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Abstract
In 1888, Heinrich Schroeter provided a ruler construction for points on cubic curves
based on line involutions. Using Chasles’ Theorem and the terminology of elliptic
curves, we give a simple proof of Schroeter’s construction. In addition, we show how
to construct tangents and additional points on the curve using another ruler construction
which is also based on line involutions. As an application of Schroeter’s construction
we provide a new parametrisation of elliptic curves with torsion groupZ/2Z×Z/8Z
and give some configurations with all their points on a cubic curve.

Keywords Cubic curve · Line involution · Ruler constructions · Elliptic curve ·
Configurations

Mathematics Subject Classification 51A05 · 51A20

1 Introduction

Heinrich Schroeter gave in Schroeter (1888) a surprisingly simple ruler construction
to generate points on a cubic curve. Since he did not provide a formal proof for
the construction, we would like to present this here. Schroeter’s construction can be
interpreted as an iterated construction of line involutions. Thus, we first define the
notion of a line involution with cross-ratios, and then we show how one can construct
line involutions with ruler only.

For the sake of simplicity, we introduce the following terminology: For two distinct
points P and Q in the plane, P Q denotes the line through P and Q, P Q denotes the
distance between P and Q, and for two distinct lines l1 and l2, l1 ∧ l2 denotes the
intersection point of l1 and l2. We tacitly assume that the plane is the real projective
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plane, and therefore, l1∧l2 is defined for any distinct lines l1 and l2. For the cross-ratio
of four lines a, b, x, y of a pencil we use the notation cr(a, b, x, y).
Line involution. Given a pencil. A line involution � is a mapping which maps each
line l of the pencil to a so-called conjugate line l̄ of the pencil, such that the following
conditions are satisfied:

• � is an involution, i.e., �◦� is the identity, in particular we have �(l̄) = l.
• Given three different pairs of conjugate lines a, ā, b, b̄, c, c̄, and let l1, l2, l3, l4 be
four lines among a, ā, b, b̄, c, c̄ from three different pairs of conjugate lines, then

cr (l1, l2, l3, l4) = cr
(
l̄1, l̄2, l̄3, l̄4

)
.

Notice that any line involution is defined by two different pairs of conjugate lines.
We shall use the following construction for line involutions (for the correctness of
the construction see Chasles (Chasles 1989, Note X, §34, (28), p. 317)): Given two
pairs a, ā and b, b̄ of conjugate lines which meet in P . Suppose, we want to find the
conjugate line d̄ of a line d from the same pencil. Choose a point D �= P on d and
two lines through D which meet a and b in the points A and B, and ā and b̄ in the
points Ā and B̄, respectively (see Fig. 1). Let D̄ = AB̄ ∧ ĀB. Then the conjugate line
d̄ of d with respect to the line involution defined by a, ā, b, b̄ is the line P D̄.

Vice-versa, let A, Ā and B, B̄ be two pairs of different points and D = AB ∧ Ā B̄,
D̄ = AB̄ ∧ ĀB. Then, for an arbitrary point P /∈ {A, Ā, B, B̄, D, D̄}, the lines
a = P A, ā = P Ā, b = P B, b̄ = P B̄, and d = P D, d̄ = P D̄ are conjugate lines.

Notice that this construction can be carried out using only a ruler.

a b d ā b̄ d̄

P

A

B
Ā

B̄

D

D̄

Fig. 1 Construction of conjugate lines

123



Beitr Algebra Geom (2022) 63:921–940 923

A

B

C

D

E

A#B
C#D(A#B)#(C#D)

X

Fig. 2 Ruler construction of the point X

2 Schroeter’s construction for cubic curves

Using the Braikenridge-Maclaurin Theorem, i.e., the converse of Pascal’s theorem
(see, for example, Coxeter and Greitzer 1967, p. 76), it is possible to construct an
arbitrary number of points on a conic if five of its points are given, using only a
ruler. An attempt to find a corresponding ruler construction for cubic curves was
made in Mendelsohn et al. (1988): Let A, B, C, D, E be five points on a cubic curve.
Assume that the points A#B, C#D and (A#B)#(C#D) are also known (see Fig. 2).
Then, by Chasles’ Theorem (see below), all cubic cuves through the eight points
A, B, C, D, E, A#B, C#D, (A#B)#(C#D) pass through a ninth point X , namely
the sixth intersection of the cubic curve with the conic through A, B, C, D, E . It
is then shown that X is also the intersection of the conic with the line through E
and (A#B)#(C#D), and can therefore be constructed with ruler alone. However the
constructions in Mendelsohn et al. (1988) do not iterate and the authors were not
aware of Schroeter’s work, which allows to construct an arbitrary number of points
on a cubic curve.

Schroeter’s ruler construction, described in Schroeter (1888), is based on line invo-
lutions:

Schroeter’s Construction. Let A, Ā, B, B̄, C, C̄ be six pairwise distinct points in a
plane such that no four points are collinear and the three pairs of points A, Ā, B, B̄,
C, C̄ are not the pairs of opposite vertices of the same complete quadrilateral. Now,
for any two pairs of points P, P̄ and Q, Q̄, we define a new pair S, S̄ of points by
stipulating

S := P Q ∧ P̄ Q̄ and S̄ := P Q̄ ∧ P̄ Q.

