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Abstract
We study the questionwhether copies of S1 in SU(3) can be amalgamated in a compact
group. This is the simplest instance of a fundamental open problem in the theory
of compact groups raised by George Bergman in 1987. Considerable computational
experiments suggest that the answer is positive in this case.We obtain a positive answer
for a relaxed problem using theoretical considerations.
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1 Introduction

We write SU(3) for the group of 3×3 complex, unitary matrices with determinant
equal to 1. Consider the closed subgroups T1 = {diag(z, 1, z−1) | z ∈ S1} and
T2 = {diag(z, z, z−2) | z ∈ S1}, where S1 denotes themultiplicative group of complex
numbers of norm one. Both T1 and T2 are isomorphic to S1 as topological groups, via
the natural isomorphisms z �→ diag(z, 1, z−1) and z �→ diag(z, z, z−2), respectively.
However, the two representations of S1 in SU(3) are not equal and not even conjugate in
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SU(3). So it is a natural question to wonder whether there exist unitary representations
π1, π2 : SU(3) → U(n) for some n, such that the two representations of S1 can be
matched, or more precisely

π1(diag(z, z
−1, 1)) = π2(diag(z, z, z

−2)), for all z ∈ S1.

We denote by ρ the natural representation of SU(3) on C
3. One can then check that

the two 9-dimensional representations π1 = ρ ⊗ ρ̄ and π2 = ρ ⊕ ρ̄ ⊕ 1⊕3 solve
this problem, where ρ̄ denotes the conjugate representation, and 1 is the trivial one-
dimensional representation. We will come back to this example several times in this
article.

This concrete question belongs to a more general set of problems that was first
studied by Bergman (1987). Let A, B be compact groups that share a common closed
subgroup C , see Hofmann and Morris (2020) for background on the theory of general
compact groups. It is natural to consider the abstract amalgamated free product G :=
A ∗C B and try to study the analytic properties that it inherits from its constituents.
A natural question is whether G can carry a possibly non-Hausdorff pre-compact
group topology that restricts to the given topologies on A and B. Equivalently, we ask
whether A and B can be amalgamated over C in the category of compact groups, i.e.,
if there exists a compact group D and embeddings of A and B in D that agree on the
common copy of C .

A

C D

B

π1

π2

Compact groups carry bi-invariant metrics that generate the topology. Thus, a first
obstruction to a positive answer is that A and B may not carry bi-invariant metrics
that agree on C . If this is the case, a bi-invariant pseudo-metric on G that is faithful
on A and B cannot exist. In particular, there does not exist a compact group D as
described above. Bergman showed that this type of argument rules out existence of
compact amalgams in many cases. It is a fundamental open problem, if amalgamation
is always possible for C = S1 or C = SU(n), see Bergman (1987, Question 20).

The purpose of this note is to explore an equivalent algebraic reformulation of the
problem in the simplest possible case. What got us started was the strategy outlined
after Question 20 in Bergman (1987). That strategy is amenable to standard computer
algebra systems. Our computer experiments, with SCIP (Bestuzheva et al. 2021) and
OSCAR (Decker et al. 2024; OSCAR 2023), suggest that solutions to the original
problem can always be found but get increasingly complicated. For example, merging
the subgroups T1 = {diag(z, z5, z−6) | z ∈ S1} and T2 = {diag(z, z7, z−8) | z ∈ S1}
of SU(3) required us to consider all possible direct sums of the first 120 mutually
non-equivalent irreducible representations of SU(3) (in some specified order) until
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a pair of unitary representations of SU(3) on a complex vector space of dimension
roughly 300,000 could be found that solves the problem.

2 Some basic observations

Let us study the question of amalgamation of the base C = S1. It follows from the
Peter–Weyl Theorem (Knapp 1986, Theorem1.12) that in order to construct amalgams
of general compact groups A and B, it is enough to consider the case A = U(n), B =
U(m). Since U(n) embeds to SU(n+1), we can further restrict to the case A = SU(n),
B = SU(m). The simplest case that comes to mind is A = B = SU(2). In this case,
however, every embedding of S1 in SU(2) is conjugate to the map z �→ diag(z, z−1).
Thus, the first truly non-trivial case might be A = SU(2) and B = SU(3) or somewhat
more general A = B = SU(3). Our first task is to describe the possible embeddings
of S1 in SU(3). Our second task is to search for pairs of faithful, finite-dimensional,
unitary representations of SU(3) that agree on the embedded copies of S1.

The first task is easy to solve. Up to conjugation in SU(3), every embedding of
S1 into SU(3) is given by three integers (a, b, c) ∈ Z

3 such that a + b + c = 0 and
gcd(a, b, c) = 1. The embedding associated with the triplet (a, b, c) is concretely
given by

ψa,b,c(z) := diag(za, zb, zc) ∈ SU(3), for all z ∈ S1.

In order to address the second task,we recall some facts about the finite-dimensional
unitary representation theory of SU(3). Let ρ be the standard representation of SU(3)
on C

3 and ρ̄ be its dual or conjugate. We denote by πm,n : SU(3) → U(�m,n) the
irreducible representation parameterized by the weight (m, n), a pair of non-negative
integers. This representation corresponds to the Young tableaux of shape (m + n, n).
According to Fulton–Harris (Fulton and Harris 1991, §13.2), we have

�m,n = ker

(
Symm(ρ) ⊗ Symn(ρ̄)

φm,n→ Symm−1(ρ) ⊗ Symn−1(ρ)

)
, (1)

where φm,n denotes the natural (surjective) contraction map

φm,n
(
(v1 . . . vm) ⊗ (v∗

1 . . . v∗
n )

) :=
m∑
i=1

n∑
j=1

〈vi , v∗
j 〉(v1 . . . v̂i . . . vm) ⊗ (v∗

1 . . . v̂∗
j . . . v∗

n ).

