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Abstract
If every point of a unital is fixed by a non-trivial translation and at least one translation
has order two then the unital is classical (i.e., hermitian).

Keywords Unital · Involution · Translation · Hermitian unital

Mathematics Subject Classification 51A10 · 51E10

1 Introduction

A unital U = (U ,B) of order q is a 2-(q3 + 1, q + 1, 1)-design; i.e., an incidence
structure with |U | = q3 +1 such that every block B ∈ B has exactly q +1 points, and
any two points in U are joined by a unique block in B. It follows that every point is
incident with exactly q2 blocks.Without loss of generality, we will assume throughout
that the blocks are subsets of U . The classical examples of unitals are the hermitian
ones: For any prime power q, the points of the hermitian unital H(Fq2 |Fq) are the
absolute points with respect to a suitable polarity of the projective plane PG(2, Fq2)

over the field of order q2, see (Hughes and Piper 1973, II.8, pp. 57–63) or (Barwick
and Ebert 2008, Ch.2). The blocks are induced by secant lines in PG(2, Fq2).

A translation (with center c) of a unital U is an automorphism of U that fixes the
point c and every block through c. We write �[c] for the group of all translations with
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center c. Much is known for the case where there are at least two points u, v such
that �[u] and �[v] both have order q, see (Grundhöfer et al. 2021b). If there even exist
three non-collinear points with that property then the unital is the classical hermitian
one, see (Grundhöfer et al. 2013). We show (Theorem 4.3) that the same conclusion
holds if �[c] has even order for every point c. In fact, it suffices that every point is the
center of some non-trivial translation, and that at least one of these translations is an
involution.

Polar unitals in Figueroa planes of even order provide examples where the centers
of involutory translations form a proper subset not contained in a block (namely,
a subunital that is in fact hermitian), see Theorem 5.3. Examples where the set of
centers is contained in a block exist in abundance, see Sect. 6.

2 Transitivity

The following elementary observation can be traced back to Gleason; cp. (Dembowski
1968, pp. 190 f), see (Grundhöfer et al. 2013, 4.1) for a (very short) proof.

Lemma 2.1 Let p be a prime, and let H be a group acting on a finite set X. Assume
that for every x ∈ X there exists in H an element of order p which fixes x but no other
element of X. Then H is transitive on X. ��

Now let U = (U ,B) be a unital. A translation of order n is called an n-translation,
and �

[n]
[c] denotes the set of all n-translations of U with center c. For each n, let �n be

the (possibly empty) set of all centers of n-translations, and �[n]:=〈⋃
c∈�n

�
[n]
[c]

〉
.

Recall from (Grundhöfer et al. 2013, Theorem1.3) that a non-trivial translation of
a unital fixes no point apart from its center. If �n is not empty, the size of any Aut(U)-
orbit in �n is therefore congruent 1 modulo n (because a cyclic group of size n acts
semi-regularly on the complement of a point in�n), and everyAut(U)-orbit outside�n

has size divisible by n (because the same cyclic group acts semi-regularly on that set).

Lemma 2.2 Let p be a prime. If H ≤ Aut(U) contains a p-translation then H is
transitive on the set of all centers of p-translations in H. In particular, we have:

1. The group �[p] generated by all p-translations is transitive on �p.
2. For each block B of U the group generated by all p-translations with center on B

is transitive on the set �p ∩ B of centers of p-translations in B. Consequently, the
stabilizer of B in �[p] ≤ Aut(U) is transitive on �p ∩ B.

3. If n > 1 is an integer such that �n is not empty, then the group �[n] is transitive
on �n and �k = �n holds for each divisor k > 1 of n.

