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Abstract
In this paper we consider developable surfaces which are isometric to planar domains
and which are piecewise differentiable, exhibiting folds along curves. The paper
revolves around the longstanding problem of existence of the so-called folded annulus
with multiple creases, which we partially settle by building upon a deeper understand-
ing of how a curved fold propagates to additional prescribed foldlines. After recalling
some crucial properties of developables, we describe the local behaviour of curved
folding employing normal curvature and relative torsion as parameters and then com-
pute the very general relation between such geometric descriptors at consecutive folds,
obtaining novel formulae enjoying a nice degree of symmetry. We make use of these
formulae to prove that any proper fold can be propagated to an arbitrary finite number
of rescaled copies of the first foldline and to give reasons why problems involving
infinitely many foldlines are harder to solve.

Keywords Origami · Curved folding · Circular pleat · Folded annulus

Mathematics Subject Classification Primary: 53A05

1 Introduction

In recent years growing attention has been paid to the field of mathematical origami.
The process of folding paper with the intent of crafting objects of art dates back to
ancient China and Japan; although the earliest hard evidence of such an exercise is from
the 16th century, it is possible that paper folding has been already practiced shortly
after paper arrived in Japan via Buddhist monks in the 6th century (Lang 1988). As
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objects of combinatorics and kinematics, origami have been studied by many authors
over a broad and diverse literature (Demaine and O’Rourke 2007; Turner et al. 2016).

Moving from the seminal paper (Huffman 1976), the scientific community has also
investigated the differential geometry of origami obtained by folding along curves,
rather than straight lines. This is due not just to a theoretical interest but also to the
role that surfaces obtainable by bending a flat foil (developables) have acquired in
the interdependent fields of design, manufacturing and architecture in recent years
(Demaine et al. 2011; Kilian et al. 2008; Pottmann et al. 2008; Schiftner et al. 2013;
Schmieder and Mehrtens 2013; Shelden 2002).

Even if the local geometry of folding along a single curve is well understood (Fuchs
and Tabachnikov 1999), the case of a nontrivial pattern of foldlines is challenging and
may require ad hoc solutions (Demaine et al. 2015) or numerical optimization (Jiang
et al. 2019). The main intention of the present paper is to approach the propagation
of a curved fold to the next prescribed foldline from a broad perspective, highlighting
the role played by the regression curve of developables and providing formulae that
describe the phenomenon in its full generality and complexity but that can still be
employed to get new insights on its specificities. Also, we want to address the well
known problem concerning the foldability of patterns involving concentric closed
convex foldlines and contribute to the issue raised at the very end of Demaine et al.
(2011):

… we conjecture that the circular pleat indeed folds, and that so too does any
similar crease pattern consisting of a concentric series of convex smooth curves.
Unfortunately a proof remains elusive. Such a proof would be the first proof to
our knowledge of the existence of any curved-crease origami model, beyond the
local neighborhood of a single crease.

Some existence results were obtained (Demaine et al. 2015) but to the knowledge of
the author no progress has been made in constructing examples of folds alongmultiple
concentric curves.We here finally provide explicit instances of such a kind (Figs. 1, 2),
present arguments that guarantee the existence of folds involving any finite number of
concentric foldlines and give reasons why the proof still remains elusivewhen it comes
to patterns with infinitely many foldlines.Wewant to stress that in this paper we tackle
the curved folding subject from the perspective of isometric maps, without addressing
the issue of continuous deformations, which is nevertheless another interesting and
relevant topic. In our setting, folds as the one in Fig. 2 are legitimate while they would
not be possible if one requires the existence of a continuous deformation: in our
example the linking number of any two curves bounding a developable strip, which is
invariant under isotopy, is different from the linking number of two concentric circles
(Rolfsen 2003).

