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Abstract
Any collection of non-blocking cubes, whose total volume does not exceed 1/3, can
be packed into the unit cube.
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1 Introduction

Let Cn be a d-dimensional cube, for n = 1, 2, . . ., and let I d be a d-dimensional
cube of edges of length 1. We say that the cubes C1,C2, . . . can be packed into I d

if it is possible to apply translations and rotations to the sets Cn so that the resulting
translated and rotated cubes are contained in I d and have mutually disjoint interiors.
The packing is parallel if each edge of any packed cube is parallel to an edge of I d .

Meir and Moser (1968) proved that any collection of d-dimensional cubes can be
parallel packed into the unit d-dimensional cube I d , provided that the total volume
of the cubes is not greater than 21−d . This upper bound is sharp for parallel packing:
it is impossible to pack two d-dimensional cubes of edges of length greater than 1/2
into I d . In particular, two three-dimensional cubes of edge length greater than 1/2
and, consequently, of total volume greater than 2 · (1/2)3 = 1/4, cannot be parallel
packed into I 3. In general any two cubes whose sum of edge lengths is greater than 1
block each other in parallel packing; if we pack one of them, there will not be enough

Janusz Januszewski and Łukasz Zielonka have contributed equally to this work.

B Łukasz Zielonka
lukasz.zielonka@pbs.edu.pl

Janusz Januszewski
januszew@pbs.edu.pl

1 Institute of Mathematics and Physics, Bydgoszcz University of Science and Technology, Al. Prof. S.
Kaliskiego 7, Bydgoszcz 85-789, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13366-023-00710-1&domain=pdf
http://orcid.org/0000-0002-6278-8599


Beitr Algebra Geom

Fig. 1 The packing method
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space in I d to pack the other. In this note we will pack three-dimensional cubes from
a collection satisfying an additional condition.

Denote by an the edge length of Cn , for n = 1, 2, . . . We say that the cubes
C1,C2, . . . are non-blocking, if ai +a j ≤ 1 for any i �= j (compare Januszewski and
Zielonka 2023a). In Januszewski and Zielonka (2023b) it is shown that any collection
of non-blocking squares, whose total area does not exceed 5/9, can be packed in I 2.
The aim of this note is to show that any collection of non-blocking cubes can be
parallel packed into I 3, provided that the sum of volumes of the cubes is not greater
than 1/3. This upper bound is sharp for parallel packing: nine cubes of edge lengths
greater than 1/3 cannot be parallel packed into I 3.

The packing method presented in Sect. 3 is based on the well-known method of
Meir andMoser (1968). At the beginning, the cubes are arranged by size, starting with
the largest one. Then the cubes are packed in successive layers so that its bottoms
are packed into squares. Therefore, we will first describe the algorithm for packing
squares.

2 MM+(2D)-method

By [b1, b2] × [c1, c2], where b1 < b2 and c1 < c2, we mean the rectangle
{(x, y) : b1 ≤ x ≤ b2, c1 ≤ y ≤ c2}. We will use the method described in
Januszewski and Zielonka (2023b), which is a slight modification of the algorithm of
Moon and Moser (1967). For the convenience of the reader, we will present a sketch
of how we pack the squares.

Let I 2 = [0, 1] × [0, 1] and let S be a collection of squares S1, S2, . . . Assume
that an ≥ an+1 for n = 1, 2, . . . and a1 + a2 ≤ 1, where an denotes the sidelength
of Sn . Moreover, assume that P = [1 − wp, 1] × [1 − h p, 1] (see Fig. 1), where
0 ≤ wp < 1 and 0 ≤ h p < 1. By IntP denote the interior of P .
Squares S1, S2, . . . are packed into I 2 \ P in layers R1, R2, . . .. The first layer is

either the rectangle [0, 1] × [0, a1] if
([0, 1] × [0, a1]

) ∩ IntP = ∅ or the rectangle
[0, 1 − wp] × [0, a1], otherwise. The squares S1, S2, . . . are packed into I 2 along
the base of the first layer R1 from left to right. If Sn1 is the first square that cannot
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Fig. 2 Estimation of the total area of packed squares

be packed in that way, then the new layer R2, of height an1 , is created directly above
R1. The base of R2 is either equal to 1 if

([0, 1] × [a1, a1 + an1 ]
) ∩ IntP = ∅

or equal to 1 − wp, otherwise. The squares Sn1 , Sn1+1, . . . are packed into I 2 along
the base of the second layer from left to right. If Sn2 is the first square that cannot
be packed in that way in the second layer, then the new layer R3, of height an2 ,
is created directly above the second layer. The base of R3 is either equal to 1 if([0, 1] × [a1 + an1, a1 + an1 + an2 ]

) ∩ IntP = ∅ or equal to 1− wp, otherwise, etc.