Note that representations of the compact Lie group SU(3) correspond to representa-
tions of the simple Lie algebra sl3C; see Fulton and Harris (1991, §9.3).

Every unitary representation σ of SU(3) extends to a unitary representation σ ′
of U(3), which is however not unique. The character of a unitary representation
σ : SU(3) → U (k) is a symmetric polynomial χ(σ) ∈ Z[x1, x2, x3] determined
uniquely up to some element in the ideal generated by x1x2x3 − 1 by the property

χ(σ)(x1, x2, x3) = tr
(
σ ′(diag(x1, x2, x3))

)
, for all x1, x2, x3 ∈ S1.
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It is known that χ(π ′
m,n) = sm+n,n, where sλ denotes the Schur polynomial of the

Young tableaux with two parts (m + n, n). Here, π ′
m,n is the representation of U(3)

described by the same formula as in Equation (1). Recall that χ(σ)(1, 1, 1) equals the
dimension of the representation σ .

Now, every finite-dimensional unitary representation is a direct sum of irreducible
unitary representations, and thus every character of such a representation is a sym-
metric, non-negative integer linear combination of Schur polynomials. We call such
a symmetric polynomial Schur positive. Here, the polynomial s1,1,1 = x1x2x3 cor-
responds to the trivial representation 1. We say that a Schur positive polynomial is
non-trivial if it is non-scalar modulo the polynomial x1x2x3 − 1.

Back to the original problem, we are interested in the question if for a given pair
of triplets of integers, (v1, v2, v3) and (w1, w2, w3), with v1 + v2 + v3 = w1 + w2 +
w3 = 0 and gcd(v1, v2, v3) = gcd(w1, w2, w3) = 1, we can find a pair of unitary
representations

σ1, σ2 : SU(3) → U(k),

such that

σ1
(
ψv1,v2,v3(z)

) = σ2
(
ψw1,w2,w3(z)

)
for all z ∈ S1.

However, these two representations are conjugate (and hence equal after conjugation)
if and only if the associated characters agree. Hence, we arrive at the equivalent
condition

χ(σ1)(z
v1, zv2 , zv3) = χ(σ2)(z

w1 , zw2 , zw3) for all z ∈ S1.

Thus, putting everything in more algebraic terms, the second task amounts to finding
Schur positive polynomials P and Q such that the equality

P(zv1, zv2 , zv3) = Q(zw1, zw2 , zw3) (2)

holds in the Laurent polynomial ring Q[z±]. For brevity, given a vector v = (a, b, c)
with a + b + c = 0, we write Pv(z) = P(za, zb, zc) for the substitution.

There is an additional subtlety that we did not address so far: unitary representations
of SU(3) need not be injective. If we pick a non-trivial third root of unity, ξ =
exp(2π i/3) ∈ S1, then the subgroup

Z = 〈diag(ξ, ξ, ξ)〉 ∼= Z/3Z,

forms the center of SU(3). Note that Z is the only non-trivial normal subgroup of
SU(3), i.e., the quotient SU(3)/Z is simple. The following result characterizes the
injective unitary representations of SU(3).

Proposition 2.1 Let σ : SU(3) → U(k) be a unitary representation with character
P = χ(σ ′) ∈ Z[x1, x2, x3] for some extension σ ′ of σ to U(3). Then the following
conditions are equivalent:
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1. σ is injective,
2. P(ξ, ξ, ξ) �= P(1, 1, 1), and
3. P, written in terms of the Schur basis, has a summand (with positive coefficient)

having total degree not divisible by three.

Proof Since the center Z of SU(3) is generated by diag(ξ, ξ, ξ) and because Z is
the only non-trivial normal subgroup of SU(3), the representation σ is injective
if and only if σ(diag(ξ, ξ, ξ)) is distinct from the k×k unit matrix. The eigen-
values of σ(diag(ξ, ξ, ξ)) are complex numbers of modulus 1 and P(ξ, ξ, ξ) =
tr(σ (diag(ξ, ξ, ξ))) is equal to their sum. Hence, P(ξ, ξ, ξ) = k = P(1, 1, 1) if
and only if all these eigenvalues are equal to 1 if and only if σ is not injective. This
proves the equivalence between (1) and (2). Note that P is necessarily Schur-positive
since it is a character.

We proceed to show the equivalence of (2) and (3). If each summand of P has a total
degree which is a multiple of three, then P(ξ, ξ, ξ) = P(1, 1, 1); this shows that (2)
implies (3). To show the reverse direction, without loss of generality, assume P �= 0
is a positive linear combination of Schur polynomials, none of which has total degree
divisible by three. Let R(x) = P(x, x, x), which is a rational univariate polynomial
in Q[x]. Note that R has all coefficients positive and no term of degree divisible by
three. Now let R′ ∈ Q[x] be the remainder of division of R by (x3 −1). Then R′ �= 0,
has no constant term, and satisfies R′(1) = R(1) and R′(ξ) = R(ξ). We need to show
P(1, 1, 1) �= P(ξ, ξ, ξ). So let us assume the contrary. Then R′(ξ) = R′(1), so the
polynomial R′(x)− R′(1) must be a multiple of the minimal polynomial of ξ , namely
x2 + x + 1. Since R′ has degree at most two, we have R′ = c(x2 + x + 1) for some
nonzero constant c, but that contradicts that R′ has no constant term.We conclude that
P(1, 1, 1) �= P(ξ, ξ, ξ), and this completes our proof. �
Example 2.2 For simplicity, we denote the unitary representation of S1 with character∑

i ai z
i by the list (iai ; i ∈ Z); where we omit the entry of i whenever ai = 0. In

particular, in this notation we have ψa,b,c = (a, b, c). We now revisit the example at
the beginning of the introduction. The computation

