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Abstract
A locally compact stable plane of positive topological dimension will be called semi-
affine if for every line L and every point p not in L there is at most one line passing
through p and disjoint from L . We show that then the plane is either an affine or
projective plane or a punctured projective plane (i.e., a projective plane with one point
deleted). We also compare this with the situation in general linear spaces (without
topology), where P. Dembowski showed that the analogue of our main result is true
for finite spaces but fails in general.
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1 Introduction

We recall the basic notions, compare Löwen (1976), Löwen (1981), Grundhöfer and
Löwen (1995) and Salzmann (1967). A stable plane is a pair (M,L) consisting of a
set M of points and a set L of subsets L ⊆ M , called lines, such that any two points
p, q ∈ M are joined by a unique line L = p∨q ∈ L. Moreover, it is required that both
M andL carry locally compact topologies of positive topological dimension such that
the operation ∨: M × M → L of joining is continuous and the opposite operation
∧ of intersection sending a pair of intersecting lines to their point of intersection
is continuous and its domain of definition is open. The last mentioned property is
called stability of intersection. It distinguishes stable planes from spatial geometries,
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where pairs of intersecting lines may be approximated by pairs of skew lines. To avoid
trivialities, it is also assumed that there is a quadrangle, i.e., four points no three of
which are on one line.

If two lines always intersect, then we have a topological projective plane. This
happens if and only if M is compact. See Salzmann et al. (1995) for many examples.
An abundance of non-projective examples is obtained by taking the trace geometry
induced on any proper open subset of the point set in a topological projective plane.
Apart from these (projectively) embeddable examples, there are non-embeddable ones.
They are generally harder to construct, and this explains why only two-dimensional
examples are known, compare 2.2 below.

The pencil of all lines passing through a point p is denotedLp; it is always compact
and connected, see Löwen (1976, 1.17, 1.14). As a consequence, a non-compact line
L is disjoint from at least one line through any point p /∈ L . This is seen by looking
at the map x → x ∨ p from L to Lp.

In Löwen (1981), we studied special cases of Euclid’s parallel axiom, which stip-
ulates that given a line L and a point p /∈ L , there exists exactly one line K ∈ Lp

that is disjoint from L . This line is then said to be parallel to L . Also every line is
considered as being parallel to itself. If the parallel axiom holds universally, then the
plane is called an affine plane. If the parallel axiom is satisfied for a fixed line A and
for each point not on A, then we say that the line A is affine.

An affine line all of whose parallels are also affine will be called a biaffine line. Not
all affine lines are biaffine. Indeed, if we take a projective plane (P,L) and delete from
P a closed subset of some line W , then what we obtain is called an almost projective
plane. If we have deleted a proper subset X ⊆ W containing more than one point, then
any line A �= W originally containing a point of X will be affine, and the remainder
W\X is parallel to A, but is not affine. So A is affine, but not biaffine. Two intersecting
affine lines may have a common parallel, as shown by lines A1 and A2 of the kind just
considered, the common parallel being W\X . However, we observe:

Lemma 1.1 On the setA of all affine lines of a stable plane, the parallelity relation is
an equivalence.

Proof We have to show that two parallels of an affine line do not intersect. Indeed,
this is part of the definition of an affine line. �	

Lemma 1.2 There is a continuous map P : A × M → L that sends a pair (A, p) to
the unique parallel of A passing through p.

Proof The spacesM andL are second countable byLöwen (1976, 1.9), hence it suffices
to show sequential continuity. So let (An, pn) → (A, p) in A × M . If P(An, pn)
converges to a line L , then stability of intersection implies that either p ∈ A and
L = A or p /∈ A and L is a line passing through p which is disjoint from A. So in
either case, L = P(A, p). Now by Löwen (1976, 1.17), the set of all lines containing
one of the points pn or p is compact, hence every subsequence of P(An, pn) has a
subsequence converging to P(A, p). This implies convergence of the entire sequence.

