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Abstract
In 2015, Mikhalkin introduced a refined count for the real rational curves in a toric
surface which pass through a set consisting of real points and pairs of complex conju-
gated points chosen generically on the toric boundary of the surface. He then proved
that the result of this refined count depends only on the number of pairs of complex
conjugated points on each toric divisor. Using the tropical geometry approach and
the correspondence theorem, we address the computation of the refined count when
the pairs of complex conjugated points are chosen purely imaginary and belonging
to the same component of the toric boundary. Despite the non-genericity, we relate
this refined count for purely imaginary values to the refined invariant of Mikhalkin for
generic values. That allows us to extend the relation between these classical refined
invariants and the tropical refined invariants from Block–Göttsche.
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1 Introduction

1.1 Curves in a toric surface and their enumeration

Let N be a lattice of rank 2 and� = (n j ) ⊂ N be a multiset ofm primitive lattice vec-
tors, whose total sum is zero. We consider rational curves of degree � inside the toric
surfaceC� obtained from the fan �� in NR spanned by �. The complex conjugation
makes it into a real surface. In this setting, we choose a generic configuration P of
m − 1 points insideC�, and look for rational curves of degree � passing through this
configuration. We have a finite number of complex solutions. If we denote by SC(P)

the set of solutions, it is a classical result that the cardinal |SC(P)| is independent of
the point configuration P . Its value is denoted by N�.
Over the real field, the situation is different. If we choose a conjugation invariant
configuration of points P , called a real configuration, meaning that it consists of real
points and pairs of conjugated points, and denote by SR(P) the set of real rational
curves passing through P , the value of the cardinal |SR(P)| depends on the choice
of P . However, Welschinger (2005) showed that for del Pezzo surfaces, if the curves
are counted with an appropriate sign, the count of real solutions depends only on
the number s of pairs of conjugated points in the configuration, yielding an invariant
denoted by W�,s .
While the values of N� were already known, those ofW�,s were computed roughly at
the same time their invariance was proven. In Mikhalkin (2005), G. Mikhalkin proved
a correspondence theorem along with a lattice path algorithm that provided a way of
computing both invariants N� and W�,0 (only real points in the configuration) using
the tropical geometry approach. Later E. Shustin (Shustin 2006a, b) also used tropical
geometry to compute the Welschinger invariants W�,s for any value of s.
To compute the values of N� and W�,0, Mikhalkin counts tropical curves solution
to the analog tropical enumerative problem with two specific choices of integer mul-
tiplicity. Following his computation, Block and Göttsche (2016) proposed a way of
combining these integer multiplicities by refining them into a Laurent polynomial
multiplicity,which gives back the values of N� andW�,0 when evaluated at±1 respec-
tively. This new refined multiplicity was proved in Itenberg and Mikhalkin (2013) to
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give a tropical invariant. This choice of multiplicity seems to appear in a growing
number of situations, while its meaning in classical geometry remains quite mysteri-
ous. Conjecturally, this invariant is suspected to coincide with the refinement of Severi
degrees by the χ−y-genera proposed by L. Göttsche and V. Shende in Göttsche and
Shende (2014). This invariant bears also similarities with some Donaldson-Thomas
wall-crossing invariants considered by Kontsevich and Soibelman (2008).

1.2 Refined enumerative geometry

Now, let P0 be a real configuration of m points taken on the toric boundary of C�,
and such that each irreducible component of the toric boundary contains a number of
points equal to the number of vectors in � directing the corresponding ray in the fan
��, e.g. for the projective plane, there are d points per axis. If the toric boundary has
components labeled from 1 to p, let si be the number of pairs of conjugated points on
the i-th component, with |s| = ∑p

1 si . We assume there is at least one real point in
the configuration. The Viète formula ensures that there exists a curve not containing
the boundary as a component and passing through the configuration P0 only if the
configuration is subject to the Menelaus condition, which we therefore assume: the
product of the coordinates given by the monomials ιni ω ∈ M of the points is equal to
±1, with a sign depending on the degree.

Example 1.1 In the projective plane, the coordinates on the coordinate axis are respec-
tively given by z, 1

w
and w

z . For a degree d curve, the product of the coordinates of its
3d intersection points with the boundary has value (−1)d .

For a point pi on the boundary of C�, let −pi denote the opposite point. Notice
that for a pair of complex points {pi , pi }, the opposite pair {−pi ,−pi } is the same
pair precisely when pi is purely imaginary. Let S(P0) be the set of oriented real
rational curves of degree � that contain either pi or −pi for every pi ∈ P0, meaning
that the curve passes through one point of each pair of opposite real points, and
through both points of one of the opposite pairs of complex conjugated points. Let
ϕ : CP1 → C� be a parametrized curve, with orientation given by S ⊂ CP1\RP1.
Recall from Mikhalkin (2017) that there is a sign σ(S, ϕ) = ±1 associated to (S, ϕ),
whose definition is recalled in Sect. 4.2, and a quantum index k(S, ϕ) ∈ 1

2Z, whose
definition is recalled in Sect. 3.1. We then set

R�(P0) = 1

4

∑

(S,ϕ)∈S(P0)

σ (S, ϕ)qk(S,ϕ) ∈ Z[q±1/2].

Theorem 1.2 (Mikhalkin 2017)As long as the configurationP0 is generic, the Laurent
polynomial R�(P0) only depends on s = (s1, . . . , sp).

The above Laurent polynomial only depending on s is denoted by R�,s .

Remark 1.3 It is important for the result and for its proof to consider not only curves
passing through the points of P0 but also through the opposite points, otherwise the
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invariance might fail. Moreover, points in P0 are not assumed to be purely imaginary,
though it may appear to be so in Mikhalkin (2017).

In the case of a totally real configuration of points, i.e. si = 0, using the corre-
spondence theorem, Mikhalkin proved that the invariant R�,(0) coincides, up to a

normalization, with the tropical refined invariant N ∂,trop
� . This invariant is obtained as

follows. (For a more complete description, see Sect. 4.1.) We consider tropical curves
of degree � ⊂ N . For each vector n j in �, one chooses an oriented line directed
and oriented by n j , and such that the configuration of lines is generic. Then we count
rational tropical curves of degree � whose unbounded ends are contained in the cho-
sen lines, using the Block-Göttsche multiplicities from Block and Göttsche (2016).
The result does not depend on the chosen configuration, and is denoted by N ∂,trop

� .

1.3 Results

We now address the enumerative problem exposed in the previous section with two
additional assumptions: first, the complex points are chosen on the same boundary
component, i.e. all si but one are zero, and secondly, the complex points are chosen to
be purely imaginary. This is a highly non generic choice for several reasons: because
arguments are all chosen equal, and because a purely imaginary pair of conjugated
points is equal to its symmetric pair. We denote by P̂0 a point configuration that
satisfies these above assumptions. By a generic choice of P̂0, we mean generic among
the configurations that satisfy these assumptions.
Assume that the only nonzero si is s1. The first result of this paper relates the refined
count R�(P̂0) for a generic choice of P̂0 close to the tropical limit, to the tropical
refined invariants N ∂,trop

�(s) . Here, �(s) is the family (�\{n2s11 }) ∪ {(2n1)s1}: 2s1 copies
of n1 are replaced by s1 copies of 2n1. Choosing the constraints close to the tropical
limit means that the coordinates of the points pi are chosen the form αi tvi for some
very large t . One recovers the result from Mikhalkin (2017) by taking s1 = 0.

Theorem 1.4 For a generic choice of P̂0 close to the tropical limit, one has

R�(P̂0) = (q1/2 − q−1/2)m−2−s1

(q − q−1)s1
N ∂,trop

�(s) = (q1/2 − q−1/2)m−2−2s1

(q1/2 + q−1/2)s1
N ∂,trop

�(s)

The second result of the paper proves that there exists choices of P̂0 which are
generic viewed as a choice of P0. This relates the refined count R�(P̂0) to the value
of the refined invariant R�,(s1,0,...,0), despite the fact that the choice of P̂0 can appear
to be highly non-generic.

Theorem 1.5 For a choice of P̂0 which is a regular value of the map that sends a curve
to the coordinates of its boundary points, one has

R�,(s1,0,...,0) = 2s1R�(P̂0).

Moreover, a generic choice of P̂0 close to the tropical limit is such a choice.
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This theorem has two corollaries. First, both theorems lead to a computation of the
classical refined invariant R�,(s1,0,...,0) by relating it to the tropical refined invariant

N ∂,trop
�(s) . This is the content of Corollary 4.4. This extends the relation from Theorem

7 in Mikhalkin (2017), which deals with the case s = 0. Secondly, we obtain that the
refined count R�(P̂0) does not depend on the choice of P̂0 as long as it is generic. The
factor 2s1 corresponds to the fact that a pair of purely imaginary conjugated points is
equal to its opposite pair.
The proof of Theorem 1.4 relies on a tropical correspondence theorem. We use the
version of the correspondence theorem from Shustin (2006b), and more precisely
Lemmas 2.8 and 3.2. It is also possible to adapt the correspondence theorem from
Mikhalkin (2005) or Tyomkin (2017). The latter is done in Blomme (2020).