Proof The group H acts on the set of all centers of p-translations in H , and Lemma 2.1
applies. For assertions 1 and 2 we specialize H = �[p] and H = 〈⋃

x∈B �
[p]
[x]

〉
,

respectively. Assertion 3 follows from the fact that �n is contained in the Aut(U)-
orbit �k . ��
Definition 2.3 Assume that U admits a translation of order k > 1. Let pk be
the smallest prime divisor of k. Then �k = �pk holds by Lemma 2.2.3. Put
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K :={pk | k ∈ N, |�[k]| > 1}. Clearly, we obtain a disjoint unionU = �∪⋃
p∈K �p,

where �:={x ∈ U | �[x] = {id}}.
We write Bk for the set of all blocks of U that contain at least two points of �k , and

consider the incidence structure Uk :=(�k,Bk,∈). If �k is not contained in a block
then Uk is a non-trivial linear space.

From Lemma 2.2.1 and Lemma 2.2.2 we know that �[k] induces a transitive group
of automorphisms of Uk , and that for each block B ∈ Bk the stabilizer of B in �[k]
acts transitively on �k ∩ B.

Recall that a substructure of an incidence structure (with points and blocks) is called
ideally embedded if the pencils of blocks in the substructure are the same as the pencils
in the larger structure.

Lemma 2.4 Assume that U is a unital such that every point is the center of some non-
trivial translation. For each p ∈ K, the linear space Up is then ideally embedded
in U. In particular, the set �p is not contained in a block. The action ofAut(U) on �p

is faithful.
If there exists p ∈ K such that |�p ∩ B| is constant for B ∈ Bp then �p = U, and

�[p] is transitive on U. In particular, this happens if Aut(U) is two-transitive on �p.

Proof Consider p ∈ K , and a block B ∈ B through a point x ∈ �p. It suffices to
consider the case where there exists a point y ∈ B\�p. By our assumption, there
exists a non-trivial translation τ with center y. Now xτ is a point different from x , and
lies in �p ∩ B. So Up is ideally embedded in U. Clearly, this implies that �p is not
contained in any block.

Assume that α ∈ Aut(U) fixes every point in �p. Then α fixes each block that
meets�p because Up is ideally embedded. Each point x outside�p lies on more than
one block meeting �p, so α fixes every point of U, and is trivial.

Now assume that b:=|�p ∩ B| is constant for B ∈ Bp; then |�p| = 1 + q2b. If
there exists z ∈ U\�p then, by our assumption, there is a translation of prime order r
and center z. Now r divides both q and |�p| = 1+q2b, and we obtain a contradiction.

��
The Figueroa unitals (see Theorem 5.2 below) of even order are examples that show

that the condition� = ∅ is necessary inLemma2.4: in those unitals the substructureU2
is not ideally embedded, and there exists an automorphism of order 3 that acts trivially
on �2. See also Proposition 4.2.

3 Results from group theory

Lemma 3.1 LetG bea transitive permutationgroupon somefinite set�withmore than
one element. Suppose that the stabilizer Gx of some x ∈ � contains an involution τ

that is semi-regular on �\{x}, and that G has a transitive normal subgroup M of odd
order. Then the following are equivalent:

1. M is abelian.
2. M acts regularly (i.e., sharply transitively) on �.
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3. The involution τ acts semi-regularly on M by conjugation (i.e., the centralizer
of τ in M is trivial).

If one (and then any) of these conditions is satisfied then 〈τ 〉M is a generalized dihedral
group; i.e., conjugation by τ inverts each element of M, and 〈τ 〉M = τM ∪ M.

Proof If M is abelian then the stabilizer Mx also fixes each element of the orbit �

of x under M . Hence Mx is trivial, and the action of M is regular. If M acts regularly,
we identify m ∈ M with the image xm . Semi-regularity of τ on � then translates into
semi-regularity of the automorphism induced by conjugation with τ on M . The map
m �→ m−1mτ is then injective, and bijective since M is finite. Write m ∈ M as m =
k−1kτ with k ∈ M , and then calculatem−1 = (kτ )−1k = (k−1)τ k = (k−1kτ )τ = mτ .
Thus the automorphism induced by τ is the anti-automorphism m �→ m−1, and M is
abelian.

If τ induces inversion on M then m−1τm = τ(τm−1τ)m = τm2 holds for each
m ∈ M . As M has odd order, this means that the coset τM equals the conjugacy
class τM , and consists of involutions. ��

The following result has been proved in (Hering 1972, Theorem2); cp. (Aschbacher
1973, Theorem2).