Lemma 1 If Sz is the first square from S that cannot be packed into I 2 \ P by the
MM+(2D)-method, then the total area of squares S1, S2, . . . , Sz plus the area of P
is greater than a21 + (1 − a1)2.

Proof Assume that squares S1, S2, . . . , Sz−1 are packed into I 2 \ P and that Sz cannot
be packed into I 2\P by the MM+(2D)-method. To prove this lemma it is suffi-
cient to show that the square [a1, 1] × [a1, 1], of area (1 − a1)2, can be covered by
S2, S3, . . . , Sz and P with some excess (i.e., that the sum of areas of S2, S3, . . . , Sz
and P is strictly larger than (1 − a1)2). Let nt = z (z = n5 on Fig. 2).

Let’s move Sni , i.e., the first square from the layer Ri+1, to the place directly behind
Sni−1 so that the lower left vertex of Sni is the lower right vertex of Sni−1 (as the white
squares Sni on Fig. 2, left), for i = 1, . . . , t . Then we move up the squares from R1
(without S1 but with Sn1 ) by the distance a1. Moreover, we move up the squares from
the layer Ri (together with Sni ) by the distance ani−1 , for i = 2, . . . , t (see Fig. 2,
right).

It should be noted that with this arrangement of squares, the right side of each square
Sni is outside the layer Ri+1 for i = 1, 2, . . . , t . Moreover, an1 + an2 + · · · + ant >

1− a1. This implies that S2, S3, . . . , Sz and P permit a covering of [a1, 1] × [a1, 1]
with some excess (see Fig. 3). ��
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3 MM+(3D)-method

By [b1, b2] × [c1, c2] × [d1, d2], where b1 < b2, c1 < c2 and d1 < d2, we mean
the box {(x, y, z) : b1 ≤ x ≤ b2, c1 ≤ y ≤ c2, d1 ≤ z ≤ d2}. The packing method
is a small modification of the algorithm of Meir and Moser (1968).

Let H = [0, 1] × [0, 1] × [0, h]. Moreover, let Cn be a cube of edge length
an , where an ≥ an+1 for n = 1, 2, . . . and let a1 + a2 ≤ 1. Assume that B =
[1 − wb, 1] × [1 − lb, 1] × [h − hb, h] (see Fig. 4), where 0 ≤ wb < 1, 0 ≤ lb < 1
and 0 ≤ hb < h.

CubesC1,C2, . . . are packed into H in layers L1, L2, . . . similarly as in the method
of Meir and Moser (1968). The base of each layer is a unit square. The first layer is
the box [0, 1]× [0, 1]× [0, a1]. The cubes are packed in L1 so that the bottoms of the
cubes are packed into the bottom of the layer according to the MM+(2D)-method.
If

([0, 1] × [0, 1] × [0, a1]
) ∩ IntB = ∅, then P = ∅ in the MM+(2D)-method,

otherwise P = [1 − wb, 1] × [1 − lb, 1]. If Cn1 is the first cube that cannot be
packed in L1, then the new layer L2, of height an1 , is created directly above L1. The
next cubes Cn1,Cn1+1, . . . are packed into L2 so that the bottoms of the cubes are
packed into the bottom of the layer according to the MM+(2D)-method. If

([0, 1] ×
[0, 1]× [a1, a1 +an1 ]

)∩ IntB = ∅, then P = ∅ in the MM+(2D)-method, otherwise
P = [1−wb, 1]× [1− lb, 1]. If Cn2 is the first cube that cannot be packed in that way
in the second layer, then the new layer L3, of height an2 , is created directly above the
second layer, etc.

Lemma 2 If Cz is the first cube from the collection that cannot be packed into H\B
by the MM+(3D)-method, then the total volume of cubes C1,C2, . . . ,Cz plus the
volume of B is greater than a31 + (1 − a1)2(h − a1).

Proof Assume that cubes C1,C2, . . . ,Cz are packed into H\B by the MM+(3D)-
method. Note that to prove this lemma it is sufficient to show that the box [a1, 1] ×
[a1, 1] × [a1, h] can be covered by C2,C3, . . . ,Cz and B with some excess. Let
nt = z.