Remark 1.6 The case where the complex points are not located on a single boundary
component is much more delicate to deal with. Corollary 4.4 can be considered as
an easy particular case of the general relation between R�,s and N ∂,trop

�(s) . However,
the statement is almost identical: to obtain it, the s1 occuring in exponent should be
replaced by |s| = ∑

sk . It is proven in Blomme (2020) using an adapted version of
the correspondence theorem from Tyomkin (2017). In this general case, the complex
points can no longer assumed to be purely imaginary, and this is why Theorems 1.4
and 1.5 are not achievable via the results of Blomme (2020). In particular, Theorem 1.4
is not a subcase of any result in Blomme (2020).

The paper is organized as follows. In the second section we recall the standard
definitions related to tropical curves and the tropicalization. In the third section we
recall the definition of the quantum index and its computation in few cases. The last
section is devoted to the enumerative problems leading to the definition of R�,(s1,0,...,0)

and N ∂,trop
�(s) and the proof of Theorems 1.4 and 1.5.

2 Tropical curves and real tropical curves

2.1 Tropical curves

We here briefly recall the basics about abstract tropical curves, which are abstract met-
ric graphs, parametrized tropical curves, which are abstract tropical curves endowed
with a map to NR, and plane tropical curves, which are the images of the latter.

Real abstract tropical curves

Let � be a finite connected graph without bivalent vertices. Let �
0
∞ be the set of 1-

valent vertices of �, and � = �\�0
∞. Ifm denotes the cardinal of �

0
∞, its elements are

labeled with integers from [[1;m]]. The non-compact edges resulting from the eviction
of 1-valent vertices are called ends, also labeled by [[1;m]]. The set of bounded edges
is denoted by �1

b .
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Definition 2.1 Let l : γ ∈ �1
b �→ |γ | ∈ R

∗+ =]0;+∞[ be a function, called length
function. It endows � with the structure of a metric graph by choosing an isometry
between a bounded edge γ and [0; |γ |], and between an end and [0;+∞[. The obtained
metric graph � is called an abstract tropical curve.

An isomorphism between two abstract tropical curves � and �′ is an isometry
� → �′. In particular an automorphism of � does not necessarily respect the labeling
of the ends since it only respects the metric. Therefore, an automorphism of � induces
a permutation of the set I = [[1;m]] of ends.
Definition 2.2 Let� be an abstract tropical curve. A real structure on� is an involutive
isometry σ : � → �. A real abstract tropical curve is an abstract tropical curve
enhanced with a real structure.

The real structure also induces an involution on the set of ends I = [[1;m]] of �.
The fixed ends are called real ends and the pairs of exchanged ends are called the
conjugated ends, or complex ends. The fixed locus of σ is denoted by Fix(σ ). It is a
subgraph of �.

Real parametrized tropical curves

Let N be a rank two lattice, M = Hom(N ,Z), and NR = N ⊗ R. We now define
parametrized tropical curves in NR.

Definition 2.3 A parametrized tropical curve in NR � R
2 is a pair (�, h), where

� is an abstract tropical curve and h : � → R
2 is a map satisfying the following

requirements:

• For every edge E ∈ �1, the map h|E is affine. If we choose an orientation of E ,
the value of the differential of h taken at any interior point of E , evaluated on a
tangent vector of unit length, is called the slope of h alongside E . This slope must
lie in N .

• We have the so called balancing condition: at each vertex V ∈ �0, if E is an edge
containing V , and uE is the slope of h along E when the edge E is oriented with
the vertex V as its source, then

∑

E :∂E�V
uE = 0 ∈ N .

Two parametrized curves h : � → NR and h′ : �′ → NR are isomorphic if there
exists an isomorphism of abstract tropical curves ϕ : � → �′ such that h = h′ ◦ ϕ.

Definition 2.4 A real parametrized tropical curve is a triplet (�, σ, h), where (�, h) is
a parametrized tropical curve, σ is a real structure on�, and h is σ -invariant: h◦σ = h.

Remark 2.5 In particular, two vertices that are exchanged by σ have the same image
under h, and two edges that are exchanged by σ have the same slope and the same
image. Such edges are called double edges. If they are unbounded, we call them a
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double end. Thus, the image h(�) ⊂ NR may not be sufficient to recover � and the
real structure, since for instance there is no way of distinguishing a double end from
a simple end with twice their slope.

If e ∈ �1∞ is an end of �, let ne ∈ N be the slope of h alongside e, oriented out of
its unique adjacent vertex, i.e. toward infinity. The multiset

� = {ne ∈ N |e ∈ �1∞} ⊂ N ,

is called the degree of the parametrized curve. It is a multiset since an element may
appear several times. Using the balancing condition, one can show that

∑
ne∈� ne = 0.

Definition 2.6 A parametrized tropical curve is rational if the graph that parametrizes
it is a tree.

Plane tropical curves

Definition 2.7 Plane tropical curves are some weighted graphs inside NR � R
2

obtained equivalently as follows:

◦ the corner locus of some tropical polynomial:

P(x) = max
m∈P�∩M

(am + 〈m, x〉),

where P� is some convex lattice polygon, and am ∈ R are scalars. Edges are
endowedwith aweight equal to the lattice length of the edge in the dual subdivision
of the polygon P� induced by the tropical polynomial P .

◦ the image of a parametrized tropical curve (�, h). An edge E of h(�) ⊂ NR is
endowed with a weight equal to the sum of the lattice lengths of the slope of h on
the edges γ mapping to E .

◦ a subgraph of NR with weight on the edges, whose edges have integer slope, and
satisfying the balancing condition: at each vertex V , if uE denotes the primitive
vector in N directing an edge E adjacent to V , and wE its weight, one has

∑

E�V
wEuE = 0.

The polygon P� is called the degree of the plane tropical curve. It is associated to
the degree � of a parametrized tropical curve in the sense that the vectors in � are
the outing normal vectors to the sides of P�. For more details on plane tropical curves
and tropical polynomials, see Brugallé and Shaw (2014).
A plane tropical curve is irreducible if it cannot be written as the union of two tropical
curves, and it is rational if it is irreducible and is the image of a parametrized rational
tropical curve. The distinction between parametrized and plane tropical curves comes
from the fact that there are often many ways to parametrize a plane tropical curve.
Yet, there is always a canonical way to parametrize simple plane rational curves by
an abstract rational tropical curve of the right degree.
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(a) (b) (c)
Fig. 1 In a a tropical curve with the complex ends and the subgraph �even drawn in thick. In b some
admissible set on the components of �even, and in c the real tropical curve resulting from the splitting of
the curve along the admissible set. The involution exchanges the doubled branches

Proposition 2.8 (Mikhalkin 2005) Let C be a rational plane tropical curve, and let
ue be a directing primitive lattice vector for each end e, oriented toward infinity. Let
we be the weight of e. Then C is the image of a unique rational parametrized tropical
curve of degree � = {weue}e.

2.2 Real parametrizations of a plane tropical curve

In this subsection, we extend Proposition 2.8 by describing the possible real rational
parametrizations of an irreducible rational plane tropical curve, with ends of weights
1 or 2.
LetC be a rational plane tropical curve with ends of weight 1 or 2. Let u1, . . . , ur , 2v1,
. . . , 2vs be the weighted directing vectors of the ends of C , with vectors ui , v j being
primitive vectors in N . We assume that r ≥ 1. Let h : � → NR be the unique rational
parametrization of C given by Proposition 2.8, which is of degree {ui , 2v j }i, j . The
ends directed by ui are called real ends, and ends directed by 2v j are called complex
ends. We now describe the parametrizations of C by real parametrized rational curves
of degree {ui , v2j }i, j , which means that now all vectors are primitive, and each end of
weight 2 is replaced with two ends of weight 1.

Definition 2.9 The subgraph �even of � as the subgraph containing all the edges γ

satisfying the following: γ splits the curve � in two halves, one of them containing
only complex ends. Equivalently, �even is the complement of the minimal connected
subgraph containing all the real ends. See Fig. 1.

Remark 2.10 The subgraph �even is the maximal graph on which we can "cut � in
two" in order to obtain a new graph �′, used to parametrize C . Notice that on all the
edges γ of �even, the map h has an even slope: the slope of h belongs to 2N .

As C admits at least one real end, each connected component (�even)i of �even
contains a unique stem. We orient the edges of (�even)i away from the stem.

