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Abstract
We investigate the intersection body of a convex polytope using tools from combina-
torics and real algebraic geometry. In particular, we show that the intersection body
of a polytope is always a semialgebraic set and provide an algorithm for its compu-
tation. Moreover, we compute the irreducible components of the algebraic boundary
and provide an upper bound for the degree of these components.

Keywords Intersection bodies · Algebraic boundary · Semialgebraic sets ·
Polytopes · Convexity

1 Introduction

This paper studies intersection bodies from the perspective of real algebraic geometry.
Originally, intersection bodies were defined by Lutwak (1988) in the context of convex
geometry. In view of the notion of (d − 1)-dimensional cross-section measures and
the related concepts of associated bodies (such as intersection bodies, cross-section
bodies, and projection bodies), intersection bodies play an essential role in geometric
tomography (seeGardner 2006,Chapter 8 andMartini 1994, Section 2.3). In particular,
we mention here the Busemann–Petty problem which asks if one can compare the
volumes of two convex bodies by comparing the volumes of their sections (Gardner
1994a, b; Gardner et al. 1999; Koldobsky 1998; Zhang 1999b). Moreover, Ludwig
showed that the unique non-trivial GL(d)-covariant star-body-valued valuation on
convex polytopes corresponds to taking the intersection body of the dual polytope
(Ludwig 2006). Due to such results, the knowledge on properties of intersection bodies
interestingly contributes also to the (still not systematized) theory of starshaped sets,
see Section 17 of the exposition (Hansen et al. 2020).
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Fig. 1 The intersection body of
the icosahedron

Recently, there is increased interest in investigating convex geometry from an alge-
braic point of view (Blekherman et al. 2013; Sinn 2015; Rostalski and Sturmfels
2010; Ranestad and Sturmfels 2011). In this article, we will focus on the intersection
bodies of polytopes from this perspective. It is known that in R

2, the intersection
body of a centrally symmetric polytope centered at the origin is the same polytope
rotated by π/2 and dilated by a factor of 2 (see e.g. Gardner 2006, Theorem 8.1.4).
Moreover, if K is a full-dimensional convex body in R

d centered at the origin, then
so is its intersection body (Gardner 2006, Chapter 8.1). But what do these objects
look like in general? In R

d , with d ≥ 3, they cannot be polytopes (Campi 1999;
Zhang 1999a) and they may not even be convex. In fact, for every convex body K ,
there exists a translate of K such that its intersection body is not convex. This happens
because of the important role played by the origin in the construction of the intersection
body.

Our main contribution is Theorem 3.2, which states that the intersection body of a
polytope is a semialgebraic set, i.e. a subset of Rd defined by a boolean combination
of polynomial inequalities. The proof relies on two key facts. First, the volume of a
polytope can be computed using determinants. Second, the combinatorial type of the
intersection of a polytope with a hyperplane is fixed for each region of a certain central
hyperplane arrangement. InSect. 2,weprove semialgebraicity for the intersectionbody
of polytopes containing the origin, and we generalize the result to arbitrary polytopes
in Sect. 3. In Sect. 4, we present an algorithm to compute the radial function of the
intersection body of a polytope. An implementation is available at [mat21]. In Sect. 5,
we describe the algebraic boundary of the intersection body, which is a hypersurface
consisting of several irreducible components, each corresponding to a region of the
aforementioned hyperplane arrangement. Theorem 5.6 gives a bound on the degree of
the irreducible components. Section 6 focuses on the intersection body of the d-cube
centered at the origin (Fig. 4a).

123



Beitr Algebra Geom (2022) 63:419–439 421

2 The intersection body of a polytope is semialgebraic

In convex geometry it is common to use functions in order to describe a convex body,
i.e. a non-empty convex compact subset of Rd . This can be done e.g. by the radial
function. A more detailed introduction can be found in Schneider (2014).

Definition 2.1 Given a convex body K ⊂ R
d , the radial function of K is

ρK : Rd → R, x �→ max {λ ∈ R | λx ∈ K } .

As a convention ρK (0) is ∞ when 0 ∈ K and it is 0 otherwise. An immediate
consequence of the definition is that ρK (cx) = 1

cρK (x) for c > 0. Therefore, we can
equivalently define the radial function on the unit sphere Sd−1, and then extend to the
whole space using the previously mentioned relation. Throughout this paper we will
use the following convention: x denotes a vector in Rd whereas u denotes a vector in
Sd−1.With the observation that we can restrict to the sphere, we define the intersection
body of K by its radial function, which is given by the volume of the intersections of
K with hyperplanes through the origin.

Definition 2.2 Let K be a convex body inRd . Its intersection body is defined to be the
set I K = {x ∈ R

d | ρI K (x) ≥ 1} where the radial function (restricted to the sphere)
is

ρI K (u) = Vold−1(K ∩ u⊥)

for u ∈ Sd−1. We denote by u⊥ the hyperplane through the origin with normal vector
u, and by Voli the i-dimensional Euclidean volume, for i ≤ d.

We begin our investigation by considering the intersection body of polytopes which
contain the origin. For instance, Fig. 1 displays the intersection body of an icosahedron
centered at the origin. If the origin belongs to the interior of the polytope P , then ρP

is continuous and hence ρI P is also continuous (Gardner 2006). Otherwise we may
have some points of discontinuity which correspond to unit vectors u such that u⊥
contains a facet of P; there are finitely many such directions. The intersection body is
well defined, but there may arise subtleties when dealing with the boundary. However,
we will see later (in Remark 5.2) that for our purposes everything works out. In the
following we use notions from polytope theory, such as zonotopes and combinatorial
types. For further background on polytopes we refer the reader to Ziegler (1995).