�	
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A line is L called projective if it meets every other line. A line is projective if and
only if it is compact, because we have a continuous and open embedding p 
→ p ∨ q
of L into the compact and connected pencil Lq of any point q /∈ L .

Finally, we need the notion of a pointwise coaffine line, introduced in Löwen (1981).
These can be characterized as non-projective lines intersecting only all projective lines.
We refer to Löwen (1981) for an explanation of the term ‘pointwise coaffine’, which
describes how these lines appear in the so-called opposite plane, a kind of weak dual.
In a punctured projective plane, i.e., a projective plane with just one point deleted,
all lines are either projective or pointwise coaffine, and both types occur. In fact, this
property characterizes punctured projective planes as is easily seen. We give a proof,
because this fact does not seem to be recorded in the literature:

Proposition 1.3 If every line of a stable plane is either projective or pointwise coaffine
then the plane is either a projective or a punctured projective plane. The converse is
also true.

Proof We may assume that non-projective (hence non-compact) lines exist. Every
non-compact line has at least one parallel through any given point outside. That line
is not projective and must be pointwise coaffine, hence it is the unique non-compact
line passing through that point. Thus we have a set of pairwise disjoint biaffine lines
covering the point set. Adding a point at infinity, we obtain a topological projective
plane, compare Löwen (1981, Theorem 2.2). �	

In the terminology of Löwen (1981), punctured projective planes are also called
coaffine planes. Here is another related fact, taken from Löwen (1981, 1.3).

Proposition 1.4 If some pencilLp of a stable plane consists entirely of projective lines,
then the plane is projective.

Proof Every line L not containing p is homeomorphic to the compact pencil Lp via
join and intersection, hence L is projective. �	

Our focus here will be on semiaffine stable planes, that is, planes where for every
non-incident point-line pair (p, L) there is at most one line containing p and disjoint
from L . We have the following

Proposition 1.5 In a semiaffine stable plane, every line is either affine or projective.

Proof If all lines passing through p /∈ L intersect L , then L is homeomorphic to the
compact pencil Lp, hence L is projective. If this never happens for a given line L ,
then L is affine. �	

2 Semiaffine planes

Lemma 2.1 If a projectively embeddable stable plane (M,L) contains two intersect-
ing affine lines, one of which is biaffine, then (M,L) is an affine plane.
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Proof Suppose that (M,L) is embedded in the topological projective plane (P,K).
Recall from the introduction that this means that M is an open subset of P , and that
the lines L ∈ L are the nonempty intersections L = K ∩ M , K ∈ K. Note that then
L contains more than one point.

For L ∈ L, let L̄ ∈ K be the unique line containing L . If L̄\L contains distinct
points a, b, then any point p ∈ M\L lies on two distinct lines p∨a and p∨b disjoint
from L . Hence L is affine if and only if L̄\L consists of a single point ∞L . The
parallels of L in the stable plane (M,L) are then precisely the lines K ∈ L such that
K̄ contains ∞L . If L is biaffine, it follows that K̄\K = {∞L} holds for these lines.
Let AL be the set of all parallels K of L . Passing to the corresponding lines K̄ , we
obtain a subset AL ⊆ K∞L , and then we see that M is the union of AL minus the
point ∞L .

Now let B /∈ AL be another affine line. Then ∞B �= ∞L , and the line W ∈ K
joining these two points does not belong toAL , because it contains two points outside
M . On the other hand, all other linesC in the pencil of∞L must belong toAL because
their intersection q with B̄ belongs to B ⊆ M , whence q ∨ ∞L induces a parallel of
L . It follows that AL = K∞L \{W }, and hence that M = P\W is an affine plane. In
fact, (P,K) is the projective completion of this affine plane. �	

In Löwen (1981, 5.4), peculiar examples of stable planes are constructed. They
depend on a real function α with suitable properties and are called Eα . They have
point set M = R