Definition 2.11 A subset of points Ri ⊂ (�even)i is admissible if no point of Ri is
joint to another by an oriented path, and for each end e in (�even)i , there is at least
(and thus exactly one) point ofRi on the shortest path between the stem and e.
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Let R = ⋃
i Ri . We then define a real abstract tropical curve (�(R), σ ) with a

map hR : �(R) → NR that factors through �(R) → � → NR and makes it a real
parametrized tropical curve.
Let�fix(R) be the closure of the unique connected component of�−R not containing
any complex end. The abstract tropical curve �(R) is obtained as the disjoint union of
two copies of �, glued along �fix(R). In other terms, �(R) = �

∐
�fix(R) �. It means

that we have doubled the components of�−R containing the even ends.We denote by
π : �(R) → � the map obtained by gluing the identity maps of �. The complement
of �fix(R) in � is called the splitting graph. It is a subset of �even. The splitting graph
is maximal if its closure is equal to �even. The length function on �(R) is defined as
follows: we consider points of R as vertices of �, then, the length of an edge γ of
�(R) is the length of its image π(γ ) if it is an edge of �fix(R) and twice the length
of π(γ ) otherwise. The involution σ is the automorphism of �(R) that exchanges the
two preimages whenever there are two. The parametrized map hR : �(R) → NR is
the composition of π and h.

Remark 2.12 The map π really looks like a tropical cover, as defined in Cavalieri et al.
(2010) and Buchholz and Markwig (2015). However, it is not always the case. This is
normal since the purpose of the notion of tropical cover is to mimick ramified covers
between complex curves. The map π here plays the role of the quotient map by a real
involution, which is not a ramified cover.

Let γ be an edge of �(R), and n ∈ N be the slope of π(γ ). Then, one can easily
check that the choice of length on�(R) ensures that hR has slopen ifγ ∈ Fix(σ ) and n

2
otherwise. However, as the edges of�even have an even slope, it is still an element of N .
One can check that the balancing condition is still satisfied. Therefore, (�(R), hR, σ )

is a real parametrized tropical curve, of image C , and of degree {ui , v2j }i, j .

Proposition 2.13 Let C be an irreducible rational plane tropical curve of degree
P� ⊂ M having ends of weight 1 or 2. Let � ⊂ N be the degree associated to
P� consisting only of primitive lattice vectors. let h : � → NR be the unique rational
parametrization of C given by Proposition 2.8. Using previous notations, every real
rational parametrized curve of degree � having the image C is one of the curves
�(R).

Proof The curves (�(R), h) provide real rational parametrizations of C . Conversely,
if h : (�′, σ ) → NR is a real rational parametrization of C of degree {ui , v2j }, then
we have quotient curve �′/σ defined as follows. As a topological space, �′/σ is the
quotient by σ . The edge lengths are the same for edges in Fix(σ ), and the edge length
is divided by two for a pair of exchanged edges. Since h is σ -invariant, we have a
quotient map h̃ : �′/σ → NR and one can check that the above choice of edge length
makes it into a parametrized tropical curve. The assumption on the weights of the ends
of C ensures that the conjugated ends of �′ are mapped to the even ends of C . Their
weight is doubledwhen passing to the quotient. Thus, we get a rational parametrization
of C of degree {ui , 2v j }i, j . Therefore, it is isomorphic to �. Let π : �′ → �′/σ � �

be the quotient map.

123



730 Beitr Algebra Geom (2023) 64:721–751

The primitivity assumption on the degree ensures that near infinity, the points of
the even ends of � have two preimages by π . The other ends only have one. LetR be
the topological boundary of π(Fix(σ )) inside �.

• First of all, Fix(σ ) is connected: if p, q ∈ Fix(σ ), there is a unique shortest path
in � between p and q, this path is then σ -invariant, thus in Fix(σ ).

• Let � be a connected component of �\π(Fix(σ )), the boundary of � contains
exactly one point of R: at least one since � �= �, and at most one, otherwise the
path between these points of R would lie in �, and we have proven that such a
path lies in π(Fix(σ )). By definition, � only contains only complex ends since
real ends belong to Fix(σ ), and the construction of �even ensures that the point of
R on the boundary of � is in �even.

• Finally, we have proven that � is composed of π(Fix(σ )), which is connected
and has boundary R, and components � that are attached to π(Fix(σ )) at those
vertices. Thus, the configurationR is admissible: there is at least one point ofR on
the shortest path between the stem and a complex end since the stem is in Fix(σ )

and the end is not, and there is at most one since Fix(σ ) is connected.

Finally, the setR being admissible, the graph �′ is recovered as the curve �(R). ��

2.3 Moment of an edge

Recall from the introduction that ω is some fixed generator of �2M , i.e. a non-
degenerated 2-form on N . It extends to a volume form on NR � R

2. Let e ∈ �1∞ be
an end oriented toward infinity, directed by ne.

Definition 2.14 The moment of e is the scalar

μe = ω(ne, p) ∈ R,

where p ∈ e is any point on the edge e. We similarly define the moment of a bounded
edge if we specify its orientation.

The moment of a bounded edge is reversed when its orientation is reversed. Intu-
itively, the moment of an end is just a way of measuring its position alongside a
transversal axis. Thus, fixing the moment of an end amounts to impose on the curve
that it goes through some point at infinity. Following this observation, the moment has
also a definition in complex toric geometry, where it corresponds to the coordinate of
the intersection point of the curve with the toric divisor. Let

ϕ : t ∈ CP1 �−→ χ

m∏

1

(t − α j )
n j ∈ N ⊗ C

∗ = NC∗ ,

be a parametrized rational curve. Given a basis (e1, e2) of N , letting ni = ai e1 +bi e2,
the notation zni ∈ NC∗ means the point of coordinates (zai , zbi ). The product is given
by the product coordinates by coordinates. In other words,letting (e∗

1, e
∗
2) be the dual

basis ofM and a = χ(e∗
1), b = χ(e∗

2), the parametrized curve is then given as follows:
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ϕ(t) =
(

a
m∏

1

(t − αi )
ai , b

m∏

1

(t − αi )
bi

)

∈ (C∗)2.

This is a curve of degree� = (n j ) ⊂ N . The complex moment at a point p j = ϕ(α j )

is the evaluation at α j of the monomial ιn j ω ∈ M at the corresponding point:

μ j = (
ϕ∗ιn j ω

)
(α j ) = χ(ιn j ω)

∏

i

(α j − αi )
ω(n j ,ni ).

The complex moment corresponds to the coordinate of p j on the toric divisor D inside
the toric surfaceC� defined from�. For a primitive vector n in the fan�� associated
to �, the coordinate on the corresponding toric divisor is the monomial ιnω ∈ M .

An easy computation (generalized to the Weil reciprocity law for non-rational
curves) gives us the following relation between the moments:

m∏

i=1

μi = ±1,

with a sign depending on the multiset �. We could also prove the relation using
Viète formula. In the tropical world we have an analog called the tropical Menelaus
Theorem, which gives a relation between the moments of the ends of a parametrized
tropical curve.

Proposition 2.15 (TropicalMenelausTheorem(Mikhalkin 2017)).Foraparametrized
tropical curve of degree �, we have

∑

ne∈�

μe = 0.

In the tropical case as well as in the complex case, a configuration of m points on
the toric divisors is said to satisfy the Menelaus condition if this relation is satisfied.
Notice that in tropical case, the moment of a point depends on the vector of M used to
compute it: it is of lattice length 1 if the point is real, and of lattice length 2 for a non-
real point. In particular, for the complex ends, which are of weight 2, the monomials
used to compte the moment in the complex world and in the tropical world do not
agree. They differ by a factor 2, since the unique complex end in the tropical world
corresponds to a pair of complex conjugated points.

2.4 Moduli space of tropical curves and refinedmultiplicity of a simple tropical
curve

Let (�, h) be a parametrized tropical curve such that � is trivalent, and has no flat
vertex. A flat vertex is a vertex whose outgoing edges have their slope contained in a
common line. This means that for any two outgoing edges of respective slopes u, v,
we have ω(u, v) = 0. In particular, when the curve is trivalent, no edge can have a
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zero slope since it would imply that its end points are flat vertices. A plane tropical
curve is a simple nodal curve if the dual subdivision of its Newton polygon consists
only of triangles and parallelograms. The unique rational parametrization (given by
Proposition 2.8) of a plane rational nodal curve has a trivalent underlying graph, and
has no flat vertex.

Definition 2.16 The combinatorial type of a tropical curve is the homeomorphism
type of its underlying labeled graph �, i.e. the labeled graph � without the metric.