Example 2.3 Wewill use the cube as an ongoing example to illustrate the key concepts
used throughout the paper. Let P be the 3-dimensional cube [−1, 1]3 ⊆ R

3. If we
intersect P with hyperplanes u⊥, for u ∈ S2, we can observe that there are two possible
combinatorial types for P ∩ u⊥: it is either a parallelogram (Fig. 2a) or a hexagon
(Fig. 2b). There are finitely many regions of the sphere for which the combinatorial
type stays the same (see Lemma 2.4). Using this we can parameterize the area of the
parallelogram or hexagon with respect to the vector u to construct the radial function
of I P . Indeed, as will be shown in the proof of Theorem 2.6, this can be equivalently
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Fig. 2 The two combinatorial types of hyperplane sections of the 3-cube

written to provide a semialgebraic description of the intersection body. In particular,
if the intersection is a square, then the radial function in a neighborhood of that point
will be a constant term over a coordinate variable, e.g. 4

3z . On the other hand, when the
intersection is a hexagon, the radial function is a degree two polynomial over 3xyz.
The intersection body is convex as promised by the theory.

Lemma 2.4 Let P be a full-dimensional polytope in R
d . Then there exists a central

hyperplane arrangement H in R
d whose maximal open chambers C satisfy the fol-

lowing property. For all x ∈ C, the hyperplane x⊥ intersects a fixed set of edges of P
and the polytopes Q = P ∩ x⊥ are of the same combinatorial type.

Proof Let x be a generic vector of Rd and consider Q = P ∩ x⊥. The vertices of Q
are the points of intersection of x⊥ with the edges of P . Perturbing x continuously,
the intersecting edges (and thus the combinatorial type) remain the same, unless the
hyperplane x⊥ passes through a vertex v of P . This happens if and only if 〈x, v〉 =
0 and thus the set of normal vectors of such hyperplanes is given by v⊥ = {x ∈
R
d | 〈x, v〉 = 0}. Taking the union over all vertices yields the central hyperplane

arrangement

H = {v⊥ | v is a vertex of P and v is not the origin}.

Then each open region C of the complement of H contains points x such that x⊥
intersects a fixed set of edges of P . ��

The proof of Lemma 2.4 implies that the number of regions we are interested
in is the number of chambers of the central hyperplane arrangement H . Let m =
(#{v is a vertex of P}/ ∼) where v ∼ w if v = ±w. Then we have an upper bound
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for such a number:

d∑

j=0

(
m

j

)

given by the number of chambers of a generic arrangement (Stanley 2007, Prop. 2.4).

Remark 2.5 Wenote that there are several ways to view the hyperplane arrangement H
in Lemma 2.4. For example, since the vertices of P are the normal vectors of the facets
of the dual polytope P◦, we can describe H as the collection of linear hyperplanes
which are parallel to facets of P◦. We also note that H is the normal fan of a zonotope
whose edge directions are orthogonal to the hyperplanes of H . The fan � induced by
the hyperplane arrangement H is the normal fan of the zonotope

Z(P) =
∑

v is a vertex of P

[−v, v].

We will call this zonotope the zonotope associated to P . As will be clarified later in
Remark 5.9, the dual body of Z(P) plays an important role in the visualization and
the combinatorics of the intersection body I P .

Theorem 2.6 Let P ⊆ R
d be a full-dimensional polytope containing the origin. Then

I P, the intersection body of P, is semialgebraic.

Proof Fix a region U = C ∩ Sd−1 for an open cone C from Lemma 2.4. Then for
every u ∈ U the hyperplane u⊥ intersects P in the same set of edges. Let v be a vertex
of Q = P ∩ u⊥. Then there is an edge [a, b] of P such that v = [a, b] ∩ u⊥. This
implies that v = λa + (1− λ)b for some λ ∈ (0, 1) and 〈v, u〉 = 0. From this we get
that

λ = 〈b, u〉
〈b − a, u〉

which implies that

v = 〈b, u〉
〈b − a, u〉 (a − b) + b = 〈b, u〉a − 〈a, u〉b

〈b − a, u〉 .

In this way we express v as a function of u (for fixed a and b). Let v1, . . . , vn be the
vertices of Q and let [ai , bi ] be the corresponding edges of P .

We now consider the following triangulation of Q: first, triangulate each facet of
Q that does not contain the origin, without adding new vertices (this can always be
done e.g. by a regular subdivision using a generic lifting function, cf. De Loera et al.
2010, Prop. 2.2.4). For each (d − 2)-dimensional simplex � in this triangulation,
consider the (d−1)-dimensional simplex conv(�, 0)with the origin. This constitutes
a triangulation T = {� j : j ∈ J } of Q, in which the origin is a vertex of every
simplex.
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Restricting to U , the radial function of the intersection body I P in direction u is
the volume of Q, and hence given by

ρI P (u) = Vol(Q) =
∑

j∈J

Vol(� j ).

We can thus compute ρI P (u) as

ρI P (u) =
∑

j∈J

1

d!
∣∣det

(
Mj (u)

)∣∣ ,

where

Mj (u) =

⎡

⎢⎢⎢⎢⎢⎣

vi1(u)

vi2(u)
...

vid−1(u)

u

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

〈bi1 ,u〉ai1−〈ai1 ,u〉bi1〈bi1−ai1 ,u〉
...