Then all the points constructed in this way lie on a cubic curve.
Points S, S̄ which are constructed by Schroeter’s construction will be called

Schroeter points or pairs of Schroeter points.
Notice first that with Schroeter’s construction, we always construct pairs of conju-

gate lines: For anypoint R /∈ {P, P̄, Q, Q̄, S, S̄} the lines R P, R P̄, RQ, RQ̄, RS, RS̄
are pairs of conjugate lines with respect to the same line involution. Further notice that
if the three pairs of points are opposite vertices of the same complete quadrilateral,
then the construction gives us no additional points.
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Fig. 3 Chasles’ theorem in a Neuberg cubic �

At first glance, it is somewhat surprising that all the points we construct lie on the
same cubic curve, which is defined by three pairs of points (recall that a cubic curve
is defined by 9 points). The reason is that we have three pairs of points and not just
6 points. In fact, if we start with the same 6 points but pairing them differently, we
obtain a different cubic curve. It is also not clear whether the construction generates
infinitely many points of the curve. Schroeter claims in Schroeter (1888) that this is
the case, but, as we will see in the next section, it may happen that the construction
gives only a finite number of points.

3 A proof of Schroeter’s construction

It is very likely that Schroeter discovered his construction based on his earlier work
on cubics (see Schröter 1872, 1873). However, he did not give a rigorous proof of
his construction, and the fact that he claimed wrongly that the construction generates
always infinitelymanypoints of the curvemight indicate that he overlooked something.
Belowwe give a simple proof of Schroeter’s construction using Chasles’ Theorem (see
Chasles Chasles 1989, Chapitre IV, §8, p. 150) and the terminology of elliptic curves.

Theorem 1 (Chasles’ Theorem) If a hexagon ABC ĀB̄C̄ is inscribed in a cubic
curve � and the points AB ∧ Ā B̄ and BC ∧ B̄C̄ are on �, then also C Ā ∧ C̄ A
is on � (see Fig.3).

With Chasles’ Theorem we can prove the following

Proposition 2 Let A, Ā, B, B̄, C, C̄ be six pairwise distinct points in a plane such
that no four points are collinear and none of the pairs of points A, Ā, B, B̄, C, C̄ is a
pair of opposite vertices of the same complete quadrilateral. Furthermore, let

D := AB ∧ Ā B̄, E := BC ∧ B̄C̄, F := C A ∧ C̄ Ā,

D̄ := AB̄ ∧ ĀB, Ē := BC̄ ∧ B̄C, F̄ := C Ā ∧ C̄ A,
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and assume that the 9 points A, Ā, B, B̄, C, C̄, D, E, F are pairwise distinct and
that � is a cubic curve passing through these 9 points. Then � passes also through
D̄, Ē, F̄ .

Proof Since the 6 points A, Ā, B, B̄, C, C̄ as well as D and E are on �, by Chasles’
Theorem we get that also F̄ is on �. Similarly, since C, C̄ , A, Ā, B, B̄, F, D are on �,
also Ē is on �. Finally, since B, B̄, C, C̄ , A, Ā, E, F are on �, also D̄ is on �. ��

As an immediate consequence of Proposition 2 we get

Corollary 3 The unique cubic curve � passing through the 9 points A, Ā, B, B̄, C, C̄,
D, E, F contains also the 3 points D̄, Ē, F̄ .

In order to show that all the points constructed by Schroeter’s construction lie on
the same cubic curve, we interpret the construction in the setting of elliptic curves. For
this, let � be a cubic curve and let O be a point of inflection of �—recall that every
cubic curve in the real projective plane has at least one point of inflection. For two
points P and Q on � let P # Q be the third intersection point (counting multiplicities)
of P Q with �, where for P = Q, P Q is the tangent on � with contact point P .
Furthermore, for each point P on �, let −P := O # P . As usual, we define the binary
operation + on the points of � by stipulating

P + Q := − (P # Q) .

Notice that −P + P = O and, since O is a point of inflection, we have −O = O .
It is well known that the operation + is associative and the structure (�,O,+) is an
abelian group with neutral element O , which is called an elliptic curve.

Now, let � be the cubic curve passing through A, Ā, B, B̄, C, C̄, D, E, F and let
O be a point of inflection of �. Then, by construction of � we have, for example,
A # B = Ā # B̄, or equivalently, −(A + B) = − (

Ā + B̄
)
.

Lemma 4 (a) Let P, Q, P̄, Q̄ be pairwise distinct points on a cubic curve �. If S :=
P Q ∧ P̄ Q̄ ∈ � and S̄ := P Q̄ ∧ P̄ Q ∈ �, then P # P = P̄ # P̄ ∈ �, Q # Q =
Q̄ # Q̄ ∈ �, and S # S = S̄ # S̄ ∈ �.

(b) Vice versa, if P ′ := P # P = P̄ # P̄ ∈ � for two points P, P̄ ∈ �, then we have for
all Q ∈ � the following: If S := P # Q and Q̄ = S # P̄, then S̄ = P Q̄ ∧ P̄ Q ∈ �

and Q′ := Q # Q = Q̄ # Q̄ ∈ �.