To give a graph a tropical structure, one just needs to specify the lengths of the
bounded edges. If the curve is trivalent and has m ends, there are m − 3 bounded
edges, otherwise the number of bounded edges is m − 3− ov(�), where ov(�) is the
overvalence of the graph. The overvalence is given by

∑
V (val(V )−3), where V runs

over the vertices of �, and val(V ) denotes the valence of the vertex. Therefore, the set
of curves having the same combinatorial type is parametrized by Rm−3−ov(�)

>0 , and the
coordinates are the lengths of the bounded edges. If � is an abstract tropical curve, we
denote by Comb(�) the set of curves having the same combinatorial type as �.
For a given combinatorial type Comb(�), the boundary of Rm−3−ov(�)

≥0 corresponds
to curves for which the length of an edge is zero, and therefore corresponds to a graph
having a different combinatorial type. This graph is obtained by deleting the edge
with zero length and merging its end points. We can thus glue together all the cones of
the finitely many combinatorial types and obtain the moduli space M0,m of rational
tropical curves with m marked points. It is a simplicial fan of pure dimension m − 3,
and the top-dimensional cones correspond to trivalent curves. The combinatorial types
of codimension 1 are called walls.
Given an abstract tropical curve �, if we specify the slope of every end, and the
position of a vertex, we can define uniquely a parametrized tropical curve h : � →
NR. Therefore, if � ⊂ N denotes the set of slopes of the ends, the moduli space
M0(�, NR) of parametrized rational tropical curves of degree � is isomorphic to
M0,m × NR as a fan, where the NR factor corresponds to the position of the finite
vertex adjacent to the first end.
On this moduli space, we have a well-defined evaluation map that associates to each
parametrized curve the family of moments of its ends :

ev : M0(�, NR) −→ H = {∑m
1 μi = 0} ⊂ R

m

(�, h) �−→ μ = (μi )1≤i≤m
.

By the tropical Menelaus Theorem, the sum of the moments is 0, so that the map is
well-defined. Notice that the evaluation map is linear on every cone of M0(�, NR).
Furthermore, both spaces have the same dimension m − 1. Thus, if � is a trivalent
curve, the restriction of ev on Comb(�) × NR has a determinant well-defined up to
sign when H is endowed with some lattice basis, Comb(�) � R

m−3
≥0 endowed with

its canonical basis, and NR is endowed with a basis of N . The absolute value mC

� of
the determinant is called the complex multiplicity of the curve, well-known to factor
into the following product over the vertices of �:
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mC

� =
∏

V

mC

V ,

where mC

V = |ω(u, v)| if u and v are the slopes of two outgoing edges of V . The
balancing condition ensures that mC

V does not depend on the chosen edges. This mul-
tiplicity is the one that appears in the correspondence theorem of Mikhalkin (2005).
Notice that the simple parametrized tropical curves are precisely the points of the
cones with trivalent graph and non-zero multiplicity. We finally recall the definition
of the refined Block-Göttsche multiplicity.

Definition 2.17 The refined multiplicity of a simple nodal tropical curve is

mq
� =

∏

V

[mC

V ]q ,

where [a]q = qa/2−q−a/2

q1/2−q−1/2 is the q-analog of a.

This refined multiplicity is sometimes called the Block-Göttsche multiplicity and
intervenes in the definition of the invariant N ∂,trop

� . Notice that the multiplicity is the
same for every curve inside a given combinatorial type.

2.5 Tropicalization

Tropicalization of a plane curve We briefly recall the tropicalization process for a
family of plane curve. LetC be a plane curve, defined by a polynomial Pt ∈ C{{t}}[M]
with coefficients in the field of Puiseux series C{{t}}, viewed as a family of complex
curves which depends on a parameter t . We look for the points of the curve over
the Puiseux series, i.e. in N ⊗ C{{t}}∗. In a basis of M , the polynomial is given in
coordinates by

Pt (x, y) =
∑

(i, j)∈P�

ai, j (t)x
i y j .

We assume that the coefficients in the corners of the polygon P� are non-zero. Then,
we have the associated tropical polynomial

Trop(Pt )(x, y) = max
(i, j)∈P�

(
val(ai, j (t)) + i x + j y

)
,

along with a valuation map, also called tropicalization map:

Val : n ⊗ z ∈ N ⊗ C{{t}}∗ �−→ n ⊗ val(z) ∈ Hom(M,R) = NR.

In coordinates, Val is given by the coordinatewise valuation:

Val : (x, y) ∈ (C{{t}}∗)2 �−→ (val(x), val(y)) ∈ R
2.
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The Kapranov theorem (Brugallé and Shaw 2014) then ensures that the closure of the
image of the vanishing locus of Pt in (C{{t}}∗)2 under the valuation map is equal to
the tropical curve defined by Trop(Pt ).

Theorem 2.18 (Kapranov) Let Ctrop be the tropical curve defined by Trop(Pt ). Then,
one has

Val(C) = Ctrop.

Let αi, j = val(ai, j (t)), and ai, j (t) = tαi, j a0i, j (t). The function (i, j) �→ αi, j

induces the convex subdivision of P� dual to Ctrop. Furthermore, to each vertex V ,
dual to a polygon PV ⊂ P� of the subdivision, is associated a complex curve of equa-
tion

∑
(i, j)∈PV a0i, j (0)x

i y j . These curves are an important part of the correspondence
theorem.

Definition 2.19 The following is called a tropical enhancement: the data of a real
curve CV of degree PV for every vertex V of a parametrized tropical curve, such that
if V and V ′ are adjacent, and D, D′ are the toric divisor associated to the common side
of PV and PV ′ , canonically identified, the intersection points of CV and D counted
with their order of tangency are the same for CV ′ and D′.

If we add to a tropical enhancement the data of some curve for each bounded edge of
the tropical curve, we get admissible tropicalization curves, as mentionned in Shustin
(2006b).
Tropicalization of a parametrized curveWe finish by reviewing the tropicalization
process for a family of parametrized curves. For a more detail exposition, we refer
the reader to section 3 of Tyomkin (2012). Let ft : CP1 ��� NC∗ be a family of
parametrized rational curve. Using them points (p1, . . . , pm)where ft is not defined,
we get a family of rational curve with m marked points. Let C0 be the stable limit
inside the Deligne-Mumford compactification of the moduli space of marked rational
curvesM0,m . The curve C0 is a real nodal curve. The tropical curve is defined as the
dual graph of the central fiber C0:

◦ there is one vertex per irreducible component of C0,
◦ two vertices are linked by an edge if the corresponding component share a node,
with some edge length fixed by the localmodel of the family (see (Tyomkin 2012)),

◦ there is one unbounded end per marked point, adjacent to the vertex corresponding
to the component on which the marked point belongs.

The real structure on the family of curves induces a permutation on the set of irreducible
components of C0, which becomes a real structure on the tropical curve �. The order
of vanishing of the monomials on each component CV of C0 gives a map from � to
NR, leading to a parametrized tropical curve. The order of vanishing being invariant
by conjugation, we get a real paramtrized tropical curve.

For each vertex V of �, the family of maps ft induces a map fV : CV ��� NC∗ .
These are the parametrized version of the tropical enhancement for plane curves, and
are also called tropical enhancement.
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Remark 2.20 A tropical enhancement corresponds to the data of the central fiberC0, to
which the tropical curve is the dual graph. The purpose of the correspondence theorem,
is to describe all possible families with the same central fibers, in other words, the
possible smoothings, satisfying some constraints.

3 Quantum indices of real curves

We start this section by recalling the theorem about quantum indices by Mikhalkin
(2017), restricting ourselves to the case of rational curves. We then compute the quan-
tum indices of some specific curves that appear in the resolution of our enumerative
problem.

3.1 The quantum index of a type I real curve

Let ϕ : CP1 ��� NC∗ be a parametrized real rational curve of degree�. Let α ∈ CP1

be be a point where ϕ is not defined, and let n ∈ N be the corresponding weight vector.
Recall that the monomial ιnω ∈ M is used to compute the complex moment.

Definition 3.1 In the above notations, we say that the rational curve has real or purely
imaginary intersection points if (ϕ∗ιnω)(α) ∈ R ∪ iR for every α where ϕ is not
defined.

Remark 3.2 This condition is automatic forα ∈ RP1 and thus needs only to be checked
for α ∈ CP1\RP1.

Recall that we have the logarithmic map

Log : zn ∈ NC∗ �−→ n ⊗ Log|z| ∈ N ⊗ R.

In a basis of N , it is the logarithm of the absolute value coordinate by coordinate.
Similarly we define the argument map

arg : zn ∈ NC∗ �−→ n ⊗ arg(z) ∈ N ⊗ R/πZ.

Notice that the argument is takenmod π rather than 2π . The parametrized real rational
curveϕ : CP1 ��� N⊗C

∗ is of type I . Let S be a connected component ofCP1\RP1,
inducing a complex orientation of RP1. By pulling back the volume form ω on NR to
NC∗ , we can define the logarithmic area of S:

ALog(S, ϕ) =
∫

S
(Log ◦ ϕ)∗ω.

Respectively, the 2-form ω defines a 2-form ωθ on N ⊗R/πZ. We can pull it back to
NC∗ and define the area of the co-amoeba of S:

Aarg(S, ϕ) =
∫

S
(arg ◦ϕ)∗ω.
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Ifω is given in coordinates byω = dx1∧dx2, due to the vanishing of the meromorphic
2-form dz1

z1
∧ dz2

z2
restricted to S, one has ALog(S, ϕ) = Aarg(S, ϕ).

We now define the quantum index of a real oriented rational curve. For a complex
intersection point pi with a divisor, let εiθiπ = Arg

(
(ϕ∗ιni ω)(pi )

) ∈] − π;π [, with
εi = ±1, 0 < θi < 1, and Arg is the classical argument map.