2, and their lines are all homeomorphic toR. There is one special line
C in Eα [the y-axis, called Y0 in Löwen (1981)], and the remaining lines are divided
into those not meetingC and those meetingC , with very different behaviour. Precisely
the lines of the latter type are affine. They are in fact biaffine, because their parallels
are obtained by translation in y-direction. The plane is not affine, because the lines
not meeting C are not affine. Using Lemma 2.1, we infer the following

Corollary 2.2 The two-dimensional stable planes Eα referred to above are examples
of non-embeddable planes. �	

The planes Eα can be extended by adding a point at infinity to every line meeting
C , see Löwen (1981, 5.4). The added points together form an additional line D. One
obtains examples Eα of stable planes containing two pointwise coaffine linesC and D
without being coaffine (i.e., punctured projective) planes. This property shows directly
that the extended planes are non-embeddable. We could have told this before, since
an open embedding of the extended plane would induce an open embedding of the
original one.

Lemma 2.3 Suppose that A and B are two intersecting biaffine lines in a stable plane.
Then every parallel of A intersects every parallel of B.

Proof Let A′ and B ′ be parallels of A and B, respectively. Then A′ and B ′ are affine
by assumption. If they are disjoint, i.e., parallel, then this violates Lemma 1.1. �	

This is false if A and B are merely affine. Indeed, if then A′ intersects B ′, deleting
the intersection point from the given plane yields a counterexample.
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Proposition 2.4 If A and B are two intersecting biaffine lines in a stable plane (M,L),
then the map A × B → M that sends (a, b) to the point P(a, B) ∧ P(b, A) is a
homeomorphism.

Proof By Lemma 2.3 we have an inverse map sending p ∈ M to (P(B, p) ∧
A, P(A, p) ∧ B); it is continuous by Lemma 1.2. �	
Corollary 2.5 If a stable plane contains two intersecting biaffine lines A, B, then it
does not contain a projective line.

Proof If L is a projective line, then by Lemma 2.3 there is a continuous map L → B
sending p ∈ L to P(A, p) ∧ B. This map is surjective because L meets every line.
However, L is compact and B is not. �	

In none of the two preceding assertions, the assumption can be weakened from
‘biaffine’ to ‘affine’; every almost projective plane that is neither projective nor punc-
tured projective nor affine yields counterexamples. The following lemma is obvious
from the definitions.

Lemma 2.6 If all lines of a stable plane are either affine or projective, then every affine
line is biaffine. �	
Theorem 2.7 The semiaffine locally compact positive-dimensional stable planes are
precisely the following:

1. affine planes
2. projective planes
3. punctured projective planes.

Proof Clearly, the planes listed are all semiaffine. For the converse assertion, recall
that all lines are either affine or projective by Proposition 1.5.We only need to consider
the mixed case, where both affine and projective lines exist. We claim that the plane is
punctured projective. By Lemma 2.6, all affine lines are biaffine, and by Lemma 2.5,
no two of them intersect. We may then embed our plane in a compact projective plane
by adding a point∞ to the point set and replacing every affine line A by A∪{∞}. See
Löwen (1981, Theorem 2.2) for details on the continuity properties of the extended
plane.

Instead of this completion argument, we may use the notion of a coaffine point
introduced in Löwen (1981), as follows: By the previous remarks, every point is
incident with precisely one affine line, and all other lines passing through that point
are projective. This means that every point is coaffine. Then the plane is pointwise
coaffine and hence coaffine, i.e., punctured projective. �	

We take this opportunity to give a complete statement of Proposition 1.8 of Löwen
(1981), which was mutilated by the publisher after proofreading.

Proposition 2.8 (Löwen 1981)Let (M,L) be a stable planewhose lines aremanifolds.

(a) If C ∈ L is pointwise coaffine, then the complement (M\C,L\{C}) has a point
set homeomorphic to Euclidean space R2n+1

, where 0 ≤ n ≤ 3, and all lines are
homeomorphic to R2n .
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(b) If there is a second pointwise coaffine line D, then the opposite plane (M,L)∗ has
the same topological properties.