Proof (a) By assumption we have P # Q = P̄ # Q̄ = S and P # Q̄ = P̄ # Q = S̄.
With a point O ∈ � of inflection, we get

P + Q = O # (P # Q) = O # (P̄ # Q̄) = P̄ + Q̄ (1)

and

P + Q̄ = O # (P # Q̄) = O # (P̄ # Q) = P̄ + Q. (2)
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Fig. 4 Illustration Lemma 4

Adding (1) and (2) and subtracting Q + Q̄ yields P + P = P̄ + P̄ and hence
P # P = P̄ # P̄ . Exchanging left and right hand in (1) and adding (2) gives, upon
subtracting P + P̄ , Q + Q = Q̄ + Q̄ and hence Q # Q = Q̄ # Q̄. S # S = S̄ # S̄
follows by exchanging the pair Q, Q̄ by the pair S, S̄.

(b) For the second part, we proceed as follows: By assumption, we have P # P =
P̄# P̄ and therefore P+P = O#(P#P) = O#(P̄# P̄) = P̄+ P̄ .We add S and subtract
P+ P̄ to get S+P− P̄ = S+ P̄−P or (O#(S#P))#(O# P̄) = (O#(S# P̄))#(O#P).
It follows that (S # P) # P̄ = (S # P̄) # P , i.e., Q # P̄ = Q̄ # P = S̄. Finally,
Q # Q = Q̄ # Q̄ = Q′ follows from the first part. ��

For the sake of simplicity we write 2 ∗ P for P + P . Let A, Ā be a pair of points
with A # A = Ā # Ā on a cubic curve �, and with respect to a given point of inflection
O , let TA := Ā − A. Then A + TA = Ā, which implies that

2 ∗ Ā = 2 ∗ (A + TA) = 2 ∗ A + 2 ∗ TA.

Now, by assumption we have 2 ∗ A = 2 ∗ Ā and therefore we get that 2 ∗ TA = O . In
other words, TA is a point of order 2.

Now we are ready to prove the following

Theorem 5 All the points we obtain by Schroeter’s construction belong to the same
cubic curve.

Proof Let A, Ā, B, B̄, C, C̄ be six pairwise distinct points in a plane such that no
four points are collinear and none of the pairs of conjugate points A, Ā, B, B̄, C, C̄
is a pair of opposite vertices of the same complete quadrilateral. Furthermore, let
D, D̄, E, Ē, F, F̄ be as in Proposition 2, and let � be the cubic curve which passes
through all of these 12 points. Finally, let O a fixed point of inflection of �, and let
TA := Ā − A, TB := B̄ − B, and TC := C̄ − C be three points of order 2. First we
show that TA = TB . Since A# B = Ā# B̄ we have−(A+ B) = −(A+TA + B +TB),
which implies that TA = TB . With a similar argument we obtain TB = TC . Thus, we
have TA = TB = TC =: T .

123



Beitr Algebra Geom (2022) 63:921–940 927

We will say that a set M of points is a good set, if

(a) all points of M belong to �,
(b) the points A, Ā, B, B̄, C, C̄, D, D̄, E, Ē, F, F̄ belong to M ,
(c) if the pair of points S, S̄ belongs to M , then S = P # Q = P̄ # Q̄ and S̄ = P # Q̄ =

P̄ # Q for two pairs P, P̄ and Q, Q̄ in M ,
(d) for all pairs P, P̄ of M , we have P # P = P̄ # P̄ , and
(e) for all pairs P, P̄ of M , we have P̄ − P = T .

Observe first, that {A, Ā, B, B̄, C, C̄, D, D̄, E, Ē, F, F̄} is a good set. Indeed, (a)
and (b) are trivially satisfied. The property (c) is clear for D, D̄, E, Ē, F, F̄ . For A
and Ā we have A = B # D = B̄ # D̄, Ā = B # D̄ = B̄ # D, and similarly for the
pairs B, B̄ and C, C̄ . The property (d) follows directly from Lemma 4(a). Finally, we
have property (e) already for A, Ā, B, B̄ and C, C̄ . For D the argument is similar: Let
TD := D̄ − D. TD is a point of order 2 and from B = A # D = Ā # D̄ it follows
A + D = Ā + D̄ = A + T + D + TD and hence TD = T . The analogous argument
shows that Ē − E = F̄ − F = T .

Now suppose that M is a good set, and take two pairs P, P̄ and Q, Q̄ in M . Let
S = P Q ∧ P̄ Q̄ and S̄ = P Q̄ ∧ P̄ Q. Then we claim that M ∪ {S, S̄} is also a good
set. We first show that P # Q = P̄ # Q̄ or equivalently that P + Q = P̄ + Q̄. This is
equivalent to T = P̄ − P = Q − Q̄ = T which is true by property (e) for M and the
fact that T is a point of order 2. Then P # Q̄ = P̄ # Q follows from Lemma 4(b). We
conclude that the set M ∪ {S, S̄} has the properties (a) and (c). Property (b) is trivial.
For property (d) we need to see that S#S = S̄# S̄, which follows fromLemma 4(a). For
property (e) we define TS = S̄ − S. TS is a point of order 2. From Q = P # S = P̄ # S̄
it follows P + S = P̄ + S̄ = P + T + S + TS and hence TS = T . This shows that
M ∪ {S, S̄} has all properties of a good set.