〈bid−1 ,u〉aid−1−〈aid−1 ,u〉bid−1
〈bid−1−aid−1 ,u〉

u

⎤

⎥⎥⎥⎥⎥⎦

and the row vectors {vi1 , vi2 , . . . , vid−1} (along with the origin) are vertices of the

simplex � j of the triangulation. Therefore, we obtain an expression ρI P (u) = p(u)
q(u)

for some polynomials p, q ∈ R[u1, . . . , ud ] without common factors, for u ∈ U .
With the same procedure applied to all regions Ui = Ci ∩ Sd−1, for Ci as in Lemma
2.4, we obtain an expression for ρ|Sd−1 that is continuous and piecewise a quotient of
two polynomials pi , qi . It follows from the definition of the radial function that

I P =
{
x ∈ R

d | ρI P (x) ≥ 1
}

=
{
x ∈ R

d | 1

‖x‖ρI P

(
x

‖x‖
)

≥ 1

}
.

Notice that for every j ∈ J we have the following equality:

det

(
Mj

(
x

‖x‖
))

= det

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

vi1

(
x

‖x‖
)

...

vid−1

(
x

‖x‖
)

x
‖x‖

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= det

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

vi1 (x)

...

vid−1 (x)

x
‖x‖

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= 1

‖x‖ det
(
Mj (x)

)

and therefore, if x
‖x‖ ∈ U ,

ρI P

(
x

‖x‖
)

=
∑

j∈J

1

d!
∣∣∣∣det

(
Mj

(
x

‖x‖
))∣∣∣∣ = 1

‖x‖
∑

j∈J

1

d!
∣∣det

(
Mj (x)

)∣∣ = p(x)

‖x‖q(x)
.
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Because the radial function is a semialgebraic map, by quantifier elimination the
intersection body is also semialgebraic. More explicitly, let I be the set of indices i
such that ρI P

∣∣
Ui

�= 0. Then we can write the intersection body as

I P =
⋃

i∈I

{
x ∈ Ci | 1

‖x‖2 · pi (x)

qi (x)
≥ 1

}

=
⋃

i∈I

{
x ∈ Ci | ‖x‖2qi (x) − pi (x) ≤ 0

}
.

This expression gives exactly a semialgebraic description of I P . ��
Example 2.7 Let P be the regular icosahedron inR3, whose 12 vertices are all the even

permutations of
(
0,± 1

2 ,±( 14

√
5 + 1

4 )
)
. The associated hyperplane arrangement has

32 = 12 + 20 chambers. The first type of chambers is spanned by five rays and the
radial function of I P is given by a quotient of a quartic and a quintic, defined over
Q(

√
5). In the remaining twenty chambers ρI P is a quintic over a sextic, again with

coefficients in Q(
√
5). This intersection body is the convex set shown in Fig. 1. We

will continue the analysis of I P in Example 5.10.

The theory of intersection bodies assures that the intersection body of a centrally
symmetric convex body is again a centrally symmetric convex body, as it happens in
Example 2.3 and in Example 2.7. On the other hand, given any polytope P (indeed
this holds more generally for any convex body) there exists a translation of P such
that I P is not convex. This is the content of the next example.

Example 2.8 Let P be the cube [−1, 1]3 + (1, 1, 1), so that the origin is a vertex of P .
The hyperplane arrangement associated to P divides the space in 32 chambers. In two
of them the radial function is 0. In six regions the radial function has the following
shape (up to permutation of the coordinates and sign):

ρ(x, y, z) = 2x

3yz
.

There are then eighteen regions in which the radial function looks like

ρ(x, y, z) = 2(x + 2z)

3yz
.

In the remaining six regions we have

ρ(x, y, z) = 2(x2 + 2xy + y2 + 2xz + z2)

3xyz
.

Figure 3 shows two different points of view of I P , which is in particular not convex.
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Fig. 3 The intersection body of the cube in Example 2.8 from two different points of view

3 Non-convex intersection bodies

The proof of Theorem 2.6 relies on the fact that the origin is in the polytope. However,
if the origin is not contained in P , we can still find a semialgebraic description of I P
by adjusting how we compute the volume of P ∩ u⊥. The remainder of this section
will be dedicated to proving this.

Lemma 3.1 Let P ⊂ R
d be a full-dimensional polytope, and let F be the set of its

facets. Let p be a point outside of P. For each face F ∈ F , let F̂ denote the set
conv(F ∪ {p}). Then the following equality holds:

Vol(P) =
∑

F∈F
sgn(F)Vol(F̂)

where sgn(F) is 1 if P and p belong to the same halfspace defined by F, and −1
otherwise.

Proof Let P̂ = conv(P ∪ {p}) and denote by F+
p the set of facets F of P for which

the halfspace defined by F containing P also contains p, possibly on its boundary.
Let F−

p = F \ F+
p .

First we will show that P̂ = ⋃
F∈F+

p
F̂ . The inclusion

⋃
F∈F+

p
F̂ ⊆ P̂ follows

immediately from convexity. To see the opposite direction, let q ∈ P̂ and consider r
to be the ray starting at p and going through q. Either r intersects P only along its
boundary, or there are some intersection points also in the interior of P . In the first
case r ∩ P ⊂ F and so q ∈ F̂ for some face F , that by convexity must be in F+

p . On
the other hand, if the ray r intersects the interior of the polytope P , denote by a the
farthest among the intersection points:

‖a − p‖ = max{‖α − p‖ | α ∈ P ∩ r}.

123



Beitr Algebra Geom (2022) 63:419–439 427

Let Fa be a facet containing a. Then, q is contained in the convex hull of Fa ∪ {p},
i.e. F̂a . From the definition of a it follows that the halfspace defined by Fa containing
p must also contain P , so Fa ∈ F+

p and our statement holds.