Theorem 3.3 (Mikhalkin 2017) Let ϕ : CP1 ��� NC∗ be a real parametrized rational
curve. Let S be one of the two connected components ofCP1\RP1. Then, there exists
a half-integer k(S, ϕ), called the quantum index of (S, ϕ), such that

ALog(S, ϕ) − π2
∑

pi∈S
εi (2θi − 1) = k(S, ϕ)π2 ∈ π2

2
Z.

In particular, if the curve has real or purely imaginary intersection points with the
toric divisors, the sum in the left-hand side vanishes.

The statement, stated as Theorem 1 of Mikhalkin (2017), is only proved for curves
with real or purely imaginary intersection points with the toric boundary. To obtain this
broader statement, one needs to modify Lemma 28 in Mikhalkin (2017) by moving
the geodesics in the torus of arguments so that they pass through a fixed point of −id.
Each modifies the area by a term π2εi (2θi − 1).

3.2 The quantum index near the tropical limit

In Mikhalkin (2017), Mikhalkin proved the following result, that computes the quan-
tum index of curves in a family near the tropical limit, by computing the log-area.

Proposition 3.4 (Mikhalkin 2017) Let C (t) = (
ft : CP1 ��� NC∗

)
be a family of type

I real parametrized rational curves. Let h : � → NR be the tropical limit of the family.
The choice of a component S of CP1\RP1 induces components SV of CV for every
vertex V ∈ Fix(σ ), thus inducing complex orientations of the curves CV . Then, for t
large enough,

ALog(S, ft ) = 1

π2

∑

V

ALog(SV , fV ),

where the sum is indexed over the vertices of � inside Fix(σ ).

Remark 3.5 In particular, for one to know the quantum index of curves near the tropical
limit, one only needs to know the log-areas of the curves associated to the vertices
of the tropical curve, and the chosen components SW for each of them. This means
that the quantum index may be computed in the patchworking construction. Notice
that the parametrized curves associated to the vertices may not have real or purely
intersection points with the toric boundary. However, this case does not occur in our
specific problem where the complex intersection points belong to the same divisor.
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The computation near the tropical limit allows us to reduce the calculations needed
to compute the log-areas of oriented curves: we only need to compute the log-areas of
oriented curves associated to the vertices of a tropical curve. This includes real rational
curves with three real intersection points, and real rational curves with two real and
two complex conjugated intersection points. Proving that the log-area is well-behaved
under the monomial maps, the following lemma reduces the computation even further
to two computations, dealt with in the next subsection.

Lemma 3.6 Let ϕ : CC ��� NC∗ be a type I real curve with a choice of a connected
component S ⊂ CC\RC, inducing a complex orientation, and letα : NC∗ → N ′⊗C

∗
be a monomial map, associated to a morphism AT : M ′ → M. We consider the
composition

ψ : CC ϕ−→ NC∗ α−→ N ′
C∗ .

Let ω and ω′ be the volume forms on respectively N and N ′, dual lattices of M and
M ′, so that we have A∗ω′ = (det A)ω. Then, we have

∫

S
(Log ◦ ψ)∗ω = det A

∫

S
(Log ◦ ϕ)∗ω.

Proof We have linear maps AT : M ′ → M, A : N → N ′. Then,
∫

S
(Log ◦ ψ)∗ω′ =

∫

S
(A ◦ Log ◦ ϕ)∗ω′

=
∫

S
(Log ◦ ϕ)∗(A∗ω′)

= det A
∫

S
(Log ◦ ϕ)∗ω since A∗ω′ = (det A)ω.

��

3.3 Local computations

In this section, we compute the log-areas of some auxiliary rational curves. This
includes real rational curves with three intersection points with the toric boundary,
and real rational curves with two real and two complex intersection points with the
toric boundary. We also solve the local enumerative problem of finding oriented real
rational curves maximally tangent to the toric boundary passing through some chosen
points.

3.3.1 Trivalent real vertex

We first recall the computation of the quantum index of a rational curve with three
real punctures. This was dealt with in Mikhalkin (2017).
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Fig. 2 The polygon
P�(m1,m2,m3)

Lemma 3.7 Let � ⊂ N be a family of three non-colinear vectors of total sum 0, and
let P� ⊂ M be the associated triangle, of lattice area m�. Let ϕ : CP1 ��� NC∗ be a
real parametrized rational curve of degree �, thus having a unique real intersection
point with maximal tangency with each toric divisor. Then, the quantum index of the
curve is ±m�

2 according to the choice of complex orientation.

Proof The assumption implies that the curve is the image of a line by a monomial map
of determinant m�. Hence, its quantum index is the quantum index of a line, equal to
± 1

2 , times the determinant of the monomial map which is the lattice area m� of the
triangle. ��

3.3.2 Quadrivalent complex vertex

We now consider the case of a curve associated with a quadrivalent vertex having two
edges exchanged by the involution σ , and two edges fixed. This means that this is a
rational curve having two real punctures, and two conjugated ones. In a suitable choice
of coordinates, the curve has a degree of the following form. In a basis (e1, e2) of N ,
for m1,m2,m3 ∈ N

∗ with m2 < m3, let us take

�(m1,m2,m3) = {(m1, 2m2); (0,m3 − m2)
2; (−m1,−2m3)}.

Thedegree of a planar curvewhich is parametrized by a curve of degree�(m1,m2,m3)

is the lattice polygon in M given by

P�(m1,m2,m3) = Conv ((0,m1), (2m2, 0), (2m3, 0)) .

This polygon is drawn on Figure 2. Up to an automorphism of the lattice, every
triangle in M having a side of even length is one of the polygons P�(m1,m2,m3).
Let Ei be the side opposite to the i-th vertex in P�(m1,m2,m3), i.e.

E1 = [(2m2, 0), (2m3, 0)] , E2 = [(2m3, 0), (0,m1)] , E3 = [(2m2, 0), (0,m1)] .

Wedenote byCEi the associated toric divisor inside the toric surfaceC�(m1,m2,m3).
Such a curve is the image of a curve of degree �par = {(1, 1), (−1, 1), (0,−1)2} by
a monomial map followed by a translation.
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Fig. 3 Co-amoeba of a parabola
with order map: −1 for red
(triangles with left vertical side),
+1 for blue (triangles with right
vertical side). Central point is 0,
the abscissa of the vertical
geodesics are ±ck

Hence, we now consider rational curves of degree �par. We assume that the two
intersection points with the toric divisor associated to (0,−1) are complex conjugated.
Choosing a coordinate on the curve such that these complex points are ±i and the
intersection point with the toric divisor associated to (1, 1) is ∞. There are two such
coordinates which differ by their orientation. Thus, the orientation fixes uniquely the
coordinate. Up to amultiplicative translation, the oriented curve has a parametrization

ϕ : t ∈ CP1 �−→
(

t − c,
t2 + 1

t − c

)

,

where c ∈ R is the coordinate of the last intersection point with the toric boundary.
The reversing of the orientation leads to the change of c by −c. Let S be the upper
half-plane {Imt > 0}.

Lemma 3.8 The log-area of the curve ϕ : t ∈ S �−→
(
t − c, t2+1

t−c

)
is 2π arctan c.

Proof The coamoeba along with its order map (i.e. the signed number of antecedents)
is depicted on Fig. 3. The order map has value 1 on the blue triangles and −1 on the
red ones. The abscissa of the two vertical geodesics are both opposite arguments of
the complex intersection points with the boundary. The one with parameter i is

arg(i − c) = arcot(−c) ∈]0;π [.

This is the co-amoeba of the whole curve. However, as z is a coordinate on the curve,
we can restrict to the co-amoeba of the half-curve parametrized by S if we restrict to
the triangles in the right half of the square. Therefore, the log-area is equal to

A(S, ϕ) = arcot(−c)2 − (π − arcot(−c))2

= 2πarcot(−c) − π2

= 2π arctan c. ��
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Remark 3.9 The order map of the co-amoeba, i.e. the function on the argument torus
that gives the signed number of antecedents, is found as follows:

◦ According to Forsgård and Johansson (2015), this function is constant on the
complement of the shell, which is a union of geodesics in the torus, directed by
the vectors of �, and whose position is fixed by the arguments of the moments of
the points of intersection with the toric boundary.

◦ The value of the order map changes by one when passing through one of the
geodesic of the shell. This defines the order map up to a shift.

◦ The shift is fixed by the fact that the whole signed area is zero. This leads us to
Fig. 3.

4 Tropical enumerative problem and refined curve counting

Let � ⊂ N be a family of m primitive lattice vectors, with total sum 0, and let �

be the associated lattice polygon P� ⊂ MR having m lattice points on its boundary.
The toric surface obtained from � is still denoted by C�. Let E1, . . . , Ep denote the
sides of the polygon P� and let n1, . . . , n p ∈ N be their normal primitive vectors.
Let s ≤ l(E1)

2 be an integer, r1 = l(E1) − 2s, and ri = l(Ei ) if i ≥ 2, so that we have
∑p

1 ri + 2s = m. Let

�(s) = (�\{n2s1 }) ∪ {(2n1)s} = {nr11 , (2n1)
s, nr22 , . . . , n

rp
p }.