As for an outline of the content, Sect. 2 settles the notation about some natural
geometric descriptors for curves and surfaces of Euclidean space and recalls how a
surface isometric to the plane admits a ruled parametrization. In Sect. 3 we describe
how paper locally folds along a curve by discussing its behaviour in terms of the
normal curvature and relative torsion of the ridge; the degree of symmetry of the
formulae obtained points out how such parameters are to some extent the natural
ones to describe the problem. In Sect. 4, two methods for folding along a circle and,
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Fig. 1 Fold along two concentric circles of an annulus with inner radius 0.905 and outer radius 1.19. The
two inner developables (green) are obtained by extending the isometry between the unit circle and the
rescaled intersection of the unit sphere with the hyperbolic paraboloid of equation z − 3xy = 0. The outer
developable (white) is induced once the second concentric foldline is prescribed. On the right, we show the
ruled structure of one of the circular sectors of the annulus (equivalent up to reflection)

more in general, along a closed convex curve are described. In Sect. 5, the formulae
describing the relations between two consecutive curved foldlines are presented. In
Sect. 6 we prove that any fold along one foldline can be propagated to any number
of rescaled copies of itself, if the scaling factor is small enough. Finally, in Sect. 7
we discuss how the propagation of a fold can turn singular in an arbitrarily abrupt
manner, implying that an existence proof of foldability on any pattern with infinitely
many prescribed foldlines must involve a control mechanism on the derivative of all
orders. The appendix contains a more thorough discussion of the examples in Figs.
1, 2, employing the formulae from Sect. 5 to make apparent the regularity of the
developables involved.

2 Space curves and parabolic developables

If γ is an arc-length parametrized C3 curve, denoting the derivative with respect to
the arc-length parameter with a prime, we define the Frenet frame of γ as the triple

of orthonormal vectors {T , N , B} :=
{
γ ′, γ ′′

‖γ ′′‖ , γ ′ × γ ′′
‖γ ′′‖

}
. At the same time, if the

curve is known to be lying on a surface of R3 whose unit normal at γ (s) is n(s), we
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Fig. 2 Fold along three concentric circles of an annulus with inner radius 0.86 and outer radius 1.14. The
two middle developables (green) are obtained by extending the isometry between the unit circle and the
toroidal unknot ω3,(9,2) (see Sect. 4). The outer and the inner developables (white) are induced once two
additional concentric foldlines are prescribed. On the right, we show the ruled structure of one of the circular
sectors of the annulus (equivalent up to rotation)

can define also the Darboux frame as {T , u, n} := {γ ′, n×γ ′, n}. The coefficients that
express the first derivative of such bases with respect to the basis itself have significant
geometric meanings,

⎛
⎝
T ′
N ′
B ′

⎞
⎠ =

⎛
⎝

0 k 0
−k 0 τ

0 −τ 0

⎞
⎠

⎛
⎝
T
N
B

⎞
⎠ ,

⎛
⎝
T ′
u′
n′

⎞
⎠ =

⎛
⎝

0 kg kn
−kg 0 τr
−kn −τr 0

⎞
⎠

⎛
⎝
T
u
n

⎞
⎠ .

The nonnegative function k is called curvature of the curve. The geodesic curvature
kg with respect to the given surface is the length of the projection of the curvature
vector k · N to the tangent plane of the surface, spanned by T and u, and signed with
respect to u. The normal curvature kn is the signed length of the projection of the
same curvature vector to the normal direction n. The function τ is called torsion of
the curve, while τr is the relative torsion with respect to the given surface.

For our purposes it will be useful to express the geometric descriptors above as
a function of the angle α between the osculating plane, spanned by T and N , and
the tangent plane of the surface. We measure α anticlockwise by looking at the angle
between B and n from the tip of T . Then

kg = cos(α)k, kn = − sin(α)k, τr = τ + α′.