Next, we will show that
⋃

F∈F−
p
F̂ = P̂ \ P . The pyramid F̂ is contained in the

closed halfspace defined by F which contains p. By the definition ofF−
p , this halfspace

does not contain P thus F̂ ∩ P = F . Also, F̂ ⊆ P̂ so we have that F̂ ⊆ P̂ \ P and

hence
⋃

F∈F−
p
F̂ ⊆ P̂ \ P . Conversely, let q ∈ P̂ \ P . If q = p we are done, so

assume q �= p. Then, q = λp + (1 − λ)b for some b ∈ P , λ ∈ [0, 1). Let a be the
point at which the segment from p to b first intersects the boundary of P , i.e.

‖a − p‖ = min{‖α − p‖ | α ∈ P, α = tp + (1 − t)b for t ∈ [0, 1)}.

Then by construction there exists a facet Fa ∈ F−
p containing a, such that q ∈ F̂a .

Thus, we have that

Vol

⎛

⎜⎝
⋃

F∈F+
p

F̂

⎞

⎟⎠ = Vol(P̂) = Vol(P̂ \ P) + Vol(P) = Vol

⎛

⎜⎝
⋃

F∈F−
p

F̂

⎞

⎟⎠ + Vol(P).

If F1 �= F2 and F1, F2 ∈ F+
p or F1, F2 ∈ F−

p , then the volume of F̂1 ∩ F̂2 is zero,
therefore

∑

F∈F+
p

Vol(F̂) =
∑

F∈F−
p

Vol(F̂) + Vol(P)

and the claim follows. ��
Theorem 3.2 Let P ⊂ R

d be a full-dimensional polytope. Then I P, the intersection
body of P, is semialgebraic.

Proof What remains to be shown is that I P is semialgebraic in the casewhen the origin
is not contained in P , and hence it is not contained in any of its sections Q = P ∩ u⊥.
From Lemma 3.1, with p = 0 ∈ R

d we have that

Vol(Q) =
∑

F facet of Q

sgn(F)Vol(F̂)

where F̂ is the convex hull of F and the origin. Let TF = {� j : j ∈ JF } be a
triangulation of F . We can calculate as in the proof of Theorem 2.6

Vol(F̂) =
∑

j∈JF

1

d! | det Mj |
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where Mj is the matrix whose rows are the vertices of the simplex � j ∈ TF and u.
We then follow the remainder of the proof of Theorem 2.6 to see that the intersection
body is semialgebraic. ��

4 The algorithm

The proofs from Theorems 2.6 and 3.2 lead to an algorithm to compute the radial func-
tion of the intersection body of a polytope. In this section, we describe the algorithm.
By Remark 2.5, the regions C in which ρ(x)|C = p(x)

‖x‖2q(x)
for fixed polynomials p(x)

and q(x) are defined by the normal fan of the zonotope Z(P). First, we compute the
radial function for each of these cones individually, by applying Algorithm 1.

Algorithm 1: Computing the radial function for a fixed region C

Input: A full-dimensional polytope P in Rd .
Input: A maximal open cone C of the normal fan of Z(P).
Output: The radial function ρ(x) of the intersection body I P restricted to C .
1: Let F be the collection of facets of P such that for all u ∈ U = C ∩ Sd−1 and

F ∈ F holds: dim(F ∩ u⊥) = dim(P) − 2 and 0 /∈ F .
2: Let Q = P ∩ u⊥, u ∈ U . Triangulate F ∩ u⊥ for F ∈ F , i.e. all facets of Q not

contai-
ning the origin. Let T be the collection of all maximal cells of these
triangulations.

3: for each cell � ∈ T do
4: Let v1, . . . , vd−1 be the vertices of � in orientation-preserving order.
5: For i = 1, . . . , d − 1, let ei = conv(ai , bi ) be the edge of P such that

ei ∩ u⊥ = vi .
6: Let x = (x1, . . . , xn) be a vector with indeterminates x1, . . . , xn . Let M� be

the (d × d)-matrix with i th row 〈bi ,x〉ai−〈ai ,x〉bi〈bi−ai ,x〉 and last row x .
7: if conv(0,�) intersects the interior of P then
8: Define sgn(�) = 1
9: else
10: Define sgn(�) = −1
11: end if
12: end for
13: return 1

‖x‖2
∑

�∈T sgn(�) det(M�)

This algorithm has as output the rational function ρ(x)|C = p(x)
‖x‖2q(x)

. Iterating over
all regions yields the final Algorithm 2.
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Algorithm 2: Computing the radial function of I P

Input: A full-dimensional polytope P in Rd .
Output: The radial function ρ(x) of the intersection body I P .
1: Let � be the polyhedral fan from Remark 2.5.
2: for each maximal open region C of � do
3: Compute ρ|C via Algorithm 1.
4: end for
5: return

(
1

‖x‖2
∑

�∈T sgn(�) det(M�), C
)
for C ∈ �

An implementation of these algorithms for SageMath 9.2 (TheSageDevelopers
2021) and Oscar 0.7.1-DEV (The OSCAR Developers 2021) can be found in
https://mathrepo.mis.mpg.de/intersection-bodies. We note that in step 2 of Algorithm
1, the implementation uses a regular subdivision of the facets of the polytope Q by
lifting the vertices v1, . . . , vm along the moment curve (t1, . . . , tm) with t = 3.

5 Algebraic boundary and degree bound

In order to study intersection bodies from the point of view of real algebraic geometry
we need to introduce our main character for this section, the algebraic boundary. For
more on the algebraic boundary we refer the reader to Sinn (2015).