It follows that all points we obtain by Schroeter’s construction belong to the same
curve �. ��

The above proof shows that the Schroeter points have the following additional
properties

• If P, P̄ is a pair of Schroeter points on �, then the tangents in P and P̄ meet on �.
• With respect to a chosen point O of inflection, we have that P̄ − P = T is a point
of order 2 on � which is the same for all Schroeter pairs P, P̄ .

The following result shows that we can construct the tangent to � in each Schroeter
point by a line involution (hence with ruler alone).

Proposition 6 Let � be the cubic from Proposition 2. Assume that S, S̄, P, P̄ , Q, Q̄
are three of the pairs A, Ā, B, B̄, C, C̄, D, D̄, E, Ē , F, F̄ or of the pairs which are
constructed by Schroeter’s construction, such that S P, SQ, S P̄, S Q̄ are four distinct
lines. Let s = SS̄ and s̄ its conjugate line with respect to the involution given by the
lines S P, SQ, S P̄, S Q̄. Then s̄ is tangent to � in S (see Fig.5).

Before we can prove Proposition 6, we have to recall a few facts about cubic curves.
It is well-known that every cubic curve can be transformed into Weierstrass Normal
Form

�a,b : y2 = x3 + ax2 + bx
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P

P̄
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Q̄
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S̄

s

s̄

O

T

Fig. 5 Thin black lines: P̄ = T + P, Q̄ = T + Q, S̄ = T + S. The red lines s = SS̄ and the thick tangent
s̄ in S are conjugate lines with respect to the line involution given by the green lines S P, S P̄, SQ, SQ̄

with a, b ∈ R. In the real projective plane, O = (0, 1, 0) is a point inflection of �a,b

and Ta,b = (0, 0, 1) is a point of order 2 of �a,b, where O is the neutral element of
the elliptic curve �a,b. If A is a point on �a,b, then we call the point Ā := T + A the
conjugate of A. Since T + T = O , we have

¯̄A = T + Ā = T + T + A = O + A = A.

Recall that A # B := −(A + B). In particular, if C = A # A, then the line through C
and A is tangent to �a,b with contact point A.

The following result gives a connection between conjugate points and tangents.

Fact 7 If A, Ā, B are three points on �a,b which lie on a straight line, then A# A = B̄.

Proof If A, Ā, B are three points on �a,b on a straight line, then A + Ā = −B. Thus,
A + T + A = T + A + A = −B, which implies

A + A = T + (T + A + A) = T + (−B) = (−T ) + (−B) = −(T + B) = −B̄ ,

and therefore, the line AB̄ is tangent to �a,b with contact point A, i.e., A # A = B̄. ��
In homogeneous coordinates, the curve y2 = x3 + ax2 + bx becomes

� : Y 2Z = X3 + aX2Z + bX Z2 .

Assume now that Ã = (
r0, r1, 1

)
is a point on the cubic �, where r0, r1 ∈ R\{0}.

Then the point (1, 1, 1) is on the curve

r21Y 2Z = r30 X3 + ar20 X2Z + br0X Z2 .

Now, by exchanging X and Z (i.e., (X , Y , Z) �→ (Z , Y , X)), de-homogenising
with respect to the third coordinate (i.e., (Z , Y , X) �→ ( Z

X , Y
X , 1)), and multiplying
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with 1
r21
, we obtain that the point A = (1, 1) is on the curve

�α,β,γ : y2x = α + βx + γ x2 ,

where

α = r30
r21

, β = a · r20
r21

, γ = b · r0
r21

.

Notice that since A = (1, 1) is on �α,β,γ , we have α + β + γ = 1.
The next result gives a connection between line involutions and conjugate points.

Lemma 8 Let A = (x0, y0) be an arbitrary but fixed point on �α,β,γ . For every point
P on �α,β,γ which is different from A and Ā, let g := AP and ḡ := AP̄. Then the
mapping IA : g �→ ḡ is a line involution.

Proof It is enough to show that there exists a point ζ0 (called the center of the involu-
tion) on the line h : x = 0, such that the product of the distances between ζ0 and the
intersections of g and ḡ with h is constant.

Since T̄ = T + T = O , with respect to T we have g : y = y0 and ḡ : x = x0,
which implies that ζ0 = (0, y0). Now, let P = (x1, y1) be a point on �α,β,γ which is
different from A, Ā, T ,O , and let g := AP and ḡ := AP̄ . Since P̄ = (

α
γ x1

,−y1
)
,

x

y

T

T̄

sP̄

sP

A

P

P̄

ζ0

Γα,β,γ

g

ḡ

Fig. 6 Line involution
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the slopes λP and λP̄ of g and ḡ, respectively, are

λP = y1 − y0
x1 − x0

and λP̄ = −y1 − y0
α

γ x1
− x0

.