(−1, 0, 1)⊗2 = (−2,−12, 03, 12, 2) = (−2, 12) ⊕ (−2, 12)∗ ⊕ (0)⊕3

shows that the representations ψ−1,0,1 and ψ−2,1,1 can be amalgamated inside SU(9).
In terms of polynomials, this corresponds to P(x1, x2, x3) = (x1 + x2 + x3)2,
Q(x1, x2, x3) = x1 + x2 + x3 + x2x3 + x1x3 + x1x2 + 3x1x2x3 and the identity
P(z−1, 1, z) = Q(z−2, z, z).Observe that P = s1,1+s2 and Q = s1+s1,1+3s1,1,1. In
particular, both polynomials are Schur positive. Moreover, P(1, 1, 1) = Q(1, 1, 1) =
9 is the dimension of the representation. Apart from the this example, which we were
able to work out by hand, only few other cases seem suitable for pen and paper calcu-
lations.

It follows from the reasoning above that we can formulate Bergman’s problem
(Bergman 1987, Question 20) in the first non-trivial case as follows:
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Question 2.3 Given integer vectors v = (v1, v2, v3) andw = (w1, w2, w3) satisfying
v1 + v2 + v3 = w1 + w2 + w3 = 0 and gcd(v1, v2, v3) = gcd(w1, w2, w3) = 1, can
we find Schur positive polynomials in three variables P and Q such that:

1. Pv(z) = Qw(z) and
2. P(ξ, ξ, ξ) �= P(1, 1, 1) and
3. Q(ξ, ξ, ξ) �= Q(1, 1, 1)?

Our experiments suggest that the answer is always positive.

3 Computations

Now we recast Question 2.3 as a problem in polyhedral geometry and approach it
computationally. The source code and its output can be found on our MathRepo
page

https://mathrepo.mis.mpg.de/CompactAmalgamation/index.html. (3)

We fix v,w ∈ Z
3 such that v1 + v2 + v3 = w1 + w2 + w3 = 0 and gcd(v1, v2, v3) =

gcd(w1, w2, w3) = 1. Choosing an ordering for the Schur polynomials, we then
make the problem finite by fixing a number k and considering only the first k Schur
polynomials in three variables, denoted by S1, . . . , Sk ∈ Q[x1, x2, x3]. We search
for P = λ1S1 + · · · + λk Sk and Q = μ1S1 + · · · + μk Sk , where λi , μi are non-
negative integers. These polynomials lie inQ[x1, x2, x3], and their substitutions Pv(z)
and Qw(z) are univariate Laurent polynomials. The coefficients of the difference
Pv(z)− Qw(z) are integer linear combinations of λi and μi . Setting these coefficients
to zero and letting λi ≥ 0 and μi ≥ 0 defines a polyhedral cone in R

2k . We denote
that cone C = Ck(v,w). Recall that C depends on the chosen ordering of the Schur
polynomials. Throughout we assume that S1 = s1,1,1 is the trivial representation. It
plays a special role, as P = Q = λ1S1, for any λ1 ≥ 0, is a trivial solution to (1) in
Question 2.3.

To find P and Q, we consider the integer linear program

minimize c · (λ, μ)

subject to (λ, μ) ∈ Ck(v,w)∑
3 � |tdeg(Si ) λi ≥ 1∑
3 � |tdeg(Si ) μi ≥ 1

λ1, . . . , λk, μ1, . . . , μk ∈ N ,

(ILPk)

where c ∈ R
2k
>0 is some strictly positive linear objective function, to be discussed

below. Let P = Pk(v,w) be the feasible region of the linear relaxation of (ILPk).

Remark 3.1 Conceptually, one could replace the weak inequality
∑

3 � |tdeg(Si ) λi ≥ 1
by the strict inequality

∑
3 � |tdeg(Si ) λi > 0, but the description as an (integer) linear

program requires weak inequalities.
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Proposition 3.2 The feasible solutions of (ILPk), i.e., the lattice points in P , are in
bijection with those nontrivial solutions to Question 2.3 which can be written as a
non-negative linear combination of the first k Schur polynomials.

Proof Containment in the cone C is equivalent to the condition (1) in Question 2.3. The
two additional constraints correspond to conditions (2) and (3); see Proposition 2.1. �
Remark 3.3 In practice, we make the following choices. We order the 3-variate Schur
polynomials lexicographically: a partition (m + n, n), with m, n ≥ 0, is less than
another partition (m′ + n′, n′) if either m + n < m′ + n′ or m + n = m′ + n′ and
n < n′; and the special partition (1, 1, 1) is defined to be smaller than (m + n, n) for
arbitrarym and n. Moreover, we take the objective function c = (ci )with ci = tdeg Si ,
where tdeg is the total degree. So the optimal solutions are minimal with respect to
dimension.

We abbreviate (m) = (m, 0).

Example 3.4 We consider v = (−1, 0, 1) and w = (−2, 1, 1) as in Example 2.2, and
we pick k = 4. Then the first four Schur polynomials correspond to the partitions
(1, 1, 1), (1), (1, 1), and (2). So we have S1 = x1x2x3, S2 = x1 + x2 + x3, S3 =
x1x2 + x1x3 + x2x3, and S4 = x21 + x1x2 + x1x3 + x22 + x2x3 + x23 . Then

Pv(z) − Pw(z) = (λ4 − μ3 − 3μ4)z
2 + (λ2 + λ3 + λ4 − 2μ2)z

+ λ1 + λ2 + λ3 + 2λ4 − μ1

+ (λ2 + λ3 + λ4 − 2μ3 − 2μ4)z
−1 + (λ4 − μ2)z

−2 − μ4z
−4.