For a more extensive treatment and additional insights about the quantities and formu-
lae above the reader may refer to do Carmo (2016, Sect. 1-5 and exercise 19 in Sect.
3-2).
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If a regular surface is of class C2, we can compute at each point and in each
tangent direction v its normal curvature, that is the curvature of the section obtained
by intersecting the surfacewith the plane spanned by the tangent v and the normal to the
surface n. Varying v, we call principal curvatures the maximum k1 and the minimum
k2 among the normal curvatures. The product K := k1 · k2 is the Gaussian curvature
of the point. The Theorema Egregium by Gauss guarantees that its value is preserved
under C2 isometries (Hartman and Wintner 1950, pp. 759–760) or (do Carmo 2016,
Sect. 4-3) assuming C3 regularity]. A surface that locally can be obtained as image of
a planar domain by a Ch isometry is called a Ch developable. If h ≥ 2, because of the
invariance just discussed, its Gaussian curvature must be everywhere 0; we call a point
of such a surface parabolic if the two principal curvatures satisfy (up to relabelling)
k1 �= k2 = 0 and flat if instead k1 = k2 = 0.

If parabolic points are dense on the surface, it can be shown that a unique straight
line (a ruling) passes through any of its points and that the tangent plane of the surface
along this line is constant. In the rest of the paper we will be interested in developable
surfaces that have only parabolic points; in this case its representation as a family of
rulings (ruled parametrization) enjoys useful regularity properties.

Theorem 2.1 (Hartman and Wintner 1950, pp. 769–770) Let S be a Ch developable
surface with h ≥ 2 and no flat points. For any point p ∈ S there exist a Ch arc-length
parametrized curve γ : [−ε, ε] → R

3 and a Ch−1 function r : [−ε, ε] → R
3, with

‖r‖ ≡ 1, such that, in a neighbourhood of p, S can be parametrized as a(u, t) =
γ (u) + t · r(u). Moreover, fixed ū, the tangent plane of the surface is constant along
the ruling a(ū, t).

Before moving to the next section we recall the elementary fact at the core of the
local geometry of curved folding.

Lemma 2.2 (do Carmo 2016, Sect. 4-2) The geodesic curvature of a planar curve is
preserved under isometries of the planar domain in which it is contained.

3 Local curved folding

In the following, folding along a foldline, which is a curve contained in an open
domain of R2, means the isometric mapping of such a planar domain onto two C1

good surfaces (decomposable as a finite complex of C2 regions joined by vertices and
C2 edges, Demaine et al. 2011) that meet with C0 regularity (and not more) along the
image of the foldline. With folding the foldline onto a space curve we mean folding
along the foldline in such a way that its image under the isometry is the given space
curve, which we call the ridge. A visualization of a curved fold about a point of a
C2 ridge is given in Fig. 3. In Demaine et al. (2015), where local curved folding onto
good surfaces is thoroughly studied, it is shown that, in order to construct an isometry
on both sides of the foldine, the regularity of the ridge cannot be C1 while not being
C2 so, unless the ridge is kinked, its Frenet frame is well-defined. In the rest of the
paper we will be mainly interested in folding along foldlines and onto ridges whose
regularity is at least C3.
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Fig. 3 {T , N , B} is the Frenet frame of the ridge, while {T , u−, n−} its Darboux frame with respect to
the outer green surface oriented by n−. The tangent plane to the surface is spanned by T and u− and the
the ruling direction r− lies on it. The Darboux frame of the inner white surface can be obtained by simply
rotating {T , u−, n−} by −2α− about T

In order to fix the notation and to explain why Fig. 3 is substantially the only
way a local curved fold can look like we recall a couple of formulae from Fuchs and
Tabachnikov (1999). These describe how paper locally folds along a givenC3 foldline
with curvature kg > 0 once a C3 ridge is prescribed. We call n+ the normal to the
developable such that the angle α+ between the binormal vector B of the Frenet frame
of γ and n+, measured anticlockwise with respect to T = γ ′, has value 0 < α+ < π

2 .
Analogously, the normal n− and the angle α− are defined for the other developable to
satisfy 0 > α− > −π

2 . Since geodesic curvature is preserved by Lemma 2.2, denoting
with k the curvature of the ridge γ , we have

cos(α+)k = kg = cos(α−)k,

and therefore α+ = −α− if, as in our definition of folding, the transition from one
side to the other must be just C0. More precisely, a fold is called proper when the
above relation is well defined and α+ �= 0, π

2 which is the case iff k > kg and kg �= 0.
For intuition, α+ �= 0 ensures some folding is actually happening and α+ �= π

2 that
the developables on the two sides do not overlap each other.