Thus, the distances sP and sP̄ between ζ0 and the intersections of g and ḡ with h,
respectively, are

sP = − x0(y1 − y0)

x1 − x0
and sP̄ = x0(y1 + y0) · γ x1

α − γ x1x0
.

Now,

sP · sP̄ = − x20 (y1 − y0)(y1 + y0)γ x1
(x1 − x0)(α − γ x0x1)

= − x20 (y21 − y20 )γ x1
(x1 − x0)(α − γ x0x1)

,

and using the fact that for i ∈ {0, 1}, y2i = α
xi

+ β + γ xi , we obtain

sP · sP̄ = γ · x0 ,

which is independent of the particular point P = (x1, y1). ��
Since line involutions are invariant under projective transformations, as a conse-

quence of Lemma 8 we obtain the following

Fact 9 Let � be the cubic from Proposition 2 with two pairs of Schroeter points P, P̄ =
T + P, Q, Q̄ = T + Q, and let R be a point on � such that R P, R P̄, RQ, RQ̄ are
four different lines. Let S be a further point on � and S̄ = T + S. Then the lines
s = RS and s̄ = RS̄ are conjugate lines with respect to the line involution given by
the lines R P, R P̄, RQ, RQ̄ (see Fig.7).

Now we are ready to prove Proposition 6.

Proof of Proposition 6 First notice that S and S̄ are distinct, since otherwise, S̄ =
T + S = S, which implies that T = S − S = O .

Assume that the line s intersects � in a point U which is different from S and S̄.
Then Ū := T +U belongs to s̄. If the line s̄ intersects � in a point V which is different
from Ū , then, with respect to the involution given by the lines Ū S, Ū P , Ū S̄, Ū P̄ , the
point V̄ belongs to s. Hence, V̄ = S̄, which shows that s̄ is tangent to � in S.

Now, assume that the line s intersects � just in S and S̄. Then, the line s is tangent
to � either in S or in S̄. We just consider the former case, the latter case is handled
similarly. Let Pn (for n ∈ N) be a sequence of points on � which are different from
S and which converges to S, i.e., limn→∞ Pn = S. Since for each n ∈ N we have
P̄n = T +Pn (where P̄n := T +P), by continuity of additionwehave limn→∞ P̄n = S̄.
For each n ∈ N let tn := Pn S. Then, for each n ∈ N, t̄n = P̄n S. Since s is tangent to
� in S, by continuity, on the one hand we have limn→∞ tn = s, and on the other hand
we have limn→∞ t̄n = s, which implies that s̄ = s and shows that s̄ is tangent to �

in S. ��
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Q

Q̄

P

P̄

S

S̄

R

O

T

s̄

s

Fig. 7 Thin black lines: P̄ = T + P , Q̄ = T + Q, S̄ = T + S. The red lines s = RS and s̄ = RS̄ are
conjugate lines with respect to the line involution given by the green lines R P, R P̄, RQ, RQ̄

As a corollary of Proposition 6 and Lemma 4(a) we obtain the following:

Corollary 10 Let � be the cubic from Proposition 2. Then we have:

(a) In each Schroeter point it is possible to construct the tangent by a line involution,
i.e., with a ruler construction.

(b) In addition to the Schroeter points on � one can construct for each Schroeter pair
P, P̄ the point P # P = P̄ # P̄ ∈ � by ruler alone: These are the intersection
points of the tangents in P and in P̄.

Figure8 shows a sample of Schroeter points and of intersection points of the cor-
responding tangents.

A priori it might be possible that Schroeter’s construction does not yield all cubic
curves. However, the next theorem says that in fact all cubic curves carry Schroeter’s
construction.

Theorem 11 Let � be a non-singular cubic curve. Let A, B, C be three different
arbitrary points on �. Then, there are points Ā, B̄, C̄ on � such that D = AB ∧ Ā B̄,
E = BC ∧ B̄C̄ , F = C A ∧ C̄ Ā are points on � and so do all the points given by
Schroeter’s construction.

Proof Choose Ā such that A # A = Ā # Ā and B̄ := Ā # (A # B). In particular, we
have A # B = Ā # B̄, and, by Lemma 4, A # B̄ = Ā # B and B # B = B̄ # B̄.
Let C̄ := B̄ # (B # C). In particular, we have B # C = B̄ # C̄ , and, by Lemma 4,
B # C̄ = B̄ # C and C # C = C̄ # C̄ . It follows from Chasles’ Theorem 1 that
A # C̄ = Ā # C . From the above, we obtain by applying Proposition 2 with C and C̄
exchanged, that A # C = Ā # C̄ . Hence all points constructed from these points by
Schroeter’s construction lie on �. ��
Remarks. Let �0 be the cubic curve passing through A, Ā, B, B̄, C, C̄ , D, E, F , let
O be a point of inflection of �0, and let E0 = (�0,O,+) be the corresponding elliptic
curve.
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Fig. 8 Schroeter pairs P (red), P̄ (blue), and intersection points P # P = P̄ # P̄ of the corresponding
tangents (green)

(1) IfCn is a cyclic group of order n, then there is a point on�0 of order n (with respect
to E0). This implies that if we choose the six starting points in a finite subgroup
of E0, then Schroeter’s construction “closes” after finitely many steps and we end
up with just finitely many points. However, if our 6 starting points are all rational
and we obtain more than 16 points with Schroeter’s construction, then, byMazur’s
Theorem, we obtain infinitely many rational points on the cubic curve �0.