Consequently, the unbounded polyhedronP inR8 is given by six homogeneous equa-
tions (from the coefficients of Pv(z) − Pw(z), considered as a Laurent polynomial
inQ[λ1, . . . , μ4][z±]), the eight nonnegativity constraints and two affine inequalities
(from forcing injectivity). The polyhedron P is 3-dimensional. Solving the integer
linear program (ILPk) yields

λ1 = λ2 = 0, λ3 = λ4 = 1 and μ1 = 3, μ2 = μ3 = 1, μ4 = 0

as an optimal solution of objective value 3+6 = 3+3+3 = 9. This recovers the pair
of 9-dimensional representations given by P = s1,1 + s2 and Q = 3s1,1,1 + s1 + s1,1
from Example 2.2. That pair of Schur positive polynomials corresponds to the lattice
point marked 0011 3110 in Fig. 1. Our visualization artificially truncates the feasible
region at representation dimension ten. We see two 9-dimensional solutions and two
10-dimensional ones. The solutions come in pairs since s1,v = s(1,1),v for the special
choice of v = (−1, 0, 1). The 10-dimensional solutions are obtained from the 9-
dimensional solutions by adding a trivial representation. In this way, the solution from
Example 2.2 explains all four solutions shown here.

Solving integer linear programs is generally hard, both theoretically and in practice
(Schrijver 1986). However, our integer linear program (ILPk) has a particularly simple
structure, which can be exploited computationally.
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0011 3110 1011 4110

0101 3110 1101 4110

Fig. 1 Four integral points inP4(v, w) for v = (−1, 0, 1) andw = (−2, 1, 1). Visualized with polymake
(Gawrilow and Joswig 2000); hyperplane for artificial truncation at representation dimension 10 marked
red (color figure online)

Lemma 3.5 Let (λ, μ) ∈ Q
2k be a rational point in P . Then there is a positive integer

� > 0 such that (� · λ, � · μ) is a point in P which is integral.

Proof Let � be the common denominator of λ1, λ2, . . . , μk . Then (� · λ, � · μ) is
integral. The polyhedron P is the intersection of the cone C with two additional affine
halfspaces. Clearly, (� · λ, � · μ) lies in C. Further, we have � · ∑3 � |tdeg(Si ) λi ≥ � ≥ 1,

and similarly for the other inequality. Thus the point (� · λ, � · μ) lies in P ∩ Z
2k . �

As a consequence, the integer linear program (ILPk) is feasible if and only if its
linear relaxation is. The latter condition can be tested much faster. Consequently,
standard complexity bounds in linear optimization entail the following result; see
Grötschel et al. (1993), Renegar (2001).

Proposition 3.6 Employing the interior point method, deciding the feasibility of the
integer linear program (ILPk) takes polynomial time in the five parameters k, log |v1|,
log |v2|, log |w1|, and log |w2|.

Recall the condition v1 + v2 + v3 = 0 = w1 + w2 + w3, whence v3 and w3 are
not mentioned. Now we can summarize how to address Question 2.3 computationally.
First we pick some integer k. Then we decide the feasibility of (ILPk) by solving the
linear relaxation. If this is feasible we use a bisection to find the minimal k′ such that
(ILPk′ ) is feasible. If it is infeasible we try 2k and repeat. Of course, this procedure
does not terminate if no solution exists. Yet that did not occur so far.

There are many implementations of algorithms for linear and integer optimization
available, both open source and commercial. Yet the majority employs floating-point
arithmetic, which may lead to errors, which in turn makes these software systems
less suited for obtaining mathematical results. For this reason we use SCIP, which
implements the simplex method in exact rational arithmetic (Bestuzheva et al. 2021).
Setting up the (integer) linear program (ILPk) is done in OSCAR, which provides parti-
tions, Schur polynomials and the necessary commutative algebra (Decker et al. 2024;
OSCAR 2023). OSCAR also inherits the full functionality of polymake (Gawrilow
and Joswig 2000), which includes exact rational integer linear programming. While
SCIP is much faster at integer linear programming, that implementation is based on
floating-point arithmetic.

Feasibility

For our first experiment, we consider pairs of vectors v = (v1, v2,−v1 − v2) and
w = (w1, w2,−w1 − w2) such that v1 = w1 = 1. Such a pair (v,w) is determined
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Table 1 Minimal k for whichPk (v, w) is feasible, where v = (1, v2,−1−v2) andw = (1, w2,−1−w2)

w2\v2 0 1 2 3 4 5 6 7 8 9 10

0 4 16 191 601 1541

1 13 33 106 336 686 1254 2187

2 21 50 125 305 586 1006 1574

3 28 66 170 292 535 820 1283

4 44 86 174 307 463 824

5 61 120 238 377 525

6 87 171 275 430

7 115 245 333

8 145 291

9 171

Empty fields on the upper right are beyond our current reach computationally

by the pair (v2, w2) of integers. In Table 1, we give the minimal values of k for which
Pk(v,w) is feasible, which we compute by solving the linear relaxation of (ILPk). As
pointed out in Remark 3.3, the parameter k refers to the lexicographic ordering of the
Schur polynomials. That ordering does affect the value of k. That is to say, replacing
the pure lexicographic ordering by, e.g., the graded lexicographic ordering may lead
to a lower value of k. It is unclear whether one ordering is better than another.

Representation dimensions

For our second experiment we actually solve the integer linear program (ILPk). We
take the objective function

c = (S1(1, 1, 1), . . . , Sk(1, 1, 1))

to be the dimension of the representation corresponding to P; see Remark 3.3. Table 2
records pairs of vectors, the minimal value of k such that Pk(v,w) is feasible and the
optimal value of the integer linear program, i.e., the smallest dimension achieved by
solutions using only the first k Schur polynomials. Each row of that table corresponds
to one entry in Table 1. The explicit Schur positive symmetric polynomials whose
dimensions are recorded in Column 4 of Table 2 can be found on our MathRepo
page (3) alongside the source code.