In other words, for the vector n1 associated to the side E1 of P�, 2s copies of n1 inside
� have been replaced by s copies of 2n1. This depends on the choice of the “first"
side E1 which is now fixed, but could be any of them.

4.1 Tropical problem

The tropical curves of degree �(s) have m − s ends, and therefore the moduli space
M0(�(s), NR) of parametrized rational tropical curves of degree �(s) in NR � R

2

has dimension m − s − 1. We have the evaluation map:

ev : M0(�(s), NR) −→ H =
{

μ ∈ R
m−s s.t.

m−s∑

1

μi = 0

}

⊂ R
m−s,

that associates to a parametrized tropical curve the moments of every end. Recall that
the sum of the moments is 0 because of the tropicalMenelaus Theorem. Letμ ∈ R

m−s

be a generic family of moments. We look for parametrized rational tropical curves �

of degree �(s) such that ev(�) = μ.
Due to genericity of the choice, as noticed in section 3.1 of Blomme (2019), every
parametrized rational tropical curve � such that ev(�) = μ is a simple nodal tropical
curve and thus has a well-defined refined multiplicity mq

� . We then set

123



Beitr Algebra Geom (2023) 64:721–751 741

N ∂,trop
�(s) (μ) =

∑

ev(�)=μ

mq
� ∈ Z[q± 1

2 ].

Theorem 4.1 (Blomme 2019) The value of N ∂,trop
�(s) (μ) is independent of μ provided

that it is generic.

Remark 4.2 The theorem extracted fromBlomme (2019) is true for any tropical degree
�, although we use it here for a degree consisting almost only of primitive vectors.

Remark 4.3 In Göttsche and Schroeter (2019) Göttsche and Schroeter proposed a
refined way to count so-called refined Broccoli curves having fixed ends, and passing
through some fixed configuration of “real and complex" points inside R2, with some
suitable multiplicity.

In the case where there are only marked ends and no marked points, this count
coincides with the count of plane tropical curves passing through the configuration
with usual Block-Göttsche multiplicities from Definition 2.17 up to a multiplication
by a constant term depending on the degree.

4.2 Classical problem

Keeping previous notations, let P0 (resp.P̂0) be a configuration of m points on the
toric boundary ∂C� such that:

– P0 (resp.P̂0) has s1 = s pairs of complex conjugated points (resp. purely imagi-
nary) on CE1, and r1 real points on RE1,

– for each i ≥ 2, the configuration P0 (resp.P̂0) has ri real points on REi ,
– P0 (resp.P̂0) is subject to the Menelaus condition.
– we assume that P0 (resp.P̂0) is generic among such configurations.

For P = P0 or P̂0, let S(P) be the set of oriented real rational curves that pass
through ±pi for every pi ∈ P . Such a curve is said to pass through the configuration
P up to symmetry. The up to symmetry is here to emphasize the fact that we allow
our curves to pass through a point or its symmetric. As the curves are oriented, each
real curve is counted twice: once with each of its orientations. Notice that if a curve
passes through a non-real point, it passes through its conjugate since the curve is real.
Moreover, if the complex points are purely imaginary, the conjugate happens to be
the opposite. Every oriented curve of S(P̂0) has real or purely imaginary intersection
points, and thus a quantum index equal to its log-area up to a factor π2.

Let ϕ : CP1 ��� NC∗ be a real parametrized rational curve, oriented by the choice
of S ⊂ CP1\RP1. The logarithmic Gauss map sends a point in RP1 to the tangent
direction to Log ϕ(RP1) ⊂ NR of its image. We get a map

γ : RP1 → P
1(NR).

The first space RP1 is oriented as the boundary of S, while P1(NR) is oriented by the
choice of ω. The degree of this map is denoted by RotLog(S, ϕ) ∈ Z. We then set

σ(S, ϕ) = (−1)
m−RotLog(S,ϕ)

2 ∈ {±1}.
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Now let

R�(P) = 1

4

∑

(S,ϕ)∈S(P)

σ (S, ϕ)qk(S,ϕ) ∈ Z[q± 1
2 ],

be the refined signed count of solutions. The coefficient 1
4 is here to account for the

deck transformations: if { f (x, y) = 0} is a curve in S(P), then { f (x,−y) = 0},
{ f (−x, y) = 0}, { f (−x,−y) = 0} are in S(P) too. Theorem 1.2 from Mikhalkin
(2017) states that the value of R�(P0) does not depend on the generic choice of P0.
As we choose all complex pair of conjugated points on the same toric divisor, the
corresponding invariant is in our particular case R�,(s1,0,...,0).

Theorem 1.4 relates the count R�(P̂0) for purely imaginary complex constraints
to a tropical count. The choice of P̂0 does not a priori allows for a computation
of R�,(s1,0,...,0) since it does not correspond to a generic choice of P0. However,
Theorem1.5 states that this non-generic choice of complex constraints cannevertheless
be used to compute the invariant R�,(s1,0,...,0) up to a factor 2s . Both Theorems now

allow one to relate R�,s and N ∂,trop
�(s) .

Corollary 4.4 One has

R�,(s1,0,...,0) = 2s1
(q1/2 − q−1/2)m−2−s1

(q − q−1)s1
N ∂,trop

�(s) .

Remark 4.5 The general case for the computation of R�,s is done in Blomme (2020)
using a different version of the correspondence theorem.

Moreover, we get the following invariance statement, that does not come from
Theorem 1.2 since P̂0 is not a generic choice in the sense of Mikhalkin (2017).

Corollary 4.6 The count R�(P̂0) does not depend on the choice of P̂0 as long as it is
generic.

Proof From Theorems 1.4 and 1.5, we know that the value of R�(P̂0) is the same
for every choice of P̂0 which is a regular value of the evaluation map that sends a
curve to the coordinates of its intersection points with the toric boundary. The map
being algebraic, using Sard’s Lemma, the set of regular values contains a Zariski open
set inside (R∗)m−2s−1 × (C∗)s , and its intersection with (R∗)m−2s−1 × (iR∗)s is non
empty. Hence, the intersection is dense inside (R∗)m−2s−1 × (iR∗)s . ��

5 Proofs of the results

The proof of Theorem 1.4 uses a correspondence theorem. Here, we use the corre-
spondence theorem from Shustin (2006b). More precisely, we use in Shustin (2006b)
the Lemmas 2.8 and 3.2. It is also possible to adapt the correspondence theorem from
Mikhalkin (2005), or from Tyomkin (2017). The latter is done in Blomme (2020).
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The idea of the correspondence theorem is as follows. Let P̂t be a configuration of
points depending on a parameter t , chosen as in Sect. 4.2. This means that one is given
a collection of series ±ζi (t) ∈ R((t))∗ ∪ iR((t))∗ corresponding to the coordinates
of the points ±pi (t) of P̂t on the toric divisors. Let μ be the tropicalization of the
point configuration, i.e. for a pair of points ±pi (t), we have μi = valζi (t). The
correspondence theorem provides for t large enough a correspondence between the
curves ofS(P̂t ), which are real parametrized curves of degree�, and the parametrized
real tropical curves (�, h) of degree � which have the same image as tropical curves
(�0, h0) of degree �(s) such that ev(�) = μ. We here assign a multiplicity to each
curve (�0, h0) of ev−1(μ), so that the count of ev−1(μ)with these multiplicities gives
R�(P̂t ). This multiplicity happens to be proportional to the refined multiplicity of
Block-Göttsche, thus leading to the relation stated in Theorem 1.4.
Being given a parametrized tropical curve h0 : �0 → NR of degree �(s) with
ev(�0) = μ, the task of computing its multiplicity amounts to two things.

◦ One needs to find the parametrized real tropical curves (�, h) of degree � having
the same image. This is taken care of by Lemma 5.3.

◦ Then, find the tropical enhancements that allow one to apply the correspondence
theorem (see Lemma 3.2 from Shustin 2006b). This means finding a family of
curves (CV )V∈V (�) satisfying some compatibility condition, and apply Lemma 2.8
from Shustin 2006b, leading to admissible tropicalization curves used in Lemma
3.2 from Shustin 2006b. This technical step of the proof is done in Proposition 5.4,
reducing the computation to the elementary case of a curvewithwith two real punc-
tures and two complex conjugated punctures. The latter is dealt with in Lemma 5.1.