(2) If the elliptic curve E0 has three points of order 2, then one of them, say T , has the
property that for any point P on �0 we have P̄ = P + T . In particular, we have
T̄ = T + T = O . Furthermore, for the other two points of order 2, say S1 and S2,
we have S1 = S2 + T and S2 = S1 + T , i.e., S1 = S̄2.

(3) If we choose another point of inflection O ′ on the cubic curve �0, we obtain
a different elliptic curve E ′

0. In particular, we obtain different inverses of the
constructed points, even though the constructed points are exactly the same (see
Fig. 9).

Example. Let A, Ā, B, B̄, C, C̄ be six different starting points for Schroeter’s con-
struction such that no three points are co-linear. By a projective transformation, we can
move A �→ (0, 0, 1), Ā �→ (0, 1, 0), B �→ (1, 0, 0), B̄ �→ (1, 1, 1),C �→ (Cx , Cy, 1),
C̄ �→ (C̄x , C̄y, 1). Then, the corresponding cubic curve � we obtain by Schroeter’s
construction is given by the following equation:

� : xy2 − x2y + x2 CyC̄y + y2
(
Cx C̄x − Cx − C̄x

)

+xy
(
Cx + C̄x − CyC̄x − Cx C̄y

) − x CyC̄y + y
(
CyC̄x + Cx C̄y − Cx C̄x

) = 0
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A

A # A = Ā # Ā

Ā O ′

O ′′

O

T

T ′

−A

−A′

−Ā

−Ā′

Fig. 9 A, Ā is a Schroeter pair, in particular A # A = Ā # Ā. With respect to O , we get the points −A, − Ā,
and the point T = Ā − A = A − Ā of order 2. With respect to O ′, we get the points −A′, − Ā′, and the
point T ′ = Ā − A′ = A − Ā′ of order 2. The three points O,O ′,O ′′ of inflection are collinear. The lines
T T ′ and OO ′ meet in O ′′

4 Elliptic curves with Torsion groupZ/2Z×Z/8Z

As a first application of Schroeter’s construction we provide a new parametrisation of
elliptic curveswith torsion groupZ/2Z×Z/8Z. This parametrisationwas the nucleus
of the characterisation of elliptic curves with torsion groupZ/2Z×Z/8Z and positive
rank given in Halbeisen and Hungerbühler (2021). For other new parametrisations—
which are different to the parametrisations given by Kubert Kubert (1976) and
Rabarison Rabarison (2010)—of elliptic curves with torsion group Z/10Z, Z/12Z,
and Z/14Z obtained by Schroeter’s construction see Halbeisen et al. (2021).

Let�a,b : y2 = x3+ax2+bx be a regular curve with torsion groupZ/2Z×Z/8Z
over Q. In homogeneous coordinates, the curve �a,b becomes

� : Y 2Z = X3 + aX2Z + bX Z2 .

Assume now that Ã = ( n0
m0

, n1
m1

, 1
)
is a rational point on the cubic �, where

n0, m0, n1, m1 are integers and n0 �= 0 �= n1. Then the point (1, 1, 1) is on the
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curve

n21
m2
1
Y 2Z = n30

m3
0

X3 + a
n20
m2
0

X2Z + b n0
m0

X Z2 .

Now, by exchanging X and Z (i.e., (X , Y , Z) �→ (Z , Y , X)), de-homogenising with
respect to the third coordinate (i.e., (Z , Y , X) �→ ( Z

X , Y
X , 1)), and multiplying with

m2
1

n21
, we obtain that the point A = (1, 1) is on the curve

�α,β,γ : y2x = α + βx + γ x2 ,

where

α = n3
0 · m2

1

m3
0 · n2

1

, β = a · n2
0 · m2

1

m2
0 · n2

1

, γ = b · n0 · m2
1

m0 · n2
1

.

Notice that since A = (1, 1) is on �α,β,γ , we have α + β + γ = 1, and recall that if
Ã = B̃ + B̃ for some rational point B̃ on �, then n0 and m0 are perfect squares.

In homogeneous coordinates, the neutral element of �α,β,γ is O = (0, 1, 0) and
the image under 	 of the point (0, 0, 1) on �a,b is T = (1, 0, 0). With respect to the
curve �α,β,γ , we can compute the conjugate of a point by the following

Fact 12 Let P = (x1, y1) be a point on �α,β,γ . Then

P̄ =
( α

γ x1
,−y1

)
.

Proof Let P = (x1, y1) be a point on �α,β,γ . Then

y21 = α

x1
+ β + γ x1 ,

which implies that x1 is a root of

x2γ + x(β − y21 ) + α = (x − x1)(x · γ x1 − α)

x1
.