Let’s move Cni (the first cube from the layer Li+1) so that the lower left vertex of
the bottom of Cni is the lower right vertex of the bottom of Cni−1, for i = 1, . . . , t
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Fig. 4 Estimation of the total volume of packed cubes

(as the white cube on Fig. 4, left, where i = 1). Then we move up the cubes from L1
(without C1 but with Cn1 ) by the distance a1. Moreover, we move up the cubes from
Li (with Cni ) by the distance ani−1 , for i = 2, . . . , t (see Fig. 4, right). Now we move
cubes in each layer such that the bottoms of these cubes were placed in the same way
as in the description of the proof of Lemma 1, i.e., such that the union of the bottoms
of the cubes and the rectangle P (if any) covers the square [a1, 1]× [a1, 1] in the base
of the layer.

It should be noted that with this arrangement of cubes, the right face of each cube
Cni for i = 1, 2, . . . , t is either outer of Li+1 or is contained in B. Moreover, an1 +
an2 + · · · + ant > h − a1. This implies that C2,C3, . . . ,Cz and B permit a covering
of the box [a1, 1] × [a1, 1] × [a1, h] with some excess. ��

4 Packing of non-blocking cubes into the unit cube

Let I 3 = [0, 1]×[0, 1]×[0, 1] and let C be a collection of cubesC1,C2, . . .Assume
that a1 + a2 ≤ 1 and that an ≥ an+1, where an denotes the edge length of Cn for
n = 1, 2 . . .

Let

U = [0, 1] × [0, 1] × [1 − a1, 1],
H = [0, 1] × [0, 1] × [0, 1 − a2],
B = [1 − a1, 1] × [1 − a1, 1] × [1 − a1, 1 − a2].

Clearly, if a1 �= a2, then B is a box of size a1 × a1 × (a1 − a2).

• The first four cubes, i.e., C1,C2,C3 and C4 are packed into the upper corners of
U so that C1 contains B (see Fig. 5, left).

• If a3 + a4 + a5 > 1, then no more cube will be packed into U . Otherwise, we
pack C5 into U as near to the top as it is possible. Apart from C1,C2,C3,C4 and
C5 no more cube will be packed into U .

• The remaining cubes are packed into H \ B in corresponding layers Li (i =
1, 2, . . .) by the MM+(3D)-method (as on Fig. 4 for h = 1 − a2).
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Fig. 5 Packing of non-blocking cubes

Theorem 3 Any collection of non-blocking cubes with total volume not greater than
1/3 can be packed into the unit cube.

Proof Denote by C1,C2, . . . the cubes in the collection.Without loss of generality we
can assume that a1 ≥ a2 ≥ · · · , where an is the edge length of Cn , for n = 1, 2, . . .

Wewill show that if the cubes cannot be packed into I 3, then a31 +a32 +· · · > 1/3,
which is a contradiction. Clearly, a5 ≤ a2 ≤ 1/2 (if a1 ≥ a2 > 1/2, then C1 and
C2 block each other). Consider two cases.
Case 1: 2a2 + a5 > 1.

The volume of B is equal to a21(a1 − a2). If the cubes cannot be packed into I 3,
then, by Lemma 2, the sum of volumes of the cubes is greater than

a31 + a32 + a33 + a34 + a35 + (1 − a5)
2(1 − a2 − a5) − a21(a1 − a2)

= a21a2 + a32 + a33 + a34 + a35 + (1 − a5)
2(1 − a2 − a5)

≥ 2a32 + 3a35 + (1 − a2 − a5)(1 − a5)
2.

We find the global minimum of the function

f (a2, a5) = 2a32 + 3a35 + (1 − a2 − a5)(1 − a5)
2

in the domain D1 given by the following inequalities

⎧
⎪⎨

⎪⎩

a5 > 1 − 2a2
a5 ≤ a2
a2 ≤ 1

2

.

Since f ′
a2(a2, a5) = 6a22 − (1− a5)2 and a5 = 1−√

6a2 < 1− 2a2, the stationary
points are outside our domain.

The boundary of the triangle D1 consists of three segments.

