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Abstract
Here we analyze three dimensional analogues of the classic Crofton formula for planar
compact convex sets. In this formula a fundamental role is played by the visual angle of
the convex set froman exterior point. A generalization of the visual angle to convex sets
in the Euclidean space is the visual solid angle. This solid angle, being an spherically
convex set in the unit sphere, has perimeter, area and other geometric quantities to be
considered. The main goal of this note is to express invariant quantities of the original
convex set depending on volume, surface area and mean curvature integral by means
of integrals of functions related to the solid angle.

Keywords Invariant measures · Convex set · Dihedral angle · Solid angle · Constant
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1 Introduction and statement of results

The purpose of this note is to give three-dimensional analogues of the classic Crofton
formula for a planar compact convex set K ,

∫
P /∈K

2(ω − sinω) dP = L2 − 2πF . (1.1)
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Beitr Algebra Geom

Here L is the length of the boundary of K , F the area of K andω = ω(P) is the visual
angle of K as seen from P , and dP is the Lebesgue measure on the Euclidean plane.

A generalization of the visual angle in the plane to compact convex sets in the
Euclidean space E

3 is the visual solid angle. The solid angle �(P) of a compact
convex set K from a point P /∈ K is the set of unit directions u such that the ray
P + tu, t ≥ 0 meets K . Instead of an arc in the unit circle S1 and its length ω we have
a (spherically convex) set in the unit sphere S2 with a richer geometry, having area,
perimeter, and other geometric quantities that might be considered.

In our analysis we will be lead to two set functions α(�), β(�) defined for spher-
ically convex sets � ⊂ S2, both replacing ω − sinω in different senses. To introduce
them we first recall some classical notions about spherical geometry, the main refer-
ence being (Santaló 2004). The radii perpendicular to the support planes of the cone
spanned by � form another cone whose intersection with S2 is the so-called dual
curve of ∂�. The region in S2 bounded by this curve and its symmetral with respect
to the origin, which we denote by �̃, consists in the unit directions v such that the
plane v⊥ meets �. We may identify it with the set of great circles in S2 meeting �. Its
complementary �̃c in S2 consists of two symmetrical components. Since the scalar
product 〈v, u〉 does not vanish for v ∈ �̃c, u ∈ �, this product has constant sign in
each component. The one with positive sign is called the dual solid cone and denoted
by �∗.

The set functions α, β are respectively defined as

α(�) = 1

2

∫
u∈�, v∈�̃

|〈u, v〉| du dv, (1.2)

β(�) = 1

8

∫
vi∈�̃

| det(v1, v2, v3)| dv1 dv2 dv3, (1.3)

where du, dv and dvi denote the Lebesgue measure in S2.
The factors in front of the integrals are explained by the fact that the set �̃ doubly

parametrizes the planes through the origin meeting�, or equivalently the great circles
meeting �.

It is immediate to check that both set functions are invariant by rigid motions
T of the sphere, that is α(T (�)) = α(�), β(T (�)) = β(�). We point out that a
straightforward computation shows that the formal analogues in the plane

α(I ) = 1

2

∫
u∈I , v∈ Ĩ

|〈u, v〉| du dv, β(I ) = 1

4

∫
vi∈ Ĩ

| det(v1, v2)| dv1 dv2,

where now I is a convex subset of S1, are both equal to ω − sinω up to a constant, ω
being the length of I .

The Crofton type formulas we obtain are then:
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Theorem 1.1 For a compact convex set K ⊂ E
3 with mean curvature integral M,

volume V and surface area F one has

1

2
πMF − 2π2V =

∫
P /∈K

α(�(P)) dP, (1.4)

with the set function α given by (1.2).

Recall that the mean curvature integral M is given by

M =
∫

∂K

k1 + k2
2

dS

where k1, k2 are the principal curvatures of ∂K and dS is the surface element.

Theorem 1.2 For a compact convex set K in E3 with mean curvature integral M and
volume V one has

M3 − π4V =
∫
P /∈K

β(�(P)) dP, (1.5)

with the set function β given by (1.3).