Theother root is α
γ x1

, andhence,
(

α
γ x1

, y1
)
is a point on�α,β,γ .Now, since P̄ = T+P

and T =(1, 0, 0), we have P̄ =(x2,−y1), and therefore, P̄ = (
α

γ x1
,−y1

)
. ��

Let Ã be a rational point on �a,b of order 4, and let B̃ be such that B̃ + B̃ = Ã.
Furthermore, let C̃ = Ã + B̃, let T̃ = (0, 0), and let S̃ be another rational point of
order 2. Finally, for a point P̃ on �a,b, define P̃1 := S̃ + P̃ . Now, there is a rational
projective transformation 	 which maps the point Ã to the point A = (1, 1) and the
curve �a,b to the curve �α,β,γ . Notice that since B̃ + B̃ = Ã, α is a square, say

α = ( p
q

)2 for some p
q ∈ Q.
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Let T := 	(T̃ ), B := 	(B̃),C := 	(C̃), and S := 	(S̃). Then, for A,−A, Ā, . . .

we obtain the following correspondence between these points on �α,β,γ and the ele-
ments of the group Z/2Z × Z/8Z:

Z/2Z × Z/8Z (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)
�α,β,γ O B A C T B̄ Ā C̄
�α,β,γ S B1 A1 C1 S̄ B̄1 Ā1 C̄1
Z/2Z × Z/8Z (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

Let us now compute γ .

Lemma 13 γ = α.

Proof First, notice that Ā = −A, and since A = (1, 1) we have Ā = ( α
γ
,−1). Thus,

α
γ

= 1 which implies α = γ . ��
By considering the points S and S̄, we obtain the following result.

Lemma 14 If α = ( p
q

)2
for p

q ∈ Q, then there are r , s ∈ N with (r , s) = 1 such that

p = ± rs and q = ±(r2 + s2) .

Proof Let α = γ = u2 and u = p
q . Since the y-coordinate of the points S and S̄

equals 0, for S = (x, 0) we have u2 + (1 − 2u2)x + u2x2 = 0. Hence,

x = 2u2 − 1 ± √
1 − 4u2

2u2 ,

and since x ∈ Q, we have 1 − 4u2 = �. Thus,

1 − 4p2

q2 = q2 − 4p2

q2 = � ,

which implies q2−4p2 = q2−(2p)2 = �. Since (p, q) = 1, there are some r , s ∈ N

with (r , s) = 1 such that p = ± rs and q = ±(r2 + s2). ��
Using the fact that B # B = −A, we can show the following result.

Lemma 15 For p = ± rs and q = ±(r2 + s2) we find m, n ∈ N such that r = 2mn
and s = m2 − n2.

Proof First notice that B # B = −A and that − Ā = A = (1, 1). Let B = (x2, y2).
Then, since α = γ , B̄ = ( 1

x2
,−y2). Since B # B = −A, the points B, B̄, A are

collinear, which implies that

y2 = − x2 + 1

x2 − 1
.
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Now, since B is on the curve, we have

y22 x2 = α + (1 − 2α)x2 + α x22 ,

and for α = r2s2

(r2+s2)
we obtain

x2 = ±r2 + rs ± s2 ± (r − s)
√

r2 + s2

rs
.

So, since x2 ∈ Q, we have r2 + s2 = �, which implies that there are m, n ∈ N with
(m, n) = 1 such that r = 2mn and s = m2 − n2. ��

Now, we are ready to give a parametrisation of elliptic curves with torsion group
Z/2Z × Z/8Z.

Theorem 16 Let m
n �= 1 be a positive rational in lowest terms and let

a1 = (2mn)4 + (m2 − n2)4 , b1 = (2mn)4 · (m2 − n2)4 .

Then the curve

�a1,b1 : y2 = x3 + a1x2 + b1x

is an elliptic curve with torsion group Z/2Z×Z/8Z. Conversely, if �a,b is a regular
elliptic curve with torsion group Z/2Z × Z/8Z, then there exists a positive rational
m
n such that �a,b is isomorphic to �a1,b1 .

Proof By construction, for any relatively prime positive integers m and n, the corre-
sponding elliptic curve �a1,b1 has torsion group Z/2Z × Z/8Z.

On the other hand, if�a,b is an elliptic curvewith torsion groupZ/2Z×Z/8Z, then
we find a rational point Ã on �a,b of order 4, and by construction we find relatively
prime positive integers m and n such that �a,b is isomorphic to the curve �a1,b1 . ��

As a last remark we would like to mention that for any positive integers m and n
we have (m2 − n2)2 + (2mn)2 = �, i.e., for k = m2 − n2 and l = 2mn, (k, l) is a
so-called pythagorean pair. Now, in Halbeisen and Hungerbühler (2021) it is shown
that the corresponding elliptic curve�a1,b1 has positive rank overQ if and only if there
exists a pythagorean pair (r , s) such that (k2 · r , l2 · s) is a pythagorean pair.

5 Configurations on elliptic curves

In the complex projective plane, a generic elliptic curve has nine inflection points,
located in groups of three on a total of 12 lines. The nine inflection points and 12 lines
form the so-called Hesse configuration (94, 123): See Fig. 10.