5.1 The case of a curve with four punctures

Before getting to the general results, we study the particular case of the enumerative
problem for the degree �(m1,m2,m3). We keep notations from Sect. 3.3.2. We take
a real point onCE3 and two purely imaginary conjugated points onCE1, and look for
real rational curves of degree �(m1,m2,m3), maximally tangent to each toric divisor
at the given points. Such a curve has a parametrization of the form

ϕ(t) =
(
a(t − c)m1 , b(t − c)2m2(t2 + 1)m3−m2

)
∈ (C∗)2,

where c is some real number corresponding to the coordinate of the intersection point
with CE3, and a, b ∈ R

∗. The intersection point with CE2 corresponds to the coordi-
nate t taking the infinite value. The condition to pass through the specific points are
given by the following equations:

a(i − c)m1 = iλ ∈ iR∗ and
b

m1
δ

a
2m2
d

(c2 + 1)
m1
δ

(m3−m2) = μ ∈ R
∗,

where δ = gcd(m1, 2m2) is the integer length of E3, and iλ and μ are the coordinates
of the fixed points on their respective divisors.
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Lemma 5.1 The enumerative problem admits the following set of solutions.

◦ If m1 is odd, there exists precisely 2m1 oriented curves solution, two of each
quantum index (m3 −m2)(2k + 1−m1), for k ∈ [[0;m1 − 1]]. If we also consider
curves passing through the symmetric real point, we get 4m1 real oriented curves.

◦ If m1 is even, and
m1
δ

is odd, we get the same result.
◦ If m1

δ
is even, there are 4m1 or 0 oriented curves solution according to the sign of

μ.

Proof We solve the system. The first equation implies that (i −c)m1 ∈ iR and thus we

can write it i−c = re
iπ 2k+1

2m1 with k ∈ Z and r ∈ R. Therefore, we have i−re
iπ 2k+1

2m1 =
c ∈ R. Hence,

Im

(

i − re
iπ 2k+1

2m1

)

= 1 − r sin
(
π 2k+1

2m1

)
= 0 ⇒ r = 1

sin
(
π 2k+1

2m1

)

⇒ c = r cos
(
π 2k+1

2m1

)
= cot

(
π 2k+1

2m1

)
= ck .

We have proven that c can only take a finite number of values ck = cot
(
π 2k+1

2m1

)
,

for k ∈ [[0;m1 − 1]]. For each value of ck we find a unique a, and then solve for b
eventually. Thus, we have proven that up to the action of the real torus (R∗)2, every
real curve having purely imaginary intersection with CE1, and real intersection with
both CE2 and CE3 is one of the curves

ψk : t �−→
(
(t − ck)

m1, (t − ck)
2m2(t2 + 1)m3−m2

)
.

These parametrized curves are the respective images of the curves

ϕk : t �−→
(

t − ck,
t2 + 1

t − ck

)

,

by the monomial map α : (z, w) �→ (zm1, zm3+m2wm3−m2). Therefore, in order to
compute the quantum indices of the oriented curves ψk , we just need to compute the
Log-areas of the oriented curves ϕk , which were computed in Sect. 3.3.2:

k(S, ψk) = (m3 − m2)(2k + 1 − m1).

��
The logarithmic rotation number of any map t �→

(
t − c, t2+1

t−c

)
is 0. Apply-

ing the monomial map passing from a curve of degree �par to a curve of degree
�(m1,m2,m3), we get the=at the logarithmic rotation number of the solutions is 0.
Thus, the sign with which they are counted is 1. The signed number of solutions is
thus

4
m1−1∑

k=0

q(m3−m2)(2k+1−m1) = 4
qm1(m3−m2) − q−m1(m3−m2)

qm3−m2 − q−(m3−m2)
.
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5.2 Auxiliary statements

We now carry the two steps explained at the start of the section. Let h0 : �0 → NR

be a parametrized rational tropical curve of degree �(s) such that ev(�0) = μ. Let
Ctrop = h0(�0) be its image, which is a plane tropical curve. We need to find the real
parametrized tropical curves (�, h) of degree � parametrizing the plane curve Ctrop
and admit a tropical enhancement. The different possible real structures are described
in Proposition 2.13.

Lemma 5.2 The parametrized real tropical curves with a trivalent flat vertex cannot
be the tropicalization of a family of parametrized real rational curves passing through
Pt .

Proof Assume that there exists a trivalent flat vertex w, in direction n1, with two
outgoing ends exchanged by the involution. Let ft : CP1 ��� N ⊗ C{{t}}∗ be a
parametrized real rational curve tropicalizing to (�, h). Then, in the real coordinate
y such that the two conjugated points have coordinate ±i and some real point has
coordinate ∞, the morphism takes the following form:

f (y) = χwt
h(w)(y2 + 1)n1

∏

j �=1

(
y

y(p j )
− 1

)n j

∈ N ⊗ C{{t}}∗,

where p j are the points where f is not defined, andχw ∈ N⊗R{{t}}∗. The coordinates
y(p j ) are Puiseux series with a first order term of negative valuation. In particular,
the first order term of y

y(p j )
− 1 is −1 if y is taken equal to some Puiseux series of

positive valuation.
The moment at ±i is obtained by evaluating the monomial ιn1ω ∈ M on the curve

at y = ±i . We get two conjugated Puiseux series depending on the parameter t . The
first order terms of these Puiseux series are real:

◦ as noticed, when evaluated at ±i , each term of the product has first order term
equal to −1,

◦ the coefficient χw(ιn1ω) is real,
◦ the (y2+1)n1 vanishes after the evaluation of themonomial ιn1ω since the exponent
is ω(n1, n1) is 0.

This is absurd since it is supposed to be purely imaginary. Hence, we cannot have any
flat vertex. ��
Lemma 5.3 Among the real parametrized tropical curves h : � → NR of degree �

with image Ctrop, at most one may be the tropicalization of a family of parametrized
real rational curves passing through P̂t . Moreover, this real tropical curve is the
tropical curve obtained from �0 with the maximal splitting graph.

Proof There is an infinite number of parametrized curves with image Ctrop, obtained
by splitting the graph of even edges and described in Proposition 2.13. All the ends
of Ctrop associated to the complex markings are double edges near infinity since
they correspond to two distinct marked points. Thus they belong to �even. Since all
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the complex markings are on the same divisor, they have the same direction and
they cannot meet at a common vertex. Therefore, the graph �even only consists of
the complex ends. The only possibility is that the double ends separates itself at a
trivalent flat vertex, sent somewhere on the end of Ctrop. However, this is forbidden
by Lemma 5.2. Therefore, all the double ends split and there is a unique possibility. ��

We have proven that for Ctrop, there is a unique real parametrized tropical curve
h : � → NR of degree � with image Ctrop that can be the tropicalization of a family
of parametrized real rational curves. We now intend to apply the correspondence the-
orem from Shustin (2006b) to recover the curves solution to the enumerative problem
tropicalizing to (�, h).

Proposition 5.4 Let P̂t be a real configuration of points as previously chosen, trop-
icalizing on a family of moments μ. Let h0 : �0 → NR be a parametrized tropical
curve of degree �(s) having moments μ, and let h : � → NR be the associated real
parametrized tropical curve without flat vertex such that ev(�) = μ. Vertices of �

and �0 are canonically identified. Let W1, . . . ,Ws be the quadrivalent vertices of �,
adjacent to the complex ends, let mWi denote their complex multiplicity as a trivalent
vertex of �0.

Then, there are precisely 2m−2s ∏
mWi oriented real curves passing through the

configuration P̂t up to symmetry and tropicalizing to (�, h). Their contribution to R�

is given by

m′
� = 4

s∏

1

qmWi /2 − q−mWi /2

q − q−1

∏

V �=Wi

(qmV /2 − q−mV /2)

= 4

(q − q−1)s

∏

V

(qmV /2 − q−mV /2).

Proof Wemake an induction on the number of vertices. Thus, we initialize with curves
� having a unique vertex, trivalent or quadrivalent. Following Mikhalkin (2005), to
compute the multiplicity, one needs to count (in a suitable way) the local curves over
the vertices of �, and the number of ways to “glue" them together. In this proof, we
do not assume the vectors of � to be primitive.

– If there is only one trivalent vertexV in�, thenwe are looking for curvesmaximally
tangent to the toric divisors and passing through two pairs of opposite real points,
exactly as in the proof of Theorem 7 in Mikhalkin (2017): there are 4 such curves,
which are exchanged by the action of the deck transformation group {±1}2 on the
associated toric surface. These 4 curves lead to 8 oriented curves. Half of themhave
logarithmic Gauss degree 1 (and thus σ(RC) = 1) and quantum index mV

2 , and
the other half has degree −1 (and thus σ(RC) = −1) and quantum index −mV

2 .
Therefore the signed contribution is 4(qmV /2 − q−mV /2). Notice that we have
three pairs of real opposite points. specifying on point in each pair, the number of
curves passing through the chosen points may vary. Gathering all the possibilities,
the number of solutions is always the same.
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– If there is only one quadrivalent vertex W , we look for curves passing through
one pair of conjugated imaginary points on one divisor, and a pair of opposite
real points. Assume that the degree of the vertex is �(m1,m2,m3). Then, as the
unbounded non-real ends are of weight 2, we havem3 −m2 = 1, and the complex
multiplicity ismW = 2m1. In Lemma 5.1, we have seen that there are always 2m1
curves passing through the configuration: either m1 for each of the real points in
the pair, or 2m1 and 0. Therefore, there are 4m1 oriented curves going through the
pair. Moreover, their quantum index is known. The logarithmic rotation number
RotLog can be computed thanks to the same monomial map that allowed us to
compute their quantum index: if A denotes the matrix of the monomial map, then

RotLog(ψk) = det A × RotLog(ϕk).