• The segment a5 = 1 − 2a2 with 1/3 ≤ a2 ≤ 1/2. The function
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f1(a2) = f (a2, 1 − 2a2) = 2a32 + 3(1 − 2a2)
3

+ (1 − a2 − 1 + 2a2)(1 − 1 + 2a2)
2 = −18a32 + 36a22 − 18a2 + 3

is increasing for a2 ∈ [1/3, 1/2]. This means that f1(a2) ≥ f1(1/3) = 1/3.
• The segment a5 = a2 with 1/3 ≤ a2 ≤ 1/2. The function

f2(a2) = f (a2, a2) = 5a32 + (1 − 2a2)(1 − a2)
2 = 3a32 + 5a22 − 4a2 + 1

is increasing for a2 ∈ [1/3, 1/2]. Consequently, f2(a2) ≥ f2(1/3) = 1/3.
• The segment a2 = 1/2 with 0 < a5 < 1/2. The function

f3(a5) = f
(1
2
, a5

)
= 2

(1
2

)3 + 3a35 +
(
1 − 1

2
− a5

)
(1 − a5)

2

= 2a35 + 5

2
a25 − 2a5 + 3

4

for a5 ∈ [0, 1/2] reaches its lowest value (809 − 73
√
73)/432 > 1/3 at a5 =

(
√
73 − 5)/12.

Thus, the lowest value of the function f in the given domain is equal to 1/3.

Case 2: 2a2 + a5 ≤ 1. This implies that C5 is packed into U .
If the cubes cannot be packed into I 3, then, by Lemma 2, the sum of volumes of

the cubes is greater than

a31 + a32 + a33 + a34 + a35 + a36 + (1 − a6)
2(1 − a2 − a6) − a21(a1 − a2)

= a21a2 + a32 + a33 + a34 + a35 + a36 + (1 − a6)
2(1 − a2 − a6)

≥ 2a32 + 4a36 + (1 − a2 − a6)(1 − a6)
2.

We find the global minimum of the function

g(a2, a6) = 2a32 + 4a36 + (1 − a2 − a6)(1 − a6)
2

in the domain D2 given by the following inequalities

⎧
⎪⎨

⎪⎩

a6 ≤ a2
a2 ≤ 1

2 .

a6 > 0

All four stationary points

P1

(√
54 − 6

√
6 + 6

√
6

27 + √
6

,−2
√
54 − 6

√
6 + 3

√
6 − 2

9
√
6 + 2

)

,

P2

(

−
√
54 − 6

√
6 − 6

√
6

27 + √
6

,
2
√
54 − 6

√
6 − 3

√
6 + 2

9
√
6 + 2

)

,
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√
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√
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9
√
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P4

(√
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√
6 − 6

√
6

27 − √
6
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√
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√
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√
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9
√
6 − 2
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are outside the domain D2.
The boundary of D2 consists of three segments.

• The segment a6 = a2 with 0 ≤ a2 ≤ 1/2. The function

g1(a2) = g(a2, a2) = 6a32 + (1 − 2a2)(1 − a2)
2 = 4a32 + 5a22 − 4a2 + 1

for a2 ∈ [0, 1/2] reaches its lowest value (701 − 73
√
73)/216 ≈ 0.358 > 1/3 at

a2 = (
√
73 − 5)/12 ≈ 0.295.

• The segment a2 = 1/2 with 0 ≤ a6 ≤ 1/2. The function

g2(a6) = g
(1
2
, a6

)
= 2

(1
2

)3 + 4a36 +
(
1 − 1

2
− a6

)
(1 − a6)

2

= 4a36 +
(1
2

− a6
)
(1 − a6)

2 + 1

4

for a6 ∈ [0, 1/2] reaches its lowest value (1394 − 97
√
97)/972 > 1/3 at a6 =

(
√
97 − 5)/18 ≈ 0.269.

• The segment a6 = 0 with 0 ≤ a2 ≤ 1/2. Observe that

g3(a2) = g (a2, 0) = 2a32 + 1 − a2 > 1 − a2 ≥ 1

2

for a2 ∈ [0, 1/2].
Thus, the lowest value of the function g in the given domain is greater than 1/3. ��

In λ-packing cubes are grouped in batches (comp. Januszewski and Zielonka 2022
and Januszewski and Zielonka 2023). Cubes arrive online and they are stored in a
buffer until either the total volume of stored cubes is greater than or equal to λ or
all cubes have already arrived. Then cubes from the buffer are packed offline into a
unit capacity bin and the buffer is emptied. The following problem arises: what is the
smallest λ such that any collection of non-blocking cubes of total volume not greater
than 1/3 can be λ-packed into I 3?
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