Lemma 3.1 (Fuchs and Tabachnikov 1999) Given a C3 foldline γ̄ and a C3 ridge
of the same length γ with curvatures 0 < kg < k, then, on the two sides of the
osculating plane of γ , two different proper folds are possible along γ̄ onto γ and the
unit directions of the rulings of the developables are given by
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rS = τ(r ,S)T − k(n,S)

(
cos(αS)N + sin(αS)B

)
√

τ 2(r ,S) + k2(n,S)

, S ∈ {+,−},

where {T , N , B} is the Frenet frame of γ . The symbols τ(r ,+), k(n,+) denote the relative
torsion resp. the normal curvature of γ with respect to the developable whose normal
n+ forms with B the angle 0 < α+ < π

2 , when measured anticlockwise with respect
to T . Analogous notation is used for τ(r ,−), k(n,−), −π

2 < α− < 0 and n− for the
second developable.

The next lemma relates the normal curvature and relative torsion of a ridge with
respect to one developable to the normal curvature and relative torsion of the same
ridge with respect to the developable on the opposite side.

Lemma 3.2 In the notation of Lemma 3.1, we have the equalities

k(n,S) = −k(n,S̄),

τ(r ,S) = τ(r ,S̄) − 2α ′̄
S

= τ(r ,S̄) − 2
k′
gk(n,S̄) − kgk′

(n,S̄)

k2g + k2
(n,S̄)

,

where S ∈ {+,−} and S̄ is the opposite sign of S.

Proof By direct computation,

τ(r ,S) = τ + α′
S = τ(r ,S̄) − α ′̄

S
− α ′̄

S
= τ(r ,S̄) − 2α ′̄

S

= τ(r ,S̄) + 2
(cos(αS̄))

′

sin(αS̄)
= τ(r ,S̄) − 2

(
kg/

(√
k2g + k2

(n,S̄)

))′

k(n,S̄)/
(√

k2g + k2
(n,S̄)

)

= τ(r ,S̄) − 2
k′
gk(n,S̄) − kgk′

(n,S̄)

k2g + k2
(n,S̄)

.

	

By calling βS the functions measuring, anticlockwise with respect to B, the angle

between T and rS , direct computations provide the following lemma.

Lemma 3.3 Given a proper fold along the C3 foldline γ̄ onto the C3 ridge γ , the
angles βS between T and rS, for S ∈ {+,−}, satisfy

cos(βS) = τ(r ,S)√
τ 2(r ,S) + k2(n,S)

, sin(βS) = −k(n,S)√
τ 2(r ,S) + k2(n,S)

, cot(βS) = − τ(r ,S)

k(n,S)

and

β ′
S = − (cos(βS))

′

sin(βS)
= τ ′

(r ,S)k(n,S) − k′
(n,S)τ(r ,S)

τ 2(r ,S) + k2(n,S)

.
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Lemma 3.4 The developable surfaces on the two sides of a proper curved fold have
no planar points.

Proof By knowing the normal curvature k(n,S) of the ridge with respect to the devel-
opable surface and the angle βS its tangent forms with the ruling direction, we can
retrieve the nonzero principal curvature k(p,S) by using Euler’s formula (do Carmo
2016, Sect. 3-2),

k(p,S) = k(n,S)

sin(βS)2
.

Since we are considering proper folds, this expression is well defined and nonzero.
Finally, it is a classical result that if a ruling contains a parabolic, resp. a flat point,
then all of its points must be parabolic, resp. flat (Spivak 1979, Cor. 6, Chap. 5). 	