Theorem 1.3 For a compact convex set K in E3 with volume V one has

∫
L(K ∩ E)2 dE =

∫
P /∈K

|�(P)|2 dP + 4π2V , (1.6)

where dE is the invariant measure for affine planes E in the Euclidean space, L
denotes the perimeter and |�| the surface measure.1

As a consequence of Theorem 1.1 and Minkowski’s inequality 12πV ≤ MF , which
follows from the inequalities 4πF ≤ M2 and 3MV ≤ F2 (see Minkowski 1901,
p. 120 or Schneider 2013, p. 387), one has

∫
P /∈K

α(�(P)) dP ≥ 4π2V ,

with equality only when K is a ball.
Theorem 1.3 has as a consequence:

Theorem 1.4 For a compact convex set K in E3 with volume V one has

∫
P /∈K

|�(P)|2 dP ≥ 4π2V , (1.7)

and equality holds if and only if K is a ball.

1 Formula (1.6) was previously considered in private conversations with Teufel in 2003.
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Part of our analysis will consist in understanding the set functions α, β in terms
of metric properties of �. For the set function α a satisfactory description is easily
obtained, namely

α(�) = π |�| − 〈c(�), c(�∗)〉, (1.8)

where c(�) = ∫
�
u du and the similarly defined c(�∗) are the (unweighted) centroids

of � and �∗ respectively. Again, the analogue of this expression for an arc I in S1

(I ∗ being in this case the concentric arc with length π − ω) equals ω − sinω up to
constants. The explicit computation of α(�) is possible just for spherical caps and
other simple cases.

For the set function β the description is not so neat. Nevertheless we show that the
difference β(�) − π2

2 α(�) can be expressed in terms of the dihedral visual angles
D(�, u) of � from points u ∈ S2 not in �, the analogue in spherical geometry of
the visual angle. More preciselyD(�, u) is the angle between two planes through the
origin and through u, tangent to �. From the above linear combination between α(�)

and β(�) and the classical Crofton–Herglotz formula we will deduce that Theorems
1.1 and 1.2 can be seen as equivalent statements (see Sect. 2.3).

Regarding Theorem 1.3, it would be interesting to understand the left-hand side of
(1.6) in terms of the geometry of K .

2 Proofs of the theorems

2.1 Proof of Theorems 1.1, 1.2, 1.3 and 1.4

All of them are obtained by mimicking the integral geometry proof of the plane
Crofton formula (1.1). We denote by E,G affine planes and lines in the Euclidean
space, respectively, and by dE, dG the corresponding canonical invariant measures
as used for instance in Santaló (2004).

For a compact convex set K with mean curvature integral M , surface area F and
volume V , Crofton’s classic formulas for intrinsic volumes give (see Santaló (2004))

∫
G∩K �=∅

dG = π

2
F,

∫
L(K ∩ G)dG = 2πV , (2.1)

and

∫
E∩K �=∅

dE = M,

∫
L(K ∩ E)dE = π2

2
F,

∫
F(K ∩ E)dE = 2πV . (2.2)

We have used the notation L(K ∩ G) for the length of the segment K ∩ G and
L(K ∩ E) and F(K ∩ E) for the perimeter and the area, respectively, of the planar
convex set K ∩ E .
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We shall consider pairs and triples of linear varieties provided with the product
measure. It will be useful to express these measures using the parametrizations given
in the next lemma, whose proof can be deduced from Section 12 of Santaló (2004):

Lemma 2.1 Let dG and dE be the canonical invariant measures of affine lines and
planes respectively. Then

a) For pairs of planes E and lines G we have

dG dE = |〈u, v〉|dGP dEP dP, (2.3)

where v is a unit normal direction to the plane E, u is a unit direction of the
straight line G, d P is the Lebesgue measure on E

3, dGP is the measure of lines
in E3 through P and dEP the measure of planes in E3 through P.

b) For triples of planes E1, E2, E3 we have

dE1 dE2 dE3 = | det(v1, v2, v3)|dE1
P dE2

P dE3
P dP, (2.4)

where vi are the unit normal directions to the planes Ei , P ∈ E1 ∩ E2 ∩ E3, and
dEi

P is the measure of planes in E3 through P.
c) For pairs of straight lines G1,G2 intersecting at a point P ∈ E

3 we have

dG1
P dG2

P dP = dG1
E dG2

E dE (2.5)

where dGi
P is the measure of lines through P and dGi

E is the measure of lines
within E.

In the above items, the cases in which two linear varieties are parallel have zero
measure.