Theorem 3.2 Assume that the group G acts transitively (but not necessarily faithfully)
on some finite set � with more than one element. Suppose that the stabilizer Gx of
some x ∈ � has a normal subgroup Q of even order that is semi-regular on �\{x}.
Then the normal closure S:=〈QG〉 either has a transitive normal subgroup of odd
order, or acts two-transitively on � as one of the groups SL2(F2e ), Sz(22e−1), or
PSU3(F22e |F2e ) for suitable e ≥ 2; the action is the usual two-transitive one.

The group S itself is then S = QN where N denotes the largest normal sub-
group of odd order in S, or S is isomorphic to SL2(F2e ), Sz(22e−1), SU3(F22e |F2e ) or
PSU3(F22e |F2e ), according to the group induced on �. ��

By Sz(22e−1) we denote the Suzuki group — also known as the twisted Cheval-
ley group 2B2(22e−1) — of order 24e−2(24e−2 + 1)(22e−1 − 1); cp. (Lüneburg 1980,
Section21).

We add some information contained in (Hering 1972) —in particular, see (Hering
1972, Lemma3)— but not in the statement of the theorem referred to above.

Proposition 3.3 The kernel of the action of G as considered in Theorem 3.2 is K =
CG(S).

If S has a transitive normal subgroup N of odd order then Q acts fixed-point-freely
on N/K, so the group N/K induced by N on � is a sharply transitive abelian group
in that case. The group Q is then (isomorphic to) a Frobenius complement.

If S induces a non-solvable group on� then either K ∩ S is trivial, or |K ∩ S| = 3;
the latter case can only occur if S ∼= SU3(F22e |F2e ) with odd e > 1. ��

The Sylow subgroups of a Frobenius complement are either cyclic or generalized
quaternion groups; see (Gorenstein 1980, 10.3.1). So Proposition 3.3 yields:

Corollary 3.4 If S = 〈QG〉 has a transitive normal subgroup N of odd order then the
group Q contains exactly one involution. That involution induces inversion on N.
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4 Unitals with involutory translations

By Lemma 2.2, Hering’s result (see Theorem 3.2) applies to the permutation group
induced by �[2] on �2 if this set has more than one element.

The following proposition is a small part of the results in (Kantor 1985). For the
reader’s convenience, we include a proof of the facts that we need here.

Proposition 4.1 Let (X ,L) be a linear space with v points such that each line has k
points. Assume that k > 2. Consider a group G isomorphic to one of the groups
PSL2(Fq), Sz(q) or PSU3(Fq2 |Fq), for some prime power q. If G acts on X in its
usual two-transitive action and by automorphisms of (X ,L), then either v = k (and
there is just one line in L), or G ∼= PSU3(Fq2 |Fq) and (X ,L) ∼= H(Fq2 |Fq) is
isomorphic to the hermitian unital of order q.

Proof We assume that there is more than one line, and discuss the three different cases
separately.

(PSL) The usual two-transitive action of G ∼= PSL2(Fq) is the natural action on
the projective line Fq ∪ {∞} via fractional linear transformations. Then v = q + 1,
and the stabilizer of two points x, y ∈ X has two orbits of length 1 and at most two
other orbits, each of length q−1

gcd(2,q−1) . The line joining x and y contains at least one of

those orbits, and k − 1 ≥ q−1
gcd(2,q−1) + 1 > v−1

2 . So there is no space left for a second
line through x , and v = k follows.

The Suzuki groups and the unitary groups need a closer look; we will use the
following facts about linear spaces with v points and k > 2 points per line:

The number of lines per point in (X ,L) is r = v−1
k−1 . We assume that the linear

space has more than one line, so r > 1. Fisher’s inequality [see (Dembowski 1968,
1.3.8, p. 20)] then says r ≥ k, and equality holds precisely if the linear space is a
projective plane. In the latter case, we have v = k2 − k + 1. If r > k then v − 1 ≥
(k + 1)(k − 1) = k2 − 1.