Although in general the regularity of the ruled parametrization of a developable
surface is not greater than C0 (see Ushakov 1996 for an explicit analysis of this
phenomenon), if the developable presents no planar rulings as in the case of a proper
fold then the regularity of the surface passes over to the ruled parametrization in
the way described in Theorem 2.1. In particular, if the foldline and the ridge are of
regularity class Ch then the ruled parametrization is Ch−2.

The last task we tackle in this section is concerned with locating singular points of
the developables of a proper fold, that is identifying the so called regression curve,
obtained as the envelope of the family of rulings of the developable:

RS = γ − 〈γ ′, r ′
S〉

〈r ′
S, r

′
S〉
rS = γ + sin(βS)

β ′
S + kg

rS .

This expression is easy to obtain by computing the limit intersection of two rulings
approaching each other in the developed state (the formula can for example be found in
Sabitov (2009), where developables of low smoothness are investigated in relation to
their regression curve). In the setting of proper folding, if we assume the developable
is C2 then r is C1 and the regression curve must be projectively continuous, that is it
can possibly have points at infinity. If r is just piecewise C1, the expression above is
still well-defined if one allows jump discontinuities to occur.

4 Local folding along closed convex curves

In this short section we provide two ways one can construct closed space curves onto
which it is locally possible to fold along closed convex foldlines. The fact that the
curvature of the ridge must everywhere be strictly greater then the curvature of the
foldline (Lemma 3.1) implies a necessary condition to proper fold along a closed curve
(Fuchs and Tabachnikov 1999): the total curvature of the ridge must be strictly greater
than 2π , preventing it from lying in a plane by Fenchel’s theorem (Fenchel 1929).
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Ridges on a sphere

If a curve on the unit sphere is longer than 2π then, by adequate rescaling, it is possible
to fold onto the curve along the unit circle, i.e. it is possible to extend the isometry
between the two curves to a local curved fold.

Lemma 4.1 Let ω be a closed C3 curve of length L > 2π on the unit sphere, then it
is possible to proper fold along the unit circle onto γ := 2π

L ω.

Proof Since ω lies on the unit sphere, its curvature is greater or equal to 1, the normal
curvature with respect to the sphere being everywhere 1. Therefore, the curvature k
of γ satisfies k > 1. This guarantees that the unit circle and the ridge γ satisfy the
hypotheses of Lemma 3.1. 	


The two inner developables of Fig. 1 (in green) are an example of a proper fold
along the unit circle obtained by such a construction.

Ridges on a torus

Toroidal curves are another interesting class of space curves suitable for proper folding
along any convex closed foldline. For a ∈ R, p, q ∈ N and λ := q/p, we consider
the family of curves on [0, p2π ] given by

ωa,(p,q)(t) := ((
a + cos(λt)

)
cos(t),

(
a + cos(λt)

)
sin(t), sin(λt)

)
.

For any fixed value of a, the curvature of the curve can be made arbitrarily close to 1
everywhere by picking a large value of q. Since the length of the curve is monotone
in a, by rescaling the curve to be of length 1, we can obtain ridges of arbitrarily
large minimum curvature. These are therefore suitable to proper fold along any closed
convex foldline. By writing down the expression for the torsion one can additionally
observe that in this regime its value tends to be 0 everywhere. Since the first derivative
with respect to t of the curvature function can bemade everywhere arbitrarily small and
with that the angle α between the osculating and the tangent planes close to constant,
we can even force the rulings emanating from the ridge to be about orthogonal to the
tangent direction everywhere along the curve. Self-intersections of the developables
obtained may occur.

The idea of employing a toroidal curve as the ridge of a curved fold was already
mentioned as an example in Wasem (2011). Moreover, in Ghomi (2007) it is shown
that in the isotopy class of any C2 knot of the space there exists a C∞ knot of constant
curvature which is arbitrarily close to the first one both in trajectory and tangent
direction. Since the curvature of the approximating knot can be chosen to be any value
larger then the maximum curvature of the starting knot, constructions as the one we
described for toroidal curves are possible in a much broader setting (Fig. 4).
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Fig. 4 Fold along the unit circle of an annulus of width 2/10 onto the rescaled toroidal knot ω3,(9,2)

5 Propagation to the next foldline

In this section we look at folds involving two foldlines. In particular we first fold along
the first foldline by prescribing a ridge as we did in Sect. 3 and then we induce, if the
isometry on one of the two sides extends suitably till the second foldline, a proper fold
(consistent with the first one) along such a curve as well.