Definition 5.1 Let K be any compact subset in R
d , then its algebraic boundary ∂aK

is the R-Zariski closure of the Euclidean boundary ∂K .

Knowing the radial function of a convex body K implies knowing its boundary. In
fact, when 0 ∈ int K then x ∈ ∂K if and only if ρK (x) = 1 (see Remark 5.2 for the
other cases). Therefore, using the same notation as in the proof of Theorem 2.6, we can
observe that the algebraic boundary of the intersection body of a polytope is contained
in the union of the varieties V

(‖x‖2qi (x) − pi (x)
)
. Indeed, we actually know more:

as will be proven in Proposition 5.5, the pi ’s are divisible by the polynomial ‖x‖2,
and hence

∂a I P =
⋃

i∈I
V

(
qi (x) − pi (x)

‖x‖2
)

because of the assumption made in the proof of Theorem 2.6 that pi , qi do not have
common components. That is, these are exactly the irreducible components of the
boundary of I P .

Remark 5.2 As anticipated in Sect. 2 there may be difficulties when computing the
boundary of I P in the case where the origin is not in the interior of the polytope
P . In particular, x is a discontinuity point of the radial function of I P if and only if
x⊥ contains a facet of P . Therefore ρI P has discontinuity points if and only if the
origin lies in the union of the affine linear spans of the facets of P . In this case, there
are finitely many rays where the radial function is discontinuous and they belong to
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R
d \ (∪i∈I Ci ), i.e. to the hyperplane arrangement H . If d = 2, these rays disconnect

the space, and this implies that we loose part of the (algebraic) boundary of I P: to
the set {x ∈ R

d | ρI P (x) = 1} we need to add segments from the origin to the
boundary points in the direction of these rays. However, in higher dimensions the
discontinuity rays do not disconnect Rd so {x ∈ R

d | ρI P (x) = 1} approaches the
region where the radial function is zero continuously except for these finitely many
directions. Therefore there are no extra components of the boundary of I P .

Example 5.3 (Continuation of Example 2.3, cf. Fig. 4a) Starting from the radial func-
tion of the intersection body of the 3-cube P , computed using Algorithm 1, we can
recover the equations of its algebraic boundary. The Euclidean boundary of this convex
body is divided in 14 regions. Among them, 6 arise as the intersection of a convex cone
spanned by 4 rays with a hyperplane; they constitute facets, i.e. flat faces of dimension
d − 1, of I P . For example the facet exposed by the vector (1, 0, 0) is the intersection
of 3z = 4 with the convex cone

C1 = co{(1, 0, 1), (−1, 0, 1), (0, 1, 1), (0,−1, 1)}.

In other words, the variety V(3z − 4) is one of the irreducible components of ∂a I P .
The remaining 8 regions are spanned by 3 rays each, and the polynomial that defines
the boundary of I P is a cubic, such as

6xyz − 2x2 − 4xy − 2y2 − 4xz + 4yz − 2z2

in the region

C2 = co{(0, 1, 1), (−1, 1, 0), (−1, 0, 1)}.

These cubics are in fact, up to a change of coordinates, the algebraic boundary of a
famous spectrahedron: the elliptope (Laurent and Poljak 1995). Hence ∂a I P is the
union of 14 irreducible components, six of degree 1 and eight of degree 3.

Remark 5.4 In Plaumann et al. (2021) the authors introduce the notion of patches of a
semialgebraic convex body, with the purpose of mimicking the faces of a polytope. In
the case of intersection bodies of polytopes, it is tempting to think that each region of
Lemma 2.4 corresponds to a patch. Indeed, this happens, for example, for the centered
3-cube in Example 5.3. On the other hand, if P = [−1, 1]3 + (0, 0, 1) then there are
4 regions that define the same patch of the algebraic boundary of I P; therefore there
is, unfortunately, no one-to-one correspondence between regions and patches.

Proposition 5.5 Using the notation of Lemma 2.4 and Theorem 3.2, fix a chamber
C of H and let Q = P ∩ u⊥ for some u ∈ U = C ∩ Sd−1. Then the polynomial
‖x‖2 = x21 + . . . + x2d divides p(x) and

deg

(
q(x) − p(x)

‖x‖2
)

≤ f0(Q).
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Proof For the fixed region C , let T be a triangulation of Q with simplices indexed by
J . Then the volume of Q is given by

p(x)

q(x)
= 1

d!
∑

j∈J

∣∣det
(
Mj (x)

)∣∣

where Mj is the matrix as in the proof of Theorem 2.6. Notice that for each M = Mj ,
we can rewrite the determinant to factor out a denominator (we alsowrite for simplicity
� = � j ):

det(M(x)) =
∑

σ∈Sd
sgn(σ )

d∏

i=1

Miσ(i)

=
∑

σ∈Sd
sgn(σ )xσ(d)

d−1∏

i=1

〈bi , u〉aiσ(i) − 〈ai , u〉biσ(i)

〈bi − ai , u〉

=
d−1∏

i=1

1

〈bi − ai , u〉
∑

σ∈Sd
sgn(σ )xσ(d)

d−1∏

i=1

(〈bi , u〉aiσ(i) − 〈ai , u〉biσ(i)
)

=
⎛

⎜⎝
∏

vi∈�
vertex

1

〈bi − ai , x〉

⎞

⎟⎠ · det
(
M̂ (x)

)

where

M̂(x) =

⎡

⎢⎢⎢⎢⎣

...