(Sz) The usual two-transitive action of G ∼= Sz(q) is its action on the Suzuki-Tits
ovoid; see (Lüneburg 1980, Sect. 21). Then v = q2 + 1 and q is a power of 2. Hence
we cannot have v − 1 = k2 − k, and v − 1 ≥ k2 − 1 follows.

For any twopoints x, y ∈ X , the stabilizerGx,y acts on X with twoorbits of length 1,
every other orbit has length q−1; see (Lüneburg 1980, Lemma21.5). The block joining
x and y is thus the union of {x, y} with a collection of such orbits of length q − 1, and
k ≥ (q − 1) + 2 = q + 1. Now the inequality q2 = v − 1 ≥ k2 − 1 ≥ (q + 1)2 − 1
yields a contradiction.

(PSU) The usual two-transitive action of G ∼= PSU3(Fq2 |Fq) is its action on the
points of the hermitian unital of order q; see (Higman andMcLaughlin 1965), (O’Nan
1972), (Hughes and Piper 1973, Theorem5.2). Then v = q3 + 1, the fact that q is a
prime power yields v − 1 �= k2 − k, and we have q3 = v − 1 ≥ k2 − 1.

If q = 2 then v = 9 and k > 2 together with k2 − 1 ≤ v − 1 yields k = 3. Then
(X ,L) is determined uniquely, we have (X ,L) ∼= H(F4|F2) ∼= AG(2, F3), the affine
plane of order 3. We assume q > 2 from now on.
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The stabilizer Gx,y of two points x, y ∈ X has two orbits of length 1, one orbit of

length q −1, and every other orbit has length q2−1
gcd(3,q+1) ; see (O’Nan 1972, p. 499). So

there are integers s ∈ {0, 1} and t ≥ 0 such that k − 1 = s(q − 1) + t q2−1
gcd(3,q+1) + 1.

Aiming at a contradiction, we assume t > 0. Then k ≥ q2−1
gcd(3,q+1) +2 ≥ q2+5

3 . From

q3 = v − 1 ≥ k2 − 1 ≥ ( q2+5
3

)2 − 1 we thus obtain 0 ≥ q4 − 9q3 + 10q2 + 16 >

q2
(
q(q − 9) + 10

)
. So q < 8, and q ∈ {3, 4, 5, 7}. For q ∈ {3, 4, 7} we have

gcd(3, q+1) = 1, and our assumption t > 0 yields q3 ≥ (
(q2 − 1) + 1

)2 = q4. This

is impossible. For q = 5 and t > 1, we obtain the contradiction 53 ≥ (
2 (52−1)

3 +1
)2 =

172. So t = 1, and k − 1 = 4s + 8 + 1 divides v − 1 = 53. Both cases for s ∈ {0, 1}
lead to a contradiction.

Therefore, we have t = 0 and s = 1; and the block through x and y is the union
of {x, y} with the unique orbit of length q − 1 under Gx,y . This means that (X ,L) is
isomorphic to the hermitian unital H(Fq2 |Fq). ��
Proposition 4.2 Let U be a unital of order q, and assume that �2 is not contained in
a block. If the group induced by �[2] on �2 does not have a normal subgroup that
acts regularly on �2 then that induced group is isomorphic to PSU3(F22e |F2e ), and
U2 = (�2,B2) is isomorphic to the hermitian unital of order 2e, with e > 1.

Proof From Theorem 3.2 we know that the group induced by �[2] on�2 is isomorphic
to one of the groups SL2(F2e ), Sz(22e−1), or PSU3(F22e |F2e ) (for suitable e ≥ 2),
with the usual two-transitive action. From Proposition 4.1 we then know that �[2] ∼=
PSU3(F22e |F2e ), and U2 is the hermitian unital of order 2e. ��

The situation in Proposition 4.2 actually occurs, for example, in polar unitals
of Figueroa planes of even order, see Theorem 5.2 and Theorem 5.3 below. Our
Proposition 4.2 is a version for unitals (with translations) of a result (Hering 1976,
Theorem5.2) on projective planes (and elations).