Let γ̄1 and γ̄2 be two non-intersecting planar curves of nonzero curvature in an open
domain D of R2. We construct a proper fold along γ̄1 onto the ridge γ1 and assume
that the isometries on the two sides of it extend to the whole domain D; this means
that exactly one ruling passes through any of the point of D different from those of
γ̄1 and that the preimage of the regression curve of the developable is not reached
within the domain along the ruling. We also assume that no rulings coming out of γ̄1
are tangent to γ̄2 where they intersect it for the first time. Under these premises, the
restriction of the isometry of D to the second foldine induces a ridge γ2 onto which
it is possible to proper fold along γ̄2. We guarantee this by arguing that all points of
the developables of a proper fold are parabolic by Lemma 3.4 and that no rulings are
tangent to γ2; therefore, its normal curvature with respect to the developable must be
different from zero, ensuring that also γ̄2 and γ2 satisfy the hypotheses of Lemma 3.1.

Note that our assumptions do not imply that all the rulings emanating from γ1
interesect γ2. Nevertheless, by possibly restricting D we can force a bijection between
the two curves mediated by the family of rulings, associating to a point γ1(s1) the
point γ2

(
s2(s1)

)
, obtained as the first intersection of the ruling emanating from γ1(s1)

with γ2, s1 and s2 being the respective arc-legth parameters (Fig. 5).
If we want now to propagate the proper fold along γ̄2 onto γ2 and we want it to

be consistent with the first one, we have only one choice, since by Lemma 3.1 the
developables of a proper fold lie on the same side of the osculating plane of the ridge
and one of them is already prescribed by the first fold.
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Fig. 5 One of the two isometries obteined after proper folding along γ̄1 extends to the foldline γ̄2. The
domain has possibly been trimmed to guarantee a bijection provided by the rulings between the foldlines

In the next lemma we express the normal curvature and the relative torsion of γ2
with respect to the developable obtained by proper folding onto γ1, in function of the
normal curvature and the relative torsion of γ1.

Lemma 5.1 Let γ1 and γ2 be two non-intersecting curves on a C2 developable sur-
face whose points are all parabolic. We assume that the two curves have nonzero
geodesic curvature, nonzero normal curvature (their tangents are never parallel to
the rulings) and that a bijection γ1(s1) ←→ γ2

(
s2(s1)

)
is induced by considering

the first intersection point between γ2 and the ruling through γ (s1). If δ is the angle
between the tangent vectors at correspondent points γ ′

1(s1) and γ ′
2

(
s2(s1)

)
, measured

anticlockwise with respect to the surface normal n, then

(
k2,n
τ2,r

)
= 1

s′
2

(
cos(δ)k1,n + sin(δ)τ1,r

− sin(δ)k1,n + cos(δ)τ1,r

)
= 1

s′
2
R−δ

(
k1,n
τ1,r

)
= k2,g

δ′ + k1,g
R−δ

(
k1,n
τ1,r

)
,

where ki,g,ki,n and τi,r respectively are the geodesic curvature, the normal curvature
and the relative torsion of γi with respect to the developable, for i ∈ {1, 2}. Rω denotes
the anticlockwise rotation by the angle ω.

Proof Let n1, n2 be the restriction of the surface normal n to the curves γ1, γ2 and
{γ ′

1, u1, n1}, {γ ′
2, u2, n2} the respective Darboux frames. Since the surface normal is

constant along the ruling we have

s′
2(s1)

(
− k2,n(s2(s1))γ

′
2

(
s2(s1)

)−τ2,r (s2(s1))u2
(
s2(s1)

))

= s′
2(s1)n

′
2

(
s2(s1)

)= (
n2

(
s2(s1)

))′= (
n1(s1)

)′= −k1,n(s1)γ
′
1(s1) − τ1,r (s1)u1(s1).