Recall that a (pλ, 
π ) configuration consists of p points and 
 lines in the real
(or complex) projective plane arranged in such a way that each of the p points is
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Fig. 10 The Hesse configuration
(94, 123): A model of a finite
affine plane

incident to λ lines, while each of the 
-lines is incident to π points. As usual, we
write (nk) for a configuration of the type (nk, nk) (see Grünbaum 2009 as a main
reference for configurations). Schroeter gave in Schroeter (1888) a proof that (n3)

configurations can be realized in the real projective plane for n ≥ 9. His construction
relies on properties of point sets on cubic curves. Moreover, since all steps in his
construction can be carried out with ruler alone, the corresponding configurations can
also be geometrically realized in the rational plane.

As an application of Schroeter’s construction we provide now a few configurations
whose points belong to an elliptic curve.

To warm up, assume that A, Ā, B, B̄, C, C̄ are six pairwise distinct points in the
real projective plane such that the three pairs of points A, Ā, B, B̄, C, C̄ are the pairs
of opposite vertices of the same complete quadrilateral. In other words, assume that
A, B, C ; B̄, Ā, C ; A, B̄, C̄ ; and B, Ā, C̄ are collinear. Then the six points A, Ā, B, B̄,
C, C̄ together with the four lines AC , ĀC , AC̄ , ĀC̄ is a (62, 43) configuration. We
find this configuration on every elliptic curve �6 which contains the torsion subgroup
Z/6Z. The following table and Fig. 11 shows how we can assign the six points A, Ā,
B, B̄, C, C̄ to the elements of the group Z/6Z:

Z/6Z 0 1 2 3 4 5
�6 C̄ = O A B C = T Ā B̄

To construct a (124, 163) configuration whose points are on an elliptic curve, we
start with an elliptic curve �2×6 which contains the torsion subgroup Z/2Z×Z/6Z,
assign the six points A, Ā, B, B̄, C, C̄ in a suitable way to the elements of the group

123



938 Beitr Algebra Geom (2022) 63:921–940

Fig. 11 A (62, 43) configuration on an elliptic curve �6

Z/2Z × Z/6Z (see the table below and Fig. 12), and construct with Schroeter’s
construction with these six points the points D, D̄, E, Ē , and F, F̄ :

Z/2Z × Z/6Z (0, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5)
�2×6 D̄ = O A B D = T Ā B̄
�2×6 F̄ C E F C̄ Ē
Z/2Z × Z/6Z (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

Notice that A, Ā, B, B̄, D, D̄, as well asC, C̄ , E, Ē , D, D̄, are the pairs of opposite
vertices of a complete quadrilateral. These two complete quadrilaterals consist of
10 points and 8 lines. Together with the 2 points F and F̄ , and the 4 lines AE ,
ĀĒ , ĀE , AĒ , we obtain a (124, 163) configuration where all 12 points belong to an
elliptic curve �2×6. (124, 163) configurations have been discussed quite intensively
in the literature (see, e.g., Gropp 1992; Mendelsohn et al. 1987; Metelka 1985 and
the references therein), the more astonishing it is how easily Schroeter’s construction
yields this configuration on an elliptic curve.

As a further example of Schroeter’s construction, we construct a (246, 483) con-
figuration whose points are on an elliptic curve. In order to simplify the notation, we
introduce the following terminology: For 4 pairwise distinct points P, P̄ , Q, Q̄, let
(P, Q : S) be an abbreviation for the construction of the two points S, S̄, where

S := P Q ∧ P̄ Q̄ and S̄ := P Q̄ ∧ P̄ Q.
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E

F̄

C̄

B

Ā

F
T

Ē

C

B̄

Fig. 12 A (124, 163) configuration on an elliptic curve �2×6

Let �26 be an elliptic curve which contains the torsion subgroup Z/26Z, and let us
assign the points O, T , A, Ā, B, B̄, C, C̄ to the elements 0, 13, 2, 15, 6, 19, 8, 21,
respectively. Now, we carry out the following constructions in the given order:

1. (A, B : D) 2. (A, C : E) 3. (B, E : F) 4. (C, F : G)

5. (A, G : H) 6. (F, H : J ) 7. (D, J : K ) 8. (H , K : L)

9. (C, L : M) 10. (B, K : M) 11. (E, J : M) 12. (D, G : L)

All together, we have constructed 24 points (including the six points A, Ā, B, B̄,
C, C̄):

Z/26Z 2 4 6 8 10 12 14 16 18 20 22 24

�26 A F B C H J G E D L K M
�26 Ā F̄ B̄ C̄ H̄ J̄ Ḡ Ē D̄ L̄ K̄ M̄
Z/26Z 15 17 19 21 23 25 1 3 5 7 9 11

In addition, we have constructed 48 lines and each of the 24 points is incident to
6 lines,while eachof the 48-lines is incident to 3points. Therefore,wehave a (246, 483)
configuration all whose points are on the elliptic curve �26. Notice that if we just con-
sider the 12 points A, B, C, . . . , M and the 12 lines AB D, AC E , B E F, . . . , DGL ,

123



940 Beitr Algebra Geom (2022) 63:921–940

then we obtain a (123) configuration (i.e., a (123, 123) configuration), all whose points
are on the elliptic curve �26.
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