Theorem 4.3 Let U = (U ,B) be a unital of order q, assume that every point of U is
the center of some non-trivial translation, and that there exists a translation of order 2.
Then q is a power of 2, and the unital U is the hermitian unital of order q.

Proof If q = 2 then the unital is the hermitian unital of order 2, see (Taylor 1992,
10.16). We assume q > 2 in the rest of the proof.

Case A: Assume first that�2 = U , i.e., every point ofU is the center of some invo-
lutory translation. If the group �[2] generated by the involutory translations does not
have a regular normal subgroup then Proposition 4.2 says that�[2] ∼= PSU3(F22e |F2e),
and U is the hermitian unital of order 2e.

(Alternatively, this can be derived more directly from Theorem 3.2: the groups
SL2(F2e ) are excluded since they are triply transitive; the orbits of the two-point-
stabilizers in Sz(22e−1) are too large to yield blocks of the unital. For the groups
PSU3(F22e |F2e ) the block through two points consists of those two together with the
unique shortest orbit of their stabilizer. Hence U coincides with the hermitian unital
H(F22e |F2e ) of order 2e.)
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If the group �[2] has a regular normal subgroup N , then N is abelian (see Propo-
sition 3.3). Consider two blocks B,C through some point. Then the stabilizers NB

and NC are subgroups of order q+1 in N , and NBNC is a subgroup of order (q+1)2.
So (q +1)2 divides |N | = q3 +1, and q +1 divides (q3 +1)/(q +1) = q2 −q +1 =
(q + 1)(q − 1) − (q − 2). This implies q − 2 = 0, contradicting our assumption
q > 2 (in fact, �[2] on the unital of order 2 does contain a regular normal subgroup,
see Remark 4.4).

Case B: Now we assume �2 �= U , and aim at a contradiction. As every point is
the center of a non-trivial translation, there is a prime p such that �p is not empty,
and disjoint to �2. We know from Lemma 2.4 that �2 is not contained in a block, and
that the group �[2] generated by all involutory translations acts faithfully on �2.

The action of �[2] on �2 is as in Theorem 3.2 and Proposition 3.3. If �[2] is
two-transitive on �2 then Lemma 2.4 yields �2 = U , contradicting our present
assumptions. If �[2] is not two-transitive on �2 then �[2] has an abelian normal sub-
group A acting sharply transitively on �2, see Theorem 3.2. From Corollary 3.4 we
know that each one of the involutory translations acts by inversion on A, and that �[x]
contains exactly one involution if x ∈ �2. We denote that involution by jx . The order
of A equals that of �2, so it is odd, and divisible by p.

Consider a ∈ A and an arbitrary point x ∈ �2. Then both jx and a−1 jxa = jxa fix
the block joining x and xa . So a2 = jxa−1 jxa fixes that block, and so does a because
squaring is an automorphism of the abelian group 〈a〉 of odd order.

As |A| = |�2| is divisible by p, we find an element a ∈ A of order p. That a fixes a
point c ∈ �p because |�p| ≡ 1 (mod p). For any x ∈ �2, we have a2 = jxa−1 jxa,
and c = ca yields that xa lies on the block joining x and c because the translations jx
and a−1 jxa fix each block through their respective center. So a fixes every block
joining a point of �2 with c. As a fixes no point in �2, the point c is the only point
fixed by a.

Let j be any involutory translation. As c is fixed by a2 = ja−1 ja, we obtain
c j = ca

−1 ja = c ja , and the point c j is fixed by a. Since c is the only fixed point of a,
we reach the contradiction that the involutory translation j fixes c /∈ �2. ��

Remark 4.4 Let p be a prime, and let e be a positive integer. Then each non-trivial
translation of the hermitian unitalH(Fp2e |Fpe ) of order pe has order p. If pe > 2 then
the group �[p] generated by all translations is simple, coincides with PSU3(Fp2e |Fpe ),
and acts two-transitively on the point set of H(Fp2e |Fpe ); see (Taylor 1992, 10.15,
10.12).