The vectors γ ′
2 and u2 can be obtained rotating respectively γ ′

1 and u1 by δ about the
surface normal n and thus, interpreting k1,n , τ1,r and k2,n , τ2,r as coordinates of the
same vector in different bases we get
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(
k2,n
τ2,r

)
= 1

s′
2
R−δ

(
k1,n
τ1,r

)
.

To express the velocity s′
2 we look at the developed state γ̄1, γ̄2 of the two curves and

exploit the relation γ̄ ′
2 = Rδγ̄

′
1 at correspondent points. By taking the derivative with

respect to s1 we obtain

s′
2γ̄

′′
2 = δ′RδR π

2
γ̄ ′
1 + Rδγ̄

′′
1 ,

which provides s′
2 = (δ′ + k1,g)/k2,g . 	


Wewant now to point out an additional way of computing the normal curvature and
the relative torsion of the second ridge once a proper fold is prescribed for the first one.
This expressionwill highlight the role played by the regression curve in the propagation
and provide a direct formula for computing the velocity of the parametrization of the
second ridge induced by the rulings correspondence.

Lemma 5.2 Let γ1, γ2 be two curves on a developable surface as in Lemma 5.1. Let
also β(1,S) be the angle between the tangent γ ′

1(s1) and the ruling direction and β(2,S)

the one between γ ′
2

(
s2(s1)

)
and the same ruling direction (Fig. 5). If v̄ is the distance

between γ1(s1) and γ2
(
s2(s1)

)
, then

k(2,n,S) =
(
sin(β(2,S))

sin(β(1,S))

)2 k(1,n,S)

1 − v̄
β ′

(1,S)
+k(1,g)

sin(β(1,S))

,

τ(2,r ,S) = −
(
cos(β(2,S))

sin(β(1,S))

)(
sin(β(2,S))

sin(β(1,S))

)
k(1,n,S)

1 − v̄
β ′

(1,S)
+k(1,g)

sin(β(1,S))

.

Proof As shown inLemma5,Chap. 5 of Spivak (1979), the nonzero principal curvature
along a parabolic ruling γ + v · r can be written as

k(p,S)(v) = 1(
sin(β(1,S))

)2
k(1,n,S)

1 − v · β ′
(1,S)

+k(1,g)

sin(β(1,S))

.

This expression has been constructed by requiring the reciprocal of a linear function
to attain the value k(1,n,S)/

(
sin(β(1,S))

)2 at v = 0 and being indeterminate at the
parameter v corresponding to the intersection with the regression curve. Evaluating
at v̄, applying Euler’s formula and recalling that cot(β(2,S)) = −τ(2,r ,S)/k(2,n,S), we
obtain the desired formulae for k(2,n,S) and τ(2,r ,S). 	

Lemma 5.3 Let γ1, γ2 be two curves on a developable surface as in Lemma 5.1. With
v̄ as in Lemma 5.2, the velocity of the parametrization of the second ridge γ2

(
s2(s1)

)
can be expressed as

s′
2 = sin(β(1,S))

sin(β(2,S))

(
1 − v̄

β ′
(1,S) + k(1,g)

sin(β(1,S))

)
.
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Proof By Lemma 5.1, we have

s′
2 = cos(δ)k(1,n,S) + sin(δ)τ(1,r ,S)

k(2,n,S)

.

We conclude the claim of the lemma by observing that β(2,S) = β(1,S) − δ and hence

cos(δ)k(1,n,S) + sin(δ)τ(1,r ,S) = k(1,n,S)(cos(δ) − sin(δ) cot(β(1,S))

= k(1,n,S)

sin(β(2,S))

sin(β(1,S))
.