Note that the dimensions recorded in Table 2 might not be minimal among all
solutions since they use only the first k Schur polynomials; allowing the use of more
Schur polynomials can potential provide a solution with smaller dimension.

Running times

Webriefly comment on the computation timeofTables 1 and2.Computing all entries in
Table 1 took in total approximately 400,000s (4.6 days). Optimal solutions in Table 2
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Table 2 Minimal k for which
Pk (v, w) is feasible and the
dimension of the representation
that corresponds to an optimal
integral solution

v w k Dimension

(1, 0, −1) (1, 1,−2) 4 9

(1, 0, −1) (1, 2,−3) 16 21

(1, 1,−2) (1, 2,−3) 13 63

(1, 1,−2) (1, 3,−4) 33 834

(1, 1,−2) (1, 4,−5) 106 3216

(1, 2, −3) (1, 3,−4) 21 255

(1, 2, −3) (1, 5,−6) 125 13,561

(1, 3,−4) (1, 4,−5) 28 454

(1, 3,−4) (1, 5,−6) 66 6852

(1, 4,−5) (1, 5,−6) 44 1526

(1, 4,−5) (1, 6,−7) 86 83,113

(1, 5,−6) (1, 6,−7) 61 14,972

(1, 5,−6) (1, 7,−8) 120 316,170

(1, 6,−7) (1, 7,−8) 87 128,624

(1, 7,−8) (1, 8,−9) 115 108,468

are computed in SCIP, via floating-point arithmetic, and then verified in OSCAR,
via exact arithmetic. Verification is fast and succeeded in all our cases. The longest
computation was for the pair (1, 5,−6) and (1, 7,−8), which took 312s in SCIP.
Computations for pairs with k > 125 did not terminate within a day.

All computations were done on the computer server Hydra at the MPI MiS, with
the following system specifics: 4x16-core Intel Xeon E7-8867 v3 CPU (3300 MHz)
on Debian GNU/Linux 5.10.149-2 (2022-10-21) x86_64.

Remark 3.7 In principle, the optimal (rational) solutions to the linear programming
relaxations leading to Table 1 yield an upper bound on the smallest dimension of a
representation of the amalgamation problem Question 2.3. However, these numbers
are excessively large. For example, for v = (1, 9,−10) and w = (1, 10,−11) the
bound we obtain is 2382041666750207. This is one of the smaller ones. Therefore,
it is not desirable to provide a complete table here. However, using the Jupyter
notebook available on the MathRepo page (3) the interested reader can compute
some of these numbers by themselves.

4 A relaxed problem

In this section, we consider the following relaxed problem by dropping the Schur
positivity condition and disregarding the case (−1, 0, 1). Recall that the Schur poly-
nomials form a basis of the space of all symmetric polynomials; see Fulton and Harris
(1991, §A.1).
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Question 4.1 Given v = (v1, v2, v3) such that v1 + v2 + v3 = 0, v1v2v3 �= 0 and
gcd(v1, v2, v3) = 1. For which Laurent polynomials F ∈ Q[z±] can we find a sym-
metric polynomial in three variables P that F = Pv(z)?

Remark 4.2 We pose the additional condition v1v2v3 �= 0, which excludes the case
(v1, v2, v3) = (−1, 0, 1), because our argument does not apply to that case, see
Remark 4.13.

From now on fix a triplet v = (v1, v2, v3) such that v1 + v2 + v3 = 0, v1v2v3 �= 0
and gcd(v1, v2, v3) = 1. Since every symmetric polynomial in three variables can be
written as a polynomial in the first three elementary symmetric polynomials

e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3, e3 = x1x2x3

in Q[x1, x2, x3], and because v1 + v2 + v3 = 0 implies that (e3)v(z) = 1, answer-
ing Question 4.1 amounts to characterizing the Q-subalgebra A(v) of the Laurent
polynomial ring Q[z±] generated by

F1 := (e1)v(z) = zv1 + zv2 + zv3 and F2 := (e2)v(z) = zv1+v2 + zv1+v3 + zv2+v3 .

Since we have F ′
1(1) = F ′

2(1) = 0, the product rule implies that F ′(1) = 0 holds
for all F ∈ A(v). This shows that A(v) is a proper subalgebra of Q[z±]. As the next
example shows, this is in general not the only constraint.

Example 4.3 Consider the case v = (1, 1,−2), and let ξ ∈ C be a primitive third
root of unity. We have F ′

1 = 2 · (1 − z−3) and F ′
2 = 2z · (1 − z−3) and this shows

F ′
1(ξ) = F ′

2(ξ) = 0. Again this shows that F ′(ξ) = 0 for all F ∈ A(1, 1,−2). One
can prove that these are all constraints in this case:

A(1, 1,−2) = {F ∈ Q[z±] | F ′(1) = F ′(ξ) = F ′(ξ2) = 0}.

Our main contribution in this section is the following rather technical result which
says that A(v) can, in general, be characterized by conditions similar as inExample 4.3.

Theorem 4.4 There is a product � ∈ Q[z] of cyclotomic polynomials with �(1) �=
0 and a subalgebra C of Q[z±]/(�) such that for F ∈ Q[z±] the following are
equivalent:

1. There is a symmetric polynomial P in three variables with rational coefficients
such that F = Pv(z).

2. We have F ′(1) = 0, and the residue class of F modulo � is in C.

Remark 4.5 The subalgebra C of Q[z±]/(�) in Theorem 4.4 is the one generated by
the residue classes of F1 and F2. Since Q[z±]/(�) is a finite dimensional Q-vector
space, this can be explicitly calculated once knowing �.

Before we will give a proof of Theorem 4.4 we point out some consequences that
are less technical.
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Corollary 4.6 There are finitely many roots of unity ζ1, . . . , ζr ∈ C\{1} and natural
numbers a1, . . . , ar such that every F ∈ Q[z±] with F ′(1) = 0 which vanishes at ζi
with multiplicity at least ai for i = 1, . . . , r can be expressed as F = Pv(z) for some
symmetric polynomial P in three variables.