〈bi , x〉ai − 〈ai , x〉bi
...

x

⎤

⎥⎥⎥⎥⎦

and the determinant of M̂(x) is a polynomial of degree d in the xi ’s. Note that if we
multiply M̂(x)·x weobtain the vector (0, . . . , 0, x21+. . .+x2d ). Hence if x

2
1+. . .+x2d =

0, then M̂(x) · x = 0, i.e. the kernel of M̂(x) is non-trivial and thus det M̂(x) = 0.
This implies the containment of the complex varieties V(‖x‖2) ⊆ V(det M̂(x)) and
therefore the polynomial x21 + . . . + x2d divides the polynomial det M̂(x). When we
sum over all the simplices in the triangulation T we obtain that

q(x) = d!

⎛

⎜⎜⎝
∏

vi∈�
vertex

1

〈bi − ai , x〉

⎞

⎟⎟⎠ ·

⎛

⎜⎜⎝
∏

vi /∈�
vertex

1

〈bi − ai , x〉

⎞

⎟⎟⎠
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=
∏

vi∈Q
vertex

1

〈bi − ai , x〉

and

p(x) =
∑

j∈J

⎛

⎜⎜⎝
∣∣∣det

(
M̂ (x)

)∣∣∣ ·
∏

vi /∈�
vertex

1

〈bi − ai , x〉

⎞

⎟⎟⎠ .

Hence deg q ≤ f0(Q) and deg p ≤ f0(Q) + 1, so the claim follows. ��
Notice that generically, meaning for the generic choice of the vertices of P , the

bound in Proposition 5.5 is attained, because p and q will not have common factors.

Theorem 5.6 Let P ⊂ R
d be a full-dimensional polytope with f1(P) edges. Then the

degrees of the irreducible components of the algebraic boundary of I P are bounded
from above by

f1(P) − (d − 1).

Proof We want to prove that f0(Q) ≤ f1(P) − (d − 1), for every Q = P ∩ u⊥,
u ∈ Sd−1 \ H . By definition, every vertex of Q is a point lying on an edge of P , so
trivially f0(Q) ≤ f1(P). We want to argue now that it is impossible to intersect more
than f1(P) − (d − 1) edges of P with our hyperplane H = u⊥. If the origin is one
of the vertices of P , then all the edges that have the origin as a vertex give rise only
to one vertex of Q: the origin itself. There are at least d such edges, because P is
full-dimensional, and so f0(Q) ≤ f1(P) − (d − 1).

Suppose now that the origin is not a vertex of P , then H does not contain vertices
of P . It divides Rd in two half spaces H+ and H−, and so it divides the vertices of
P in two families of k vertices in H+ and 
 vertices in H−. Either k or 
 are equal
to 1, or they are both greater than one. In the first case let us assume without loss of
generality that k = 1, i.e. there is only one vertex v+ inH+. Then pick one vector v−
inH−: because P is a full-dimensional polytope, there are at least d edges of P with
v− as a vertex. Only one of them may connect v− to v+ and therefore the other d − 1
edges must lie inH−. This gives f0(Q) ≤ f1(P) − (d − 1).

On the other hand, let us assume that k, 
 ≥ 2. Then there is at least one edge in
H+ and one edge in H−. If d = 3 these are the d − 1 edges that do not intersect
the hyperplane. For d > 3 we reason as follows. Suppose that H intersects a facet
F of P . Then it cannot intersect all the facets of F (i.e. a ridge of P), otherwise we
would get F ⊂ H which contradicts the fact that H does not intersect vertices of P .
So there exists a ridge F ′ of P that does not intersect the hyperplane; it has dimension
d − 2 ≥ 2 and therefore it has at least d − 1 edges. Therefore

f0(Q) ≤ f1(P) − (d − 1).

��
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Fig. 4 Left: the intersection body of the cube in Example 5.3. Right: the intersection body of the tetrahedron
in Example 5.8. Center: the dual body of the zonotope Z(P) associated to both the cube and the tetrahedron.
Such a polytope reveals the structure of the boundary divided into regions of these two intersection bodies

Corollary 5.7 In the hypotheses of Theorem 5.6, if P is centrally symmetric and cen-
tered at the origin, then we can improve the bound with

1

2
( f1(P) − (d − 1)) .

Proof We already know that for each chamber Ci from Lemma 2.4, the degree of
the corresponding irreducible component is bounded by the degree of the polynomial
qi . This follows from the construction of pi and qi in the proof of Theorem 2.6.
Specifically, the determinantwhich gives pi/qi comeswith the product of d−1 rational
functions,with linear numerator and denominators, and one linear term. Thus deg pi =
deg qi + 1 which implies that deg pi

||x ||2 < deg qi . By definition these polynomials are
obtained as the least common multiple of objects with shape

∏

vk∈� j

vertex

1

〈bk − ak, x〉 .

If P is centrally symmetric, so is Q, and therefore we have the vertex belonging to the
edge [ak, bk] and also the vertex belonging to the edge [−ak,−bk]. When computing
the least common multiple, these two vertices produce the same factor, up to a sign,
and therefore they count as the same linear factor of qi . Hence for every i

deg qi (x) ≤ f0(Q)

2
≤ 1

2
( f1(P) − (d − 1)) . ��

Example 5.8 Let P be the tetrahedron in R
3 with vertices (−1,−1,−1), (−1, 1, 1),

(1,−1, 1), (1, 1,−1). The associated hyperplane arrangement coincides with the one
associated to the cube in Example 5.3, so it has 14 chambers that come in two families.
The first one consists of cones spanned by four rays, such as C1 (see Example 5.3).
The polynomial that defines the boundary of I P in this region is a quartic, namely

q2(x, y, z) − p2(x, y, z)

‖(x, y, z)‖2 = 6(x + z)(x − z)(y + z)(y − z) + 4x2z + 4y2z − 4z3.
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On the other hand the cones of the second family are spanned by three rays: here the
section of P is a triangle and the equation of the boundary if I P is a cubic. An example
is the cone C2 with the polynomial

q1(x, y, z) − p1(x, y, z)

‖(x, y, z)‖2 = 6(x − y)(x − z)(y + z)

−2x2 + 4x(y + z) − 2y2 − 4yz − 2z2.