Proof a) This is a particular case of formula (12.47) in Santaló (2004) when n = 3,
r = 1 and s = 2.

b) It is known that dE = ds ∧ du where s is the distance from the plane E to the
origin O and u ∈ S2 is the normal vector to E . If P ∈ E then 〈−→

OP, u〉 = s. Hence
the equations of the planes Ei are 〈−→

OP, ui 〉 = si . It follows that

ds1 ∧ ds2 ∧ ds3 = | det(u1, u2, u3)| dx ∧ dy ∧ dz

with P = (x, y, z). From this (2.4) follows immediately.
c) We consider orthonormal moving frames {P; e1, e2, e3} and {P; e∗

1, e
∗
2, e

∗
3 = e3}

such that P = E ∩ G1 ∩ G2, e3 is normal to E , e1 is the unit direction of G1

and e∗
1 is the unit direction of G2. Considering the Maurer-Cartan forms of these

moving frames, by (12.48) in Santaló (2004) we have

dG1
E dG2

E dE = (ω12 ∧ ω2) ∧ (ω∗
12 ∧ ω∗

2) ∧ (ω13 ∧ ω23 ∧ ω3) (2.6)
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and

dG1
P dG2

P dP = (ω21 ∧ ω31) ∧ (ω∗
21 ∧ ω∗

31) ∧ (ω1 ∧ ω2 ∧ ω3), (2.7)

where {ω1, ω2, ω3} is the dual basis of {e1, e2, e3}, the forms ωi j are defined by
dei = ωi1e1 +ωi2e2 +ωi3e3 and the forms ω∗

i , ω
∗
i j are defined analogously. Then

we get

ω∗
2 = 〈e1, e∗

2〉ω1 + 〈e2, e∗
2〉ω2

and

ω∗
31 = 〈de3, e∗

1〉 = 〈e∗
1, e1〉ω31 + 〈e∗

1, e2〉ω32.

Taking into account that 〈e1, e∗
2〉 = −〈e∗

1, e2〉 it comes from (2.6) and (2.7) that

dG1
P dG2

P dP = dG1
E dG2

E dE

as announced (we always consider the absolute value for densities).
��

We can now proceed to prove the announced theorems.

Proof of Theorem 1.1 We consider pairs (E,G) of planes and lines both meeting K .
From (2.1), (2.2) and (2.3) and denoting by GP a line through P and EP a plane
through P one has

π

2
MF =

∫
G∩K �=∅,E∩K �=∅

dG dE =
∫
E3

∫
GP∩K �=∅,EP∩K �=∅

|〈u, v〉|dGP dEP dP.

If P ∈ K the integral in the right-hand side is extended to all linesGP and to all planes
EP and since these lines and planes are doubly parametrized by u, v respectively, it
is

∫
|〈u, v〉|dGP dEP = 1

4

∫
u,v∈S2

|〈u, v〉|du dv.

Obviously the integral with respect to v does not depend on u and so the above integrals
are equal to

π

∫
|〈u, v〉| dv.

Choosing u = (0, 0, 1) and computing in spherical coordinates one obtains the value
2π2.
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If P /∈ K then the line GP is parametrized by u ∈ �(P) and the plane EP is
doubly parametrized by v ∈ �̃(P) whence

∫

GP∩K �=∅,EP∩K �=∅
|〈u, v〉|dGP dEP = 1

2

∫

u∈�(P),v∈�̃(P)

|〈u, v〉| du dv = α(�(P)),

thus proving (1.4). ��
Proof of Theorem 1.2 Hereweuse triples of planesmeeting K andproceed analogously
to the above proof. Using (2.2) and (2.4) it follows that

M3 =
∫
E3

∫
Ei
P∩K �=∅

| det(v1, v2, v3)|dE1
P dE2

P dE3
P dP.

Again, if P is within K , there is no restriction on the planes Ei
P and one has

∫
| det(v1, v2, v3)|dE1

P dE2
P dE3

P = 1

8

∫
vi∈S2

| det(v1, v2, v3)| dv1 dv2 dv3.

The integral in v1, v2 is independent of v3 and so the above integrals are equal to

π

2

∫
| det(v1, v2, v3)| dv1 dv2.