The proof given in Löwen (1981) is correct. The opposite plane has point set K, the
set of all compact lines of (M,L), and its lines are the partial pencils Kp.

3 Appendix: Linear spaces

All our assertions make sense in the more general situation of linear spaces, where
there is no topology, and we shall examine which of them remain true. Some strong
tools, in particular those related to compactness, are no longer available, and examples
are hard to construct. This is why at least one question remains open. Yet also some
strong results are known.

We define a linear space to be a pair (M,L) consisting of a set M and a collectionL
of subsets of cardinality at least 3, called lines, such that any two points are joined by
a unique line, and such that every point is on at least 3 lines. Linear spaces include all
affine spaces with lines of size at least 3 and all projective spaces. For these as well as
many others, dimension is meaningful and is either infinite, or takes arbitrary integer
values d ≥ 2. However, if we assume the existence of affine or projective lines (defined
in the same manner as before), then this indicates planar behaviour. Kreuzer (1993)
introduces a notion of semiaffine linear spaces that makes sense in higher definitions,
but we shall not adopt his definition.

A few results fromSect. 2 remain truewithout the topological assumptions.Notably,
this holds for Lemma 1.1 (parallelity is an equivalence among affine lines) and its
consequence Lemma 2.3 (parallels of intersecting biaffine lines always intersect). The
proofs are valid without change. All remaining results that we obtained for stable
planes rely on topological arguments for their proofs, and we have stressed the places
where this occurs in the previous sections.

One assertion that definitely fails is the analogue of Proposition 1.5, which asserts
that a semiaffine linear space contains only affine and projective lines. An easy coun-
terexample is the projectively embedded plane obtained from any affine plane by
adding a single point x at infinity in the projective closure. Lines passing through
x are projective, but those not containing x are not affine, because they do not pos-
sess parallels containing x . As a consequence, the analogue of Theorem 2.7 fails. In
addition to this standard counterexample, Dembowski (1962) constructed a plethora
of other counterexamples by a processs of free extension. Also Proposition 1.4 fails
without topology: in the above example, the pencil of x consists of projective lines.
We do not know the answer to the following.

Problem Does Theorem 2.7 hold for linear spaces with the stronger assumption that
all lines are either affine or projective?

Things are somewhat different in finite linear spaces. There, existence of a projective or
affine line implies that all pencils of points outside this line have equal cardinalities,
and this may sometimes replace our compactness arguments. In fact, we have the
following.
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Theorem 3.1 Let (M,L) be a finite linear space as defined above. If all lines are either
affine or projective, then (M,L) is an affine plane or a projective plane or a punctured
projective plane.

Proof Only the mixed case (with lines of both kinds) needs to be discussed. No line
is affine and projective at the same time, and every affine line is biaffine. Let q be the
number of points on an affine line A. For every point x outside A, we have the unique
parallel to A containing x . The other lines in the pencil Lx meet A, hence the pencil
has q + 1 elements. Repeating this argument with another line parallel to A one sees
that every pencil has cardinality q + 1. It follows that a line is affine or projective
according as its cardinality is q or q + 1, respectively.

Now we can use the arguments from Lemmas 2.3 and 2.5 (with homeomorphisms
replaced by bijections) to conclude that no projective lines exist if there are two
intersecting affine lines. The only remaining possibility is that every point is on a
unique affine line, and then by adding a common point at infinity to these lines we
obtain a projective plane. �	

Theorem 3.1 is a special case of a result by Dembowski (1962), which is much
harder to prove. It asserts that the only finite semiaffine linear spaces are the finite
affine, projective or punctured projective planes and the finite affine planes extended
by one point at infinity. In other words, the counterexample to Theorem 2.7 exhibited
above is the only one in the finite case. A generalization allowing lines with only two
points is given by Totten and de Witte (1974).
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