On the hermitian unital of order 2, the group �[2] behaves in an exceptional way:
then the group �[2] is solvable, and not two-transitive, but it is still the commutator
subgroup of PSU3(F4|F2); see (Taylor 1992, 10.15 and the discussion on pp.123f).

The smallest unital (of order 2) is isomorphic to the affine plane of order 3. What
we call a translation of the unital is an affine homology in that plane; this explains the
structure of �[2] ∼= C2 �C2

3, a generalized dihedral group. That group is transitive on
the point set, but not transitive on the block set (it preserves each parallel class in the
affine plane).
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5 Figueroa unitals

Example 5.1 Let r be aprimepower. Figueroa (1982) has constructed a projective plane
Fig(r3) of order r3 with a pappian subplane D of order r ; see (Hering and Schaeffer
1982) for the case of general r , and (Grundhöfer 1986) for a synthetic construction.
The plane Fig(r3) is not desarguesian unless r = 2. The full group of automorphisms
of the subplane D extends to a group G ∼= P�L3(Fr ) of automorphisms of Fig(r3).
If r > 2 then the full automorphism group Aut(Fig(r3)) is the direct product of a
group of order 3 with said group G; see (Hering and Schaeffer 1982), cp. (Dempwolff
1985b). The cyclic factor is generated by a planar automorphism α (of order 3) that is
used in the construction of Fig(r3). Dempwolff (Dempwolff 1985a, TheoremB) has
noted that every elation of the subplane D (as an element of the group G) is induced
by an elation of Fig(r3).

If r is a square, say r = q2, then there is a polarity π of the Figueroa plane of
orderq6, and the absolute points ofπ carry a unitalUFig(q6) of orderq

3, see (deResmini
and Hamilton 1998). The unital UFig(q6) is not hermitian; see (Hui and Wong 2012).
In fact, there are O’Nan configurations, see (Tai and Wong 2014). The intersection H

of UFig(q6) with the subplane D is isomorphic to the hermitian unital of order q.
The centralizer of the polarity π in Aut(Fig(q6)) is the direct product of 〈α〉 with

the centralizer of π inG ∼= P�L3(Fq2). In particular, every translation ofH is induced
by an elation of the subplane D, and thus by an elation ψ of Fig(q6) in the centralizer
of π . The restriction of ψ to UFig(q6) is then a translation of UFig(q6).

We obtain:

Theorem 5.2 In the unital UFig(q6) of order q
3, there is a hermitian subunital H of

order q such that every point of H is the center of a group of order q consisting of
translations. In particular, the point set of H is contained in �p.

Let G be the group generated by all elations of theFigueroa planeFig(q6) that leave
UFig(q6) invariant. Then G is isomorphic to the commutator group of PSU3(Fq2 |Fq),
and acts two-transitively on the point set of H. ��
Theorem 5.3 Let q be a power of 2. Then every involutory translation of UFig(q6)

has its center in H, and is induced by an elation of the Figueroa plane Fig(q6) that
leaves UFig(q6) invariant. In particular, we have H = U2 = (�2,B2), the subunital H

is invariant under Aut(UFig(q6)), and every non-trivial translation is an involution.

Proof We write q = 2a with a ∈ N; then UFig(q6) has order 2
3a and H is a unital of

order 2a . The order of any translation of UFig(q6) divides q, and is thus a power of 2.
If the translation is not trivial then Lemma 2.2 yields that its center lies in �2.

From Theorem 5.2 we know that the point set of H is contained in �2. Assume
that �2 is not contained in the subunital H. Then Proposition 4.2 yields that �[2]
induces a group isomorphic to PSU3(F22e |F2e ) on �2, and U2 is isomorphic to the
hermitian unital of order 2e. Thus 2a < 2e ≤ 23a , andU2 ∼= H(F26a |F23a ) contains the
subunital H ∼= H(F22a |F2a ). According to (Grundhöfer et al. 2021a), the embedding
of the unitals is given by an embedding of quadratic field extensions. This leaves
only the possibility e = 3a, but then UFig(q6) = U2 is hermitian, a contradiction. So
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U2 = H, every translation of UFig(q6) has its center in H, and H is invariant under all
translations of UFig(q6).