Choosing v3 = (0, 0, 1) and computing in spherical coordinates we get the value π4.
If P /∈ K then the planes Ei

P are doubly parametrized by vi ∈ �̃(P), so that

∫
Ei
P∩K �=∅

| det(v1, v2, v3)|dE1
P dE2

P dE3
P = β(�(P)),

and (1.5) is proved. ��
Proof of Theorem 1.3 We use now pairs of intersecting lines, both meeting K . The
measure of this set of lines is

∫
P∈E3,Gi

P∩K �=∅
dG1

P dG2
P dP =

∫
E3

( ∫
Gi

P∩K �=∅
dG1

P dG2
P

)
dP.

On the one hand, the contribution of K in the dP integral is (2π)2V , while that of
the complementary of K is

∫
P /∈K |�(P)|2 dP . On the other hand, by (2.5), the above

integrals are equal to

∫ (∫
G1,G2⊂E,Gi∩K �=∅

dG1
E dG2

E

)
dE .

Since the Cauchy-Crofton formula in the plane E states that
∫
G⊂E,G∩K �=∅ dG =

L(K ∩ E), we are done. ��
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We point out that another proof of Theorem 1.3 can be obtained integrating the
planar Crofton formula (1.1) applied to the convex set E ∩ K over all the planes E .

Proof of Theorem 1.4 Using the isoperimetric inequality in the plane E the left-hand
side of (1.6) is bigger than

4π
∫

F(K ∩ E) dE,

which by the last equality in (2.2) is equal to 8π2V , thus proving (1.7). If equality
holds, then L(K ∩ E)2 = 4πF(K ∩ E) for all E , and all convex sets K ∩ E are discs,
and this implies easily that K is a ball (see for instance Corollary 7.1.4 in Gardner
(2006)). ��

2.2 On the set function˛

To prove the relation (1.8) just notice that

∫
v∈�̃

|〈u, v〉| dv =
∫

v∈S2
|〈u, v〉| dv − 2

∫
v∈�∗

|〈u, v〉| dv.

The first integral on the right-hand side does not depend on u and equals 2π , while in
the second one 〈u, v〉 is positive. Altogether gives

α(�) = π

∫
u∈�

du −
∫
u∈�,v∈�∗

〈u, v〉 du dv = π |�| − 〈c(�), c(�∗)〉.

In order to express this function in terms of�we find a relation between the centroids
of� and�∗ using a parametrization of the boundary of�. We consider the orientation
in � given by the unit outward normal to S2 and let γ (t), 0 ≤ t ≤ 	, be the arc-length
parametrization of ∂� with the induced orientation, so that �T = γ ′ is the unit tangent
vector.

Proposition 2.2 For a spherically convex subset�of the sphere S2 with regular bound-
ary arc-parametrized by γ (t) we have the following formulas for the centroids c(�)

and c(�∗).

a)

c(�) = 1

2

∫ 	

0
γ (t) × γ ′(t) dt, c(�∗) = 1

2

∫ 	

0
kg(t)γ (t) dt,

where kg(t) is the geodesic curvature of γ (t) and ‘×’ denotes the vector product.
b)

c(�) + c(�∗) = 1

2

∫ 	

0
γ ′(t) × γ ′′(t) dt = 1

2

∫ 	

0
k(t) �B(t) dt .
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where k(t) is the curvature of γ (t) and �B(t) its binormal.

Proof If u = (x, y, z), the first component of c(�) is
∫
�
xdu, which is the flow

through � of the vector field �X = (1, 0, 0). Since �X = ∇ × �Y with �Y = 1
2 (0,−z, y)

this component is equal to

1

2

∫
∂�

〈 �T , �Y (γ (t))〉 dt .

Now 〈 �T , �Y 〉 is the first component of γ (t) × γ ′(t) and similarly for the other compo-
nents, so that the first formula in a) is proved. Next, notice that γ ∗(t) = γ (t) × γ ′(t)
parametrizes the dual curve, the boundary of �∗, whence one has as well

c(�∗) = 1

2

∫ 	

0
γ ∗(t) × (γ ∗)′(t) dt .

Now,

γ ∗ × γ ∗′ = (γ × γ ′) × (γ × γ ′)′ = (γ × γ ′) × (γ × γ ′′) = det(γ, γ ′, γ ′′)γ = kgγ

and a) is proved.
In order to prove b) we simplify the notation writing σ = γ × γ ′ + γ ∗ × γ ∗′.