Proof Let � ∈ Q[z] the polynomial from Theorem 4.4 and let

� = �
a1
1 · · · �as

s

where the �i are pairwise coprime cyclotomic polynomials. If F ∈ Q[z±] vanishes
at the zeros of each �i with multiplicity at least ai , then F is divisible by �. Thus
the residue class of F modulo � is zero and hence contained in every subalgebra of
Q[z±]/(�). �
Corollary 4.7 There are natural numbers a0, b0 > 0 such that for all a ≥ a0, all b
divisible by b0 we have

Fa,b = (1 + z + · · · + zb−1)a · (1 + z−1 + · · · + z−(b−1))a ∈ A(v). (4)

Proof Let ζ1, . . . , ζr and a1, . . . , ar as in Corollary 4.6. Let b0 such that ζ
b0
i = 1 for all

i = 1, . . . , r and a ≥ 1
2 maxri=1(ai ). Then for all a ≥ a0 and all b divisible by b0 the

Laurent polynomial Fa,b vanishes at ζi with multiplicity at least ai for i = 1, . . . , r .
A straight-forward calculation further shows that F ′

a,b(1) = 0. �
Corollary 4.8 Consider finitely many triplets

t1, . . . , tr ∈ {(α, β, γ ) ∈ Z
3 | α + β + γ ) = 0, αβγ �= 0 and gcd(α, β, γ ) = 1}.

Then there are natural numbers a, b such that Fa,b ∈ ⋂r
i=1 A(ti ).

Proof For each i ∈ {1, . . . , r} we obtain a0 and b0 as in Corollary 4.7. We can choose
a as the maximum of all such a0 and b as the product of all such b0. �

In fact, we conjecture that the Laurent polynomials Fa,b in Eq. (4) can even be
realized as positive rational linear combinations of Schur polynomials.

Conjecture 4.9 There are natural numbers a0, b0 > 0 such that for all a ≥ a0, all b
divisible by b0 there is N ∈ N and a Schur positive symmetric polynomial P in three
variables such that

N · Fa,b = Pv.

In order to amalgamate two representations given by tuples v andw let a0, b0, N and
a′
0, b

′
0, N

′ the natural numbers from the previous conjecture for v and w respectively.
Then, if Conjecture 4.9 is true, letting a = max(a0, a′

0), n = lcm(b0, b′
0) and M =

lcm(N , N ′), we have
Pv = M · Fa,b = Qw

for Schur positive symmetric polynomials P and Q.
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Table 3 Experimental data on Conjecture 4.9 with v = (1, 1, −2)

b a N dim Pv b a N dim Pv b a N dim Pv

3 1 1 9 3 2 1 81 3 3 1 729

6 1 2 72 6 2 1 1296 6 3 2 93,312

9 1 3 243 9 2 1 6561 9 3 1 531,441

12 1 4 576 12 2 1 20,736 12 3 2 5,971,968

15 1 5 1125 15 2 1 50,625

Remark 4.10 In the case v = (1, 1,−2) our computational experiments suggest that
Conjecture 4.9 is true for a0 = 1 and b0 = 3.

We found N and Schur-positive symmetric polynomials Pv that satisfy N · Fa,b =
Pv for various pairs of a and b. We record the values of N and the dimensions of Pv

in Table 3.
The computations are similar to what we perform in the previous section. Given

a, b and N , we obtain a Laurent polynomial N · Fa,b. The degree of this polynomial
gives an upper bound on the degrees of the Schur polynomials that can appear in Pv .
We then take all available Schur polynomials and solve an integral linear program like
before. The source code and explicit polynomials Pv can be found on our MathRepo
page (3).

Proof of Theorem 4.4

Our proof involves some algebraic geometry; see the textbooks by Hartshorne (1977)
and Harris (1995). We consider the polynomial map

f : C∗ → C
2, z �→ (F1(z), F2(z)) = (zv1+zv2+zv3, zv1+v2+zv1+v3+zv2+v3). (5)

We first study where this map fails to be injective.

Lemma 4.11 We have f −1( f (1)) = {1}.
Proof Let x ∈ C

∗ such that f (x) = f (1). This implies

(t − xv1 )(t − xv2 )(t − xv3 ) = t3 − F1(x)t
2 + F2(x)t −1 = t3 − F1(1)t

2 + F2(1)t −1 = (t −1)3,

which entails xv1 = xv2 = xv3 = 1. Since gcd(v1, v2, v3) = 1, we get x = 1. �
For a complex number x ∈ C, let |x | = √

x · x be its norm.

Lemma 4.12 For |x | �= 1 we have | f −1( f (x))| = 1.

Proof Let y ∈ C
∗ such that f (y) = f (x). This implies that the zeros of the polynomial

(t − yv1)(t − yv2)(t − yv3)
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are the three complex numbers xv1 , xv2 and xv3 . If |x | > 1, then |y| > 1 as well.
Indeed, if two of the three integers v1, v2, v3 are positive, then two of the three real
numbers |x |v1 , |x |v2 and |x |v3 are larger than one and thus the same must hold for the
real numbers |y|v1 , |y|v2 and |y|v3 . Otherwise two of the three integers v1, v2, v3 are
negative, and a similar argument applies. Since for every real t > 1 the map d �→ td

is strictly increasing, we must have yv1 = xv1 , yv2 = xv2 and yv3 = xv3 . This implies
f ( yx ) = f (1), and hence Lemma 4.11 yields y = x . The case |x | < 1 is analogous. �
Remark 4.13 The statement of Lemma 4.12 is not true in the case (v1, v2, v3) =
(−1, 0, 1). Indeed, in this case the preimage of f (x) under the map

f : C∗ → C
2, z �→= (zv1 +zv2 +zv3 , zv1+v2 +zv1+v3 +zv2+v3 ) = (z−1+1+z, z−1+1+z) (6)

has two elements for all x ∈ C
∗\{−1, 1}. This is why we have excluded this case.