If τ is any non-trivial translation of UFig(q6) then the order of τ divides q3 = 23a .
So the center c of τ lies in �2, and is thus a point of H. The elations of Fig(q6) with
center c that leave UFig(q6) invariant form a group � that acts faithfully on UFig(q6)
and induces the full group of translations of H with center c.

Let B be a block through c, and consider any point x ∈ (�2 ∩ B)\{c}. Since the
group of all translations of the hermitian unital H is transitive on (�2 ∩ B)\{c}, there
exists an involutory elation ϑ ∈ � with xτ = xϑ . Then τϑ is a translation of UFig(q6)
with center c fixing x �= c, so τϑ is trivial on UFig(q6), and τ = ϑ . ��

6 Examples of unitals with few translations

There are unitals with no translations at all, e.g., the Ree unitals, or the presently known
unitals of order 6. See (Grundhöfer et al. 2013, 1.8) and (Grundhöfer et al. 2011) for
the Ree unitals; the unitals of order 6 are treated in (Krčadinac and Vlahović 2016,
5.1, p. 2888); the information about the automorphisms given there suffices to see that
there are no translations. Most of the unitals of order 3 and many unitals of order 4
found by computer do not admit automorphisms of order 3 or 2, respectively, let alone
translations; see (Al-Azemi et al. 2014; Krčadinac et al. 2011, Table III, p. 301).

There are unitals of prime power order pe where�p consists of a single point (and,
obviously, �r is empty for every prime r �= p). For instance, consider a Coulter-
Matthews plane of order 3e with even e, defined by a suitable planar monomial;
see (Coulter and Matthews 1997). Such a plane admits a unitary polarity; the absolute
points carry a unital of order 3e/2, see (Knarr and Stroppel 2010, 5.2). That unital has
a point ∞ with a translation group �[∞] of order 3e, see (Knarr and Stroppel 2010,
6.2). These groups are elementary abelian 3-groups.

If the unital is not classical (this surely happens if a certain Baer subplane is not
desarguesian, see (Knarr and Stroppel 2010, 6.8)) then the point ∞ is fixed by every
automorphism of the unital, and ∞ is the only center of any translation. For abstract
automorphisms (i.e., automorphisms of the unital that are not necessarily induced by
collineations of the ambient plane), this follows from a deep result (Grundhöfer et al.
2013); it does not suffice to note that the point ∞ is fixed by every automorphism of
the plane.

In planes over finite Dickson semifields, and in planes over twisted fields, one also
finds non-classical unitals (polar and otherwise)with exactly one center of translations,
see (Hui et al. 2013) and (Grundhöfer et al. 2016, 5.2), respectively.

For each order q = pd with p prime,Möhler gives a construction of unitals (Möhler
2021c, 4.1) depending on the choice of a suitable familyD of subsets of SL2(Fq) such
that either �p is a block and �[p] ∼= SL2(Fq), or the unital is hermitian; see (Möhler
2021a, 3.11). Suitable families D leading to non-hermitian unitals are known for q ∈
{4, 8}, see (Grundhöfer et al. 2016, 2.1, 3.5) and (Möhler 2021c, Sect. 3). In (Möhler
2021b, Corollary3.8) it is proved: For q even, the set�2 in Grüning’s unital ((Grüning
1987), see (Grundhöfer et al. 2016, 5.5) for the description needed here) has size q+1,
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and that unital admits exactly q+1 non-trivial translations, each of order 2. In (Möhler
2021b, 4.6, 4.7, 4.8) one finds unitals of order 4 with no translations, unitals of order 4
with |�2| = 1 and�[2] ∼= C2, and unitals of order 4with |�2| = 1 and�[2] ∼= C2×C2.
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