Denote by �T , �N , �B the Frenet frame of γ . It is easy to see that 〈σ, �T 〉 = 0. Also

〈σ, �N 〉 = 1

k
〈γ × γ ′, γ ′′〉 + 1

k
〈det(γ, γ ′, γ ′′)γ, γ ′′〉

= 1

k
〈γ × γ ′, γ ′′〉 − 1

k
det(γ, γ ′, γ ′′) = 0,

because 〈γ, γ ′〉 = 0 and so 〈γ, γ ′′〉 = −1. Now we compute 〈σ, �B〉,

〈σ, �B〉 = 〈σ, �T × �N 〉 = 1

k
〈σ, γ ′ × γ ′′〉 = 1

k
〈γ × γ ′ + γ ∗ × γ ∗′

, γ ′ × γ ′′〉

= 1

k
〈γ × γ ′, γ ′ × γ ′′〉 + 1

k
〈γ ∗ × γ ∗′

, γ ′ × γ ′′〉

= −1

k
〈γ, γ ′′〉〈γ ′, γ ′〉 + 1

k
〈kgγ, γ ′ × γ ′′〉 = 1

k
(1 + k2g).

Since the curve γ is on the unit sphere we have that k2 = 1+ k2g; therefore 〈σ, �B〉 = k
and we conclude that

γ × γ ′ + γ ∗ × γ ∗′ = k �B.

Since γ ′ × γ ′′ = �T × k �N = k �B the proposition is proved. ��
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Using these formulas it is easily checked that if � is a spherical cap of angle ω one
has

α(�) = 2π(1 − cosω) − π cos2 ω sinω.

2.3 On the set functionˇ

Here we wish to obtain an alternative expression for (1.3) which will lead us to the
Crofton–Herglotz formula.

For two different vectors v2, v3 ∈ S2 let u = v2 × v3/|v2 × v3|. To specify a basis
for u⊥ we write u in spherical coordinates, u = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ), and
define

e1 = ∂

∂ϕ
= (cosϕ cos θ, cosϕ sin θ,− sin ϕ), e2 = 1

sin ϕ

∂

∂θ
= (− sin θ, cos θ, 0),

so that {e1, e2, u} is a positive orthonormal basis. We write v2, v3 in this basis as

v2 = cos θ2 · e1 + sin θ2 · e2, v3 = cos θ3 · e1 + sin θ3 · e2.

Then v2, v3 are parametrized by u, θ2, θ3. Keeping in mind that the integral in (1.3) is
in fact over the set of all triples of great circles meeting �, we have that ±v2 and ±v3
count as one and so we consider 0 ≤ θ2, θ3 ≤ π and require that the angles θ2, θ3 be
within the dihedral angleD(�, u) determined by� and u. Then (u, θ2, θ3) is a double
parametrization of the set of pairs of great circles meeting �. In this parametrization,
it is immediate to check that (cf. (Rey Pastor and Santaló 1951, (34.1)))

dv2dv3 = | sin(θ3 − θ2)|dθ2dθ3du,

while

| det(v1, v2, v3)| = |v2 × v3| · |〈v1, u〉| = | sin(θ3 − θ2)| · |〈v1, u〉|,

for all v1 ∈ �̃.
Thus

β(�) = 1

4

∫
v1∈�̃,u∈S2,θi∈D(�,u)

sin2(θ3 − θ2)|〈v1, u〉|dv1 dθ2 dθ3 du.

Now the integral with respect to θ2, θ3 is easily computed, and denoting as well by
D(�, u) the measure of the dihedral angle we get

β(�) = 1

8

∫
v1∈�̃, u∈S2

(D2(�, u) − sin2 D(�, u))|〈v1, u〉|dv1 du.
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For ±u ∈ � one has D(�, u) = π whence the contribution of this part equals
π2α(�)/2. Thus

β(�) = π2

2
α(�) + δ(�), (2.8)

with

δ(�) = 1

8

∫
v∈�̃,±u /∈�

(D2(�, u) − sin2D(�, u))|〈v, u〉|dv du.

Thus Theorems 1.1 and 1.2 imply

M3 − 1

4
π3MF =

∫
P /∈K

δ(�(P)) dP.

We now insert the definition of δ(�(P)) and use (2.3). If u is the unit direction of the
line G, then D(�(P), u) is the dihedral angle D(K ,G) of K as seen from the line G
through P . So the right-hand side above is equal to

1

2

∫
E∩K �=∅,G∩K=∅

(D2(K ,G) − sin2 D(K ,G))dE dG

= 1

2

∫
E∩K �=∅

dE

( ∫
G∩K=∅

(D2(K ,G) − sin2 D(K ,G)

)
dG.