We denote by B(v) the C-subalgebra of C[z±] generated by F1 and F2. Note that
B(v) = A(v) ⊗Q C and A(v) = B(v) ∩ Q[z±].
Lemma 4.14 The ring extension B(v) ⊂ C[z±] isfinite, i.e.,C[z±] is finitely generated
as a B(v)-module.

Proof For t ∈ {zv1, zv2 , zv3} we have

t3 − F1t
2 + F2t − 1 = (t − zv1)(t − zv2)(t − zv3) = 0.

This implies that tk , for k ∈ N, is contained in the B(v)-module that is generated by
1, t, t2. Thus C[zv1, zv2 , zv3 ] is equal to the B(v)-module that is generated by

{zav1zbv2 zcv3 | 0 ≤ a, b, c ≤ 2}.

Now it remains to show that C[z±] = C[zv1, zv2 , zv3 ]. The inclusion “⊃” is clear.
Since gcd(v1, v2, v3) = 1, there are integers a, b, c such that

av1 + bv2 + cv3 = 1.

Since v1 + v2 + v3 = 0 we also have

(a + m)v1 + (b + m)v2 + (c + m)v3 = 1

for every m ∈ Z. In particular, we can find natural numbers a′, b′, c′ such that

a′v1 + b′v2 + c′v3 = 1

meaning that z = (zv1)a
′
(zv2)b

′
(zv3)c

′ ∈ C[zv1 , zv2 , zv3 ]. Analogously, it can be
proved that z−1 ∈ C[zv1, zv2 , zv3 ]. �
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The C-algebra B(v) is the coordinate ring of the algebraic curve X ⊂ C
2 cut out

by the elements of the kernel of the map

C[x, y] → B(v), P �→ P(F1, F2);

we denote the quotient field of B(v) by K . Lemma 4.14 implies that X is, in fact, the
image of f because finite morphisms are closed (Hartshorne 1977, Exc. II.4.1).

Proposition 4.15 There are only finitely many x ∈ C
∗ such that | f −1( f (x))| > 1. All

of them are roots of unity. Moreover, we have K = C(z), the rational function field.

Proof For every x ∈ C
∗ the fiber f −1( f (x)) is Zariski closed in C

∗. The Zariski
closed subsets of C∗ are either finite or all of C∗. Therefore, since f is not constant,
every fiber f −1( f (x)) is finite. By Harris (1995, Proposition 7.16) the field extension
C(z)/K is finite and there is a nonempty Zariski open subset U ⊂ C

∗ such that
| f −1( f (x))| = [C(z) : K ] for all x ∈ U . This implies that | f −1( f (x))| = [C(z) : K ]
is true for all but finitely many x ∈ C

∗. Lemma 4.12 thus shows that [C(z) : K ] = 1
and that each of the finitely many x ∈ C

∗ with | f −1( f (x))| > 1 must satisfy |x | = 1.
Moreover, since f is defined over Q, all such x are algebraic numbers and therefore
roots of unity. �

The situation is very similar for ramification points of f .

Proposition 4.16 If x ∈ C
∗ is not a root of unity, then f is unramified at x.

Proof Since every power sum in three variables can be written as a polynomial in the
first three elementary symmetric polynomials, there is for every n ∈ N a polynomial
map ϕn : C2 → C

n such that

ϕn( f (x)) = (xv1 + xv2 + xv3 , x2v1 + x2v2 + x2v3 , . . . , xnv1 + xnv2 + xnv3).

If f is ramified at x ∈ C
∗, then ϕn ◦ f is also ramified at x for every n ∈ N. Thus

kv1x
kv1−1 + kv2x

kv2−1 + kv3x
kv3−1 = 0

for all k ∈ N. As x and k are nonzero, this implies that

v1x
kv1 + v2x

kv2 + v3x
kv3 = 0

for all k ∈ N. This means that xk is a zero of the nonconstant polynomial

v1z
v1 + v2z

v2 + v3z
v3 ∈ Q[z]

for all k ∈ N. Hence the set
{xk | k ∈ N}

is finite which implies that x is a root of unity. �
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Fig. 2 The real locus of X for
v = (1, 1, −2) plotted in the
plane

Corollary 4.17 There is a finite set S ⊂ C
∗ of roots of unity such that

C
∗\S → X\ f (S), x �→ f (x)

is an isomorphism.

Proof This follows from Propositions 4.15, 4.16 and Lemma 4.14 by Harris (1995,
Thm. 14.9). �
Remark 4.18 The smallest set S ⊂ C

∗, such that

C
∗\S → X\ f (S), x �→ f (x)

is an isomorphism, is the preimage of the singular locus of the curve X under f .

Example 4.19 Let v = (1, 1,−2). Then X is the zero set of the bivariate quartic
polynomial

x21 x
2
2 − 4x31 − 4x32 + 18x1x2 − 27

inC2. The three points f (1) = (3, 3), f (ξ) = (3ξ, 3ξ2) and f (ξ2) = (3ξ2, 3ξ) form
the singular locus. In particular, its preimage under f is the set of third roots of unity.
See Fig. 2. Note that this motivates the choice b0 = 3 in Remark 4.10.

Example 4.20 For v = (1, 2,−3) one computes that X is cut out by

x31 x
3
2 − x51 − 3x41 x2 − 3x1x

4
2 − x52 − x41 + 5x31 x2 + 10x21 x

2
2 + 5x1x

3
2 − x42

+ x31 − x21 x2 − x1x
2
2 + x32 − 7x21 − 13x1x2 − 7x22 .