As the logarithmic rotation number of any map t �→
(
t − c, t2+1

t−c

)
is easily com-

puted to be 0, all the curves have logarithmic rotation number zero and all solutions
are counted with the same sign 1. When accounting for both orientations, the
desired count is

4
m1−1∑

k=0

q(m3−m2)(2k+1−m1) = 4
q(m3−m2)m1 − q−(m3−m2)m1

qm3−m2 − q−(m3−m2)
= 4

qmW /2 − q−mW /2

q − q−1 ,

since m3 − m2 = 1, and the complex multiplicity mW satisfies mW = 2m1.

Now that the initialization is done, assume that � has more than one vertex. Fol-
lowing the steps of Shustin (2006b), we do the following:

◦ First, find the tropical enhancements, i.e. the real curves associated to each ver-
tex of �. This is taken care of by Lemma 5.1 for quadrivalent vertices, and by
Mikhalkin (2017) for trivalent vertices. This is the first step in finding the admis-
sible tropicalization curves for Lemma 3.2 in Shustin (2006b).

◦ Then, ensure that the curves are compatible in the sense that if two vertices are
adjacent, the curves associated to both vertices have the same unique intersection
point with the toric divisor associated to the edge between the vertices.

◦ Use Lemma 2.8 from Shustin (2006b) to finish finding admissible tropicalization
curves: there is one for each edge of �. If the edge is of odd weight, there is a
unique tropicalization curve for the edge, and if the edge is of even weight, there
are 2: fixing orientations of the curves associated to the endpoints of the edge,
there is the orientation preserving way, and the orientation reversing way. This is
later referred as “gluing".

◦ For each tuple of admissible tropicalization curves, Lemma 3.2 from Shustin
(2006b) provides a unique curve solution to the enumerative problem. Compute
the sign and quantum index for each such solution.

We now carry the explained steps for each case. Let V be a vertex adjacent to two
real ends, or one real end and two complex ends. The last edge adjacent to V , which is
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bounded, is denoted by γ . Let �′ be the parametrized tropical curve obtained by delet-
ing this vertex and replacing the edge γ heading to V by an end with same direction.
The Menelaus rule allows us to define a pair of real opposite moments associated to
the new end. This moment is defined by the condition that the configuration composed
by the pairs of points of the edges adjacent to V satisfies the Menelaus condition. We
get a new configuration of points P̂ ′

t , indexed by the ends of �′.
Let 4R be the refined count of oriented curves tropicalizing on �′, passing through the
configuration P̂ ′

t up to symmetry. We now have to glue together the oriented curves
above �′, and the curves over the vertex V . In each case we inquire for the refined
count over the global tropical curve �. We make a disjunction over the type of V ,
which can either be a trivalent one, or a quadrivalent one (i.e. one of the vertices Wi ),
and γ can be an odd or an even edge.

• Assume that V is trivalent, and the bounded edge adjacent to V is odd. Then,
there are two real opposite points associated to the unbounded end of �′ in the
configuration, and they are exchanged by the deck transformation group {±1}2.
Therefore, over �′, there are 2R oriented curves for each point in the pair (both
add up to the total 4R oriented curves).
Meanwhile, there are 4 curves above the vertex V , two over each of the real points
in the pair. Thus, we get 2 × 2R possible tropical enhancements for each point in
the pair. As the edge has odd weight, Lemma 2.8 from Shustin (2006b) produces
a unique admissible tropicalization curve for the gluing.

Moreover, for any possible gluing of an oriented curve and a curve, the orientation
of the oriented curve over �′ extends to the new global curve. The curves above
V thus get an orientation. The initialization for the case of a unique trivalent
vertex shows that the two oriented curves obtained this way have opposite quantum
indices. Moreover, one increases by one the logarithmic rotation number while the
other decreases it by one, just as in the proof of Theorem 7 in Mikhalkin (2017).
Finally, the total contribution is

(q
mV
2 − q−mV

2 )2R + (q
mV
2 − q−mV

2 )2R = 4(q
mV
2 − q−mV

2 )R.

• Assume thatV is trivalent, andγ is an even edge.Wehave 4 possibilities exchanged
by the deck transformation group, according to the intersection point in the pair,
and the position of the curve with respect to the toric divisor. (since the weight is
even, the curve stays on the same side) For each of these possibilities, there are
R oriented curves over �′, and just one compatible curve over V . Similarly, each
time, Lemma 2.8 from Shustin (2006b) produces two ways of gluing the curves:
one that increases the logarithmic rotation number, and one that decreases it. We
thus get

(q
mV
2 − q−mV

2 )R + (q
mV
2 − q−mV

2 )R + (q
mV
2 − q−mV

2 )R + (q
mV
2 − q−mV

2 )R

= 4(q
mV
2 − q−mV

2 )R.
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• Assume that V = W is a quadrivalent vertex, and that γ is an odd edge. Assume
that the dual triangle is equivalent to�(m1,m2,m3). Over�′, there are 2R oriented
curves for each of the points in the pair, while according to Lemma 5.1, there are
m1 curves over W for each of the intersection point in the pair. Using Lemma 2.8
from Shustin (2006b), in each case the gluing is unique and we get

(
qmW /2 − q−mW /2

q − q−1

)

2R +
(
qmW /2 − q−mW /2

q − q−1

)

2R = 4

(
qmW /2 − q−mW /2

q − q−1

)

R.

• Finally, if V = W is a quadrivalent vertex and γ is an even edge, there are
similarly four cases to consider, each one with R oriented curves over �′. This
time m1 is even, and the distribution of the solutions for the curves above the
vertexW might be a little trickier. We have seen in Lemma 5.1 that if the boundary
points are fixed, there are either 2m1 curves above W for one of the points and
zero for the other, or m1 for each of them. In both cases we find the compatible
tropical enhancements, and apply Lemma 2.8 from Shustin (2006b) to find all the
admissible tropicalization curves. In each case, we still get

4

(
qmW /2 − q−mW /2

q − q−1

)

R.

Finally, we recover the formula for m′
� . ��

Remark 5.5 Concretely, once the curves associated to trivalent and quadrivalent ver-
tices have been found using Lemma 5.1, the proof proceeds exactly as in proof of
Theorem 7 in Mikhalkin (2017). The only difference is that we have a different family
of curves to choose over the quadrivalent vertices, leading to the vertex multiplicity
qmW /2−q−mW /2

q−q−1 rather than qmV /2 − q−mV /2.

5.3 Proof of Theorems 1.4 and 1.5

For reader’s convenience, we restate Theorems 1.4 and 1.5.

Theorem 1.4 For a generic choice of P̂0 close to the tropical limit, one has

R�(P̂0) = (q1/2 − q−1/2)m−2−s1

(q − q−1)s1
N ∂,trop

�(s) = (q1/2 − q−1/2)m−2−2s1

(q1/2 + q−1/2)s1
N ∂,trop

�(s) .

Proof According to Proposition 5.4, we obtain R�(P̂t ) by counting curves with multi-
plicities 1

4m
′
� . Themultiplicity 1

4m
′
� is obtained frommq

� by clearing the denominators
of the m − 2 − s vertices and dividing by the terms of the s quadrivalent vertices:

1

4
m′

� = (q1/2 − q−1/2)m−2−s

(q − q−1)s
mq

�.
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Therefore, one has

R�(P̂t ) = (q1/2 − q−1/2)m−2−s

(q − q−1)s
N ∂,trop

�(s) .

The other equality follows from the identity q−q−1 = (q1/2−q−1/2)(q1/2+q−1/2).
��
Theorem 1.5 For a choice of P̂0 which is a regular value of the evaluation map that
sends a curve to the coordinates of its boundary points, one has

R�,(s1,0,...,0) = 2s1R�(P̂0).

Moreover, a generic choice of P̂0 close to the tropical limit is such a choice.

Proof For the first statement, using the proof of invariance in section 6.2 of Mikhalkin
(2017), any regular value of the following evaluation map may be used to compute
R�,(s1,0,...,0):

ev : M0(�, NC∗) → (R∗)m−2s−1 × (C∗)s,

that sends a real oriented parametrized curve of degree � to the coordinates of its
intersection point with the toric boundary. The factor 2s1 just accounts that for a pair
of conjugated purely imaginary points, the opposite pair is the same. Thus, one has to
multiply the number of curves by 2s1 to get the invariant R�,(s1,0,...,0) from R�(P̂0).

For the second statement, we need to show that there exists some purely imaginary
regular values. This follows from the tropical computation and the correspondence
theorem since the latter relies on the fact that the evaluation map is transverse. ��
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