Using (2.2) we obtain the classical Crofton–Herglotz formula (see (116) in Blaschke
(1955) or (14.33) in Santaló (2004))

∫
G∩K=∅

(D2(K ,G) − sin2 D(K ,G)) dG = 2M2 − π3F

2
.

Equality (2.8) shows that Theorems 1.1 and Theorem 1.2 are equivalent through the
Crofton–Herglotz formula.

3 Some inequalities for convex sets of constant width

In this section we will deal with compact convex sets K of constant width. For each
of these sets we have the relation R + r = a, where a is the width of K , and r , R
are respectively the inradius and the circumradius of K . We denote by Sr and SR the
insphere and the circumsphere of K , respectively. Thus, denoting c = r/R, we have

r = ac

1 + c
, R = a

1 + c
.

From Jung’s Theorem (Martini et al. 2019, sec. 3.4.2) it follows that c ≥ √
8/3− 1 =

0.63...
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Theorem 3.1 Let K be a compact convex set of constant width a and let c = r/R be
the quotient between the inradius and the cirumradius of K . Then

∫
L(K ∩ E)2dE ≤ 8π3a3

(
1

(1 + c)2
− 1

12

)
, (3.1)

where L(K ∩ E) is the perimeter of the planar convex set K ∩ E. The equality holds
for spheres.

Proof First we observe that denoting by p(u), u ∈ S2, the support function of K and
η(u) = p(u) − a/2 one has

η(u)2 = p(u)2 + a2/4 − ap(u).

Hence
∫
S2

η(u)2 du =
∫
S2

p(u)2 du + πa2 − 2πa2 ≥ 0,

and so
∫
S2

p(u)2 du ≥ πa2. (3.2)

The set of affine planes in the space is double parametrized by a unit normal vector u
and the distance t to the origin. Hence the invariant measure is given by dE = 1

2dt du.
Then

∫
L(K ∩ E)2dE = 1

2

∫
S2

∫ a

0
L(K ∩ E)2 dt du ≤ 1

2

∫
S2

∫ a

0
L(SR ∩ E)2 dt du

≤ 1

2

∫
S2

∫ a

0

(
2π

√
R2 − (p(u) − t)2

)2

dt du

=
∫
S2
2π2

(
R2a − a3

3
+ a2 p(u) − ap(u)2

)
du
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and by (3.2)

∫
L(K ∩ E)2dE ≤ 8π3

(
R2a − a3

12

)
= 8π3a3

(
1

(1 + c)2
− 1

12

)
.

��
We note that by Jung’s inequality c ≥ √

8/3 − 1, the above result implies

∫
L(K ∩ E)2dE ≤ 7

3
π3a3.

Proposition 3.2 Let K be a compact convex set of constant width a with c = r/R the
quotient between the inradius and the cirumradius of K . Then

4π3a3
(
8

3

c3

(1 + c)3
− 1

6

)
≤

∫
P /∈K

|�(P)|2dP ≤ 4π3a3
(
11 − 3c(3c2 + c − 3)

6(1 + c)3

)
,

with equalities for spheres, where the lower bound is non negative for c > 0.657....

Proof The right-hand side inequality comes from (3.1) and (1.6) substituting V by Vr ,
where Vr is the volume of the insphere Sr of K . The left-hand side inequality comes
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subtracting 4π2V in the easily checked relations

8π2Vr =
∫

L(Sr ∩ E)2dE ≤
∫

L(K ∩ E)2dE

and using the inequality V ≤ Va/2, where Va/2 is the volume of the sphere of radius
a/2 (see Martini et al. 2019). ��
Remark 3.3 We note that in terms of the width only, we have

∫
P /∈K

|�(P)|2dP ≤ 9

2
π3a3(

√
6 − 2).

Remark 3.4 One can ask if equality

∫
L(K ∩ E)2dE = πMF − 4π2V

that holds for spheres is also true for compact convex sets of constant width. For this
case, with the same kind of arguments used above, we are only able to prove

c3 − 1

(1 + c)3
≤ 1

16π3a3

(∫
L(K ∩ E)2dE − (πMF − 4π2V )

)

≤ −23c3 + 3c2 + 3c + 17

24(1 + c)3

with equalities for spheres.
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