = Q[c11, . . . , c85] is a polynomial ring in 40 indeterminates. Notice that
the dimension of BO is dim(BO) = μn = 16, and that there are 32 neighbour
generators of the ideal I (BO). The linear parts of these generators are

c65, c51 − c85, c45, c44, c55, c43 − c54, c42, c41 − c75, c52 − c75, c35,
c34, c33, c31, c25, c24, c23, c22, c21, c32, c15, c14, c13, c12, c11.

If we let U be the union of the supports of these elements, we get

C \U = {c53, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84}

which is exactly the set of basic indeterminates by Lemma 5.2.b. Moreover, note that
C \U is contained in the set of rim indeterminates (see Theorem 6.7.a).
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For the trivial cotangent equivalence class E0 and the proper cotangent equivalence
classes E1, . . . , Eq , we get

E0 ={c11, c12, c13, c14, c15, c21, c22, c23, c24, c25, c31, c32, c33, c34, c35,
c42, c44, c45, c55, c65}

E1 ={c51, c85}, E2 = {c43, c54}, E3 = {c41, c52, c75}.

Using σ = DegRevLex, we obtain Eσ
1 = {c51}, Eσ

2 = {c43}, and Eσ
3 = {c41, c52}.

Next we compute the set Sσ of the minimal generators of the leading term ideal
of IL = 〈LinM(I (BO))〉 and get

Sσ = {c11, c12, c13, c14, c15, c21, c22, c23, c24, c25, c31, c32, c33, c34, c35,
c41, c42, c43, c44, c45, c51, c52, c55, c65}

which coincides with E0 ∪ Eσ
1 ∪ Eσ

2 ∪ Eσ
3 (see the first claim of Theorem 5.5.a). Here

we have #Sσ = 24, #E0 = 20, #E1 = 2, #E2 = 2, #E3 = 3, and therefore

#Sσ = #E0 + #E1 + #E2 + #E3 − 3

in accordance with the second claim of Theorem 5.5.a.
The minimal sets of terms generating the sets in LTGFan(IL) are

Z1 =E0 ∪ {c51} ∪ {c43} ∪ {c41, c52}
Z2 =E0 ∪ {c51} ∪ {c43} ∪ {c41, c75}
Z3 =E0 ∪ {c85} ∪ {c43} ∪ {c41, c52}
Z4 =E0 ∪ {c85} ∪ {c43} ∪ {c41, c75}
Z5 =E0 ∪ {c51} ∪ {c54} ∪ {c41, c52}
Z6 =E0 ∪ {c51} ∪ {c54} ∪ {c41, c75}
Z7 =E0 ∪ {c85} ∪ {c54} ∪ {c41, c52}
Z8 =E0 ∪ {c85} ∪ {c54} ∪ {c41, c75}
Z9 =E0 ∪ {c51} ∪ {c43} ∪ {c52, c75}
Z10 =E0 ∪ {c85} ∪ {c43} ∪ {c52, c75}
Z11 =E0 ∪ {c51} ∪ {c54} ∪ {c52, c75}
Z12 =E0 ∪ {c85} ∪ {c54} ∪ {c52, c75}.

Thus we see that
∏3

i=1 #Ei = 12 = # LTGFan(IL) (see Theorem 5.5.d). As remarked
before, C\U is the set of basic indeterminates, and we notice that Zi ∩ (C\U ) = ∅
for i = 1, . . . , 12 (see Theorem 6.7.a).
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The complements of the sets Zi in C are

Y1 = {c53, c54, c61, c62, c63, c64, c71, c72, c73, c74, c75, c81, c82, c83, c84, c85}
Y2 = {c52, c53, c54, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84, c85}
Y3 = {c51, c53, c54, c61, c62, c63, c64, c71, c72, c73, c74, c75, c81, c82, c83, c84}
Y4 = {c51, c52, c53, c54, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84}
Y5 = {c43, c53, c61, c62, c63, c64, c71, c72, c73, c74, c75, c81, c82, c83, c84, c85}
Y6 = {c43, c52, c53, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84, c85}
Y7 = {c43, c51, c53, c61, c62, c63, c64, c71, c72, c73, c74, c75, c81, c82, c83, c84}
Y8 = {c43, c51, c52, c53, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84}
Y9 = {c41, c53, c54, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84, c85}
Y10= {c41, c51, c53, c54, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84}
Y11= {c41, c43, c53, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84, c85}
Y12= {c41, c43, c51, c53, c61, c62, c63, c64, c71, c72, c73, c74, c81, c82, c83, c84}.

It is straightforward to verify that C \U , the set of basic indeterminates, is contained
in each set Yi (see Theorem 5.6.a). Since we have #Zi = dimQ(LinM(I (BO)))

for every i = 1, . . . 12, we are in the situation considered in Theorem 5.6.c. Using
Algorithm 5.7, we check that for each Zi there exists an optimal Zi -separating re-
embedding of I (BO). Finally, for i ∈ {1, . . . , 12}, we use #Zi = 24 and conclude
that the set Zi defines an isomorphism BO ∼= Q[Yi ], where Q[Yi ] is a polynomial ring
having 16 indeterminates.
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