The preimage of its singular locus under f is the set of all third roots of unity along
with the set of primitive seventh and eighth roots of unity.
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Recall that the conductor of the ring extension B(v) ⊂ C[z±] is defined as

I = {a ∈ B(v) | a · C[z±] ⊂ B(v)}

which is an ideal in both B(v) and C[z±]. The zero set of I is contained in the locus
where f fails to be an isomorphism (Bourbaki 1998, p. 316). Thus by Corollary 4.17
and because C[z±] is a principal ideal domain, it follows that I is generated by a
Laurent polynomial all of whose zeros are roots of unity. Since f is defined over Q,
this Laurent polynomial is also defined overQ. Therefore, we can write the generator
of I as (z − 1)m · � where � is a product of cyclotomic polynomials with �(1) �= 0.

Lemma 4.21 We have m = 2.

Proof Recall from (5) that X is the image of the map

f : C∗ → C
2, z �→ (F1(z), F2(z)) = (zv1 + zv2 + zv3, zv1+v2 + zv1+v3 + zv2+v3).

We have F ′
1(1) = F ′

2(1) = 0 and F ′′
1 (1) = F ′′

2 (1) = v21 + v22 + v23 �= 0. Together with
Lemma 4.11 this implies that X has an ordinary cusp at the image of 1. The coordinate
ring of X is B(v). Proposition 4.15 and Lemma 4.14 imply that C[z±] is the integral
closure of B(v). In this situation the conductor has been computed in Fulton (2004,
Proposition 1). �

As we are actually interested in polynomials with rational coefficients, we consider
A(v) the Q-subalgebra of Q[z±] generated by F1 and F2 and we let I ′ the ideal of
Q[z±] generated by (z − 1)m · �.

Corollary 4.22 The ideal I ′ is the conductor of the ring extension A(v) ⊂ Q[z±]:

I ′ = {a ∈ A(v) | a · Q[z±] ⊂ A(v)}.

Proof This follows from I ′ = I ∩ Q[z±] and A(v) = B(v) ∩ Q[z±]. �
Let C0 ⊂ Q[z±]/I ′ the image of A(v) modulo I ′.

Lemma 4.23 Let g ∈ Q[z±]. Then we have g ∈ A(v) if and only if the residue class
of g modulo I ′ is in C0.

Proof One direction is trivial so let us assume that the residue class of g modulo I ′ is
in C0. Thus there is a h1 ∈ A(v) and h2 ∈ I ′ such that g = h1 + h2. Thus g ∈ A(v)

because I ′ ⊂ A(v). �
By the Chinese remainder theorem we can naturally identify

Q[z±]/I ′ = (Q[z±]/(z − 1)2) × (Q[z±]/�).

Lemma 4.24 We have C0 = Q × C, where

C = {g ∈ Q[z±]/� | ∃h ∈ Q[z±]/(z − 1)2) : (h, g) ∈ C0}.
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Proof Since Fi (1) = 3 and the derivative of Fi vanishes at 1, we have

Fi ≡ 3 mod (z − 1)2

for i = 1, 2. This shows the inclusion "⊂". For the reverse inclusion we observe that,
by Lemma 4.11, there is a polynomial G ∈ Q[x1, x2] that vanishes on f (ζ ) for all
zeros ζ of � but G( f (1)) = 1. The residue class modulo I ′ of a large enough power
of G(F1, F2) ∈ A(v) ⊂ Q[z±] is then (1, 0). In particular, this shows that (1, 0) ∈ C0
and proves the claim. �
Proof of Theorem 4.4 Let F ∈ Q[z±]. Then by Lemma 4.23 and Lemma 4.24 we have
that F lies in A(v) if and only if the residue class of F modulo� is inC and the residue
class of F modulo (z−1)2 inQ. The latter condition is equivalent to F ′(1) = 0, which
implies the claim. �
Example 4.25 In the case v = (1, 2,−3), by Example 4.20 the smallest b such that
Fa,b can possibly be divisible by the polynomial Q from Theorem 4.4 for some a ∈ N

is b = 3 · 7 · 8 = 168.

5 Conclusion and outlook

As indicated already in the remarks after Question 20 in Bergman (1987), a similar
strategy applies also to the cases A = B = SU(n). The only difference is that we now
have to consider exponent vectors (v1, . . . , vn) ∈ Z

n satisfying v1 +· · ·+ vn = 0 and
gcd(v1, . . . , vn) = 1 and Schur polynomials in n variables. Putting it more precisely,
we obtain the following question:

Question 5.1 Given v = (v1, . . . , vn) andw = (w1, . . . , wn) be integer vectors satis-
fying v1+· · ·+vn = w1+· · ·+wn = 0 and gcd(v1, . . . , vn) = gcd(w1, . . . , wn) = 1,
can we find Schur positive symmetric polynomials in n variables P and Q such that:

(1) Pv(z) = Qw(z),
(2) P(ξ, . . . , ξ) �= P(1, . . . , 1) and Q(ξ, . . . , ξ) �= Q(1, . . . , 1), for ξn = 1, ξ �= 1.

Theorem 4.4 describes the Laurent polynomials which are a Q-linear combination
of monomials in (e1)v(z), (e2)v(z), (e3)v(z) where ek is the elementary symmetric
polynomial in three variables of degree k. For our purposes it would however be
much more desirable to have an understanding of which Laurent polynomials are a
positive Q-linear combination of monomials in (e1)v(z), (e2)v(z), (e3)v(z). Indeed,
since elementary symmetric polynomials are Schur positive and since the product of
Schur positive polynomials is again Schur positive, a positive Z-linear combination
of monomials in e1, e2, e3 is always Schur positive. We tried to get our hands on this
by suitable variants of Pólya’s Theorem (Marshall 2008, Theorem 5.5.1) but we have
not been successful.
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