Note that this region furnishes an example in which the bounds given in Proposition
5.5 and Theorem 5.6 are attained.

Remark 5.9 Remark 2.5 together with Proposition 5.5 implies that the structure of
the irreducible components of the algebraic boundary of I P is strongly connected
with the face lattice of the dual of the zonotope Z(P). More precisely, in the generic
case, the lattice of intersection of the irreducible components is isomorphic to the face
lattice of the dual polytope Z(P)◦. Thus, a classification of “combinatorial types” of
such intersection bodies is analogous to the classification of zonotopes / hyperplane
arrangements / oriented matroids. It is however worth noting, that the same zonotope
can be associated to two polytopes P1 and P2 which are not combinatorially equivalent.
One example of this instance is a pair of polytopes such that P1 = conv(v1, . . . , vn) and
P2 = conv(±v1, . . . ,±v2), as can be seen in Fig. 4 for the cube and the tetrahedron.
To have a better overview over the structure of the boundary of I P , one strategy is to
use the Schlegel diagram of Z(P)◦. We label each maximal cell by the degree of the
polynomial that defines the corresponding irreducible component of ∂ I P , as can be
seen in Figs. 5 and 6.

Example 5.10 (Continuation of Example 2.7, cf. Fig. 1) Let P be the regular icosahe-
dron. In the 12 regions which are spanned by five rays, the polynomial that defines
the boundary of I P has degree 5 and it looks like

3((
√
5x + √

5y − x + y)2 − 4z2)((
√
5x + x + 2y)2 − (

√
5z − z)2)y

+8
√
5x3y + 68

√
5x2y2 + 72

√
5xy3 + 20

√
5y4

−40
√
5xyz2 − 20

√
5y2z2 + 4

√
5z4

+8x3y + 164x2y2 + 168xy3 + 44y4 − 8x2z2 − 72xyz2 − 44y2z2 + 12z4.

In the other 20 regions spanned by three rays, ∂ I P is the zero set of a sextic polynomial
with the following shape

3((
√
5x + x + 2y)2 − (

√
5z − z)2)((

√
5y − 2x − y)2

−(
√
5z − z)2)xy + 20

√
5x4y

−20
√
5x2y3 − 4

√
5xy4 + 4

√
5y5 − 4

√
5x3z2 − 60

√
5x2yz2

−12
√
5xy2z2 + 12

√
5xz4 + 44x4y

−8x3y2 − 44x2y3 + 12xy4 + 12y5 − 12x3z2

−156x2yz2 − 60xy2z2 − 8y3z2 + 28xz4.
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Fig. 5 The Schlegel diagram of
Z(P)◦, in the case where P is
the icosahedron from Example
5.10. The labels represent the
degrees of the polynomials of
∂a I P

Wevisualize the structure of these pieces using the Schlegel diagram inFig. 5,where
the numbers correspond to the degree of the polynomials, as explained in Remark 5.9.

Using this technique we are then able to visualize the boundary of intersection
bodies of 4-dimensional polytopes via the Schlegel diagram of Z(P)◦.

Example 5.11 Let P = conv{(1, 1, 0, 0), (0, 1, 0, 0), (0,−1, 0, 0), (0, 0,−1, 0),
(0, 0, 0,−1)}. The boundary of its intersection body I P is subdivided in 16 regions.
In four of them the equation is given by a polynomial of degree 3, whereas in the
remaining twelve regions the polynomial has degree 5. In Fig. 6 we show the Schlegel
diagram of

Z(P)◦ = conv{±(1/2,−1/2, 0, 0),±(1, 0, 0, 0),±(0, 0, 1, 0),±(0, 0, 0, 1)}

with a number associated to each maximal cell which represents the degree of the
polynomial in the corresponding region of ∂ I P .

6 The cube

In this section we investigate the intersection body of the d-dimensional cube C (d) =
[−1, 1]d , with a special emphasis on the linear components of its algebraic boundary.

Proposition 6.1 The algebraic boundary of the intersection body of the d-dimensional
cube C (d) has at least 2d linear components. These components correspond to the 2d
open regions from Lemma 2.4 which contain the standard basis vectors and their
negatives.

Proof We show the claim for the first standard basis vector e1. The argument for the
other vectors ±ei , i = 1, . . . , d is analogous.
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Fig. 6 The Schlegel diagram of Z(P)◦ from Example 5.11. There are four cells whose corresponding
polynomial in ∂ I P has degree 3, including the outer facet; the others correspond to degree 5 polynomials

LetC be the region fromLemma 2.4which contains e1 and considerU = C∩Sd−1.
For any u ∈ U , the polytopeC (d) ∩u⊥ is combinatorially equivalent toC (d−1). Hence
we can compute the (signed) volume,

Vol(C (d) ∩ u⊥) = det

⎡

⎢⎢⎢⎣

v(1) − v(0)

...

v(d−1) − v(0)

u

⎤

⎥⎥⎥⎦

where v(0) is an arbitrarily chosen vertex of C (d) ∩ u⊥ and the remaining v(i) are
vertices of C (d) ∩ u⊥ adjacent to v(0). Next, we observe that for any vertex v of
C (d) ∩ u⊥ which lies on the edge [a, b] of C (d), v is the vector

v =
⎛

⎝− 1

u1

d∑

j=2

a ju j , a2, . . . , ad

⎞

⎠ .

This follows from the formulation of v in the proof of Theorem 2.6 and the fact that
b1 = −a1 and bi = ai for i = 2, . . . , d. Combining this with the determinant above
gives us the following expression for the radial function restricted to U :
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ρ(u) = 1

u1
det

⎡

⎢⎢⎢⎢⎢⎢⎣

−∑d
j=2(a

(1)
j − a(0)

j )u j a
(1)
2 − a(0)

2 · · · a(1)
d − a(0)

d

−∑d
j=2(a

(2)
j − a(0)

j )u j a
(2)
2 − a(0)

2 · · · a(2)
d − a(0)

d
...

...
...

−∑d
j=2(a

(d)
j − a(0)

j )u j a
(d)
2 − a(0)

2 · · · a(d)
d − a(0)

d
u21 u2 · · · ud

⎤

⎥⎥⎥⎥⎥⎥⎦

wherewe assume the determinant is nonnegative, elsewewillmultiply by−1. Expand-
ing the determinant along the bottom row of the matrix yields

ρ(u) = 1

u1

⎛

⎜⎜⎜⎜⎝
u21 det

⎡

⎢⎢⎢⎢⎣

a(1)
2 − a(0)

2 . . . a(1)
d − a(0)

d

a(2)
2 − a(0)

2 . . . a(2)
d − a(0)

d
...

a(d)
2 − a(0)

2 . . . a(d)
d − a(0)

d

⎤

⎥⎥⎥⎥⎦
+ γ (u2, . . . , un)

⎞

⎟⎟⎟⎟⎠
.

where γ (u2, . . . , ud) is a polynomial consisting of the quadratic terms in the remaining
ui ’s. Note that since γ does not contain the variable u1 and ρ is divisible by the quadric
u21 + . . . + u2d by Proposition 5.5, it follows that

ρ(u) = u21 + . . . + u2d
u1

det

⎡

⎢⎢⎢⎢⎣

a(1)
2 − a(0)

2 . . . a(1)
d − a(0)

d

a(2)
2 − a(0)

2 . . . a(2)
d − a(0)

d
...

a(d)
2 − a(0)

2 . . . a(d)
d − a(0)

d

⎤

⎥⎥⎥⎥⎦
. (1)

Let A be the (d−1)×(d−1)-matrix appearing in this last expression (1). Then finally,
by the discussion in Sect. 5, the irreducible component of the algebraic boundary on
the corresponding conical region C is described by the linear equation x1 = | det A|.

��
Note that for an arbitrary polytope P of dimension at least 3, the irreducible com-

ponents of the algebraic boundary ∂a I P cannot all be linear. This is implied by the
fact that the intersection body of a convex body is not a polytope. It is thus worth
noting that the intersection body of the cube has remarkably many linear components.
We now investigate the non-linear pieces of ∂a IC (4) of the 4-dimensional cube.

Example 6.2 Let P be the 4-dimensional cube [−1, 1]4 and I P be its intersection
body. The associated hyperplane arrangement has 8+ 32+ 64 = 104 chambers. The
first 8 are spanned by 6 rays and the boundary here is linear, i.e. it is a 3-dimensional
cube. For example, the linear face exposed by (1, 0, 0, 0) is cut out by the hyperplane
w = 2.

The second family of chambers is made of cones with 5 extreme rays, where the
boundary is defined by a cubic equation with shape

6xyz − w2 − 3x2 − 6xy − 3y2 − 6xz + 6yz − 3z2.
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Table 1 Number of irreducible components of the algebraic boundary of the intersection body of the d-cube,
listed by degree

Dimension # Chambers Degree bound deg = 1 2 3 4 5

2 4 1 4 0 0 0 0

3 14 5 6 0 8 0 0

4 104 14 8 0 32 64 0

5 1882 38 10 0 80 320 1472

Finally there are 64 cones spanned by 4 rays such that the boundary of the intersection
body is a quartic, such as

12wxyz − w3 − 3w2x − 3wx2 − x3 − 3w2y − 6wxy − 3x2y − 3wy2 − 3xy2

−y3 − 3w2z − 6wxz − 3x2z + 18wyz

−6xyz − 3y2z − 3wz2 − 3xz2 − 3yz2 − z3.

Proposition 6.1 gives a lower bound on the number of linear components of the alge-
braic boundary of IC (d). We conjecture that for any d ∈ N, the algebraic boundary
of the intersection body of the d-dimensional cube centered at the origin has exactly
2d linear components. Computational results for d ≤ 5 support this conjecture, as
displayed in Table 1. It shows the number of irreducible components of IC (d) sorted
by the degree of the component, for d = 2, 3, 4, 5. The first two columns are the
dimension of the polytope, and the number of chambers of the respective hyperplane
arrangement H . The third column is the degree bound fromCorollary 5.7. The remain-
ing columns show the number of regions whose equation in the algebraic boundary
have degree deg, for deg = 2, . . . , 5.

It is worth noting that the highest degree attained in these examples is equal to
the dimension of the respective cube. In particular, the degree bound for centrally
symmetric polytopes, as given in Corollary 5.7 is not attained in any of the cases
for d ≥ 3. Finally, note that the number of regions grows exponentially in d, and
thus for d ≥ 3, the number of non-linear components exceeds the number of linear
components.
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