	

For what concerns the propagation of a curved fold, we can use Lemma 3.2 and

Lemma 5.1 to compute, as a function of the normal curvature and relative torsion of
the ridge γ1, the normal curvature and relative torsion of the second ridge γ2 with
respect to the developable obtained after proper folding also on the other side of γ2.
Although the formulae are not simple, such a construction can possibly be iterated
to further propagate the fold when several foldlines are prescribed, the propagation
being uniquely determined by the chosen foldlines together with the normal curvature
and relative torsion of the first ridge. Fig. 1 and 2 show two examples of a pleated
annuluswithmultiple folds, drawn via their explicit parametrizations, which have been
obtained by the propagation process just described. The details on how to guarantee
the regularity of such a construction are given in the appendix.

Proposition 5.4 Let γ1, γ2 be two curves on a developable surface M as in Lemma
5.1, then there is a unique way to propagate the fold onto γ2. In more detail, there
is a unique way to properly fold onto γ2 (along the foldline with the correspective
geodesic curvature) in a consistent way with the pre-existing developable M. The
normal curvature and the relative torsion k(2,n,S), τ(2,r ,S) of γ2 with respect to the new
developable can be expressed as

k(2,n,S) = − k(2,n,S̄),

τ(2,r ,S) = τ(2,r ,S̄) − 2

(s′
2)

2
(
k2
(2,n,S̄)

+ k2(2,g)

) ·
(
s′′
2 k(2,n,S̄)k(2,g)

+ s′
2

(
k(2,n,S̄)k

′
(2,g) − τ(2,r ,S̄)k(2,g)

(
s′
2k(2,g) − k(1,g)

))

− k(2,g)

(
cos

(
β(1,S) − β(2,S)

)
k′
(1,n,S̄)

+ sin
(
β(1,S) − β(2,S)

)
τ ′
(1,r ,S̄)

))
,

where k(1,g), k(1,n,S̄), τ(1,r ,S̄) and k(2,g), k(2,n,S̄), τ(2,r ,S̄) respectively are the geodesic
curvature, the normal curvature and the relative torsion of γ1 and γ2 with respect to
M. Finally, β(1,S), β(2,S) are the angles between the tangents γ ′

1, γ ′
2 and the ruling

direction rS at corresponding points γ1(s1), γ2
(
s2(s1)

)
.

Proof Direct computation by Lemmas 3.2 and 5.1. 	


123



32 Beitr Algebra Geom (2022) 63:19–43

Corollary 1 We can employ δ = β(1,S) − β(2,S) to rewrite the formula for the relative
torsion from Proposition 5.4 in a slightly more compact way,

τ(2,r ,S) =τ(2,r ,S̄) − 2

k2
(2,n,S̄)

+ k2(2,g)

(
k(2,g)

δ′ + k(1,g)

)2

·
(
k(2,n,S̄)

(
δ′′ + k′

(1,g)

)

− τ(2,r ,S̄)

(
δ′ + k(1,g)

)
δ′ − k(2,g)

(
cos(δ)k′

(1,n,S̄)
+ sin(δ)τ ′

(1,r ,S̄)

))
.

Remark 5.5 By Lemmas 5.1 and 5.3, k(2,n,S̄), τ(2,r ,S̄) and s′
2 depend only on the pre-

scribed foldlines and on the values of k(1,n,S̄) and τ(1,r ,S̄) and their first derivative at
the point of interest. By this, s′′

2 depends on the derivatives of k(1,n,S̄) and τ(1,r ,S̄) up
to the second order.

Observation 5.6 If the two foldlines γ̄1 and γ̄2 are very close to each other, for example
γ̄2 being a very gentle offset of γ̄1 in the direction of γ̄ ′′

1 , we can approximate k(1,g) ∼
k(2,g), k(2,n,S̄) ∼ k(1,n,S̄), τ(2,r ,S̄) ∼ τ(1,r ,S̄) and δ ∼ 0 to obtain

τ(2,r ,S) ∼ τ(1,r ,S̄) − 2
k(1,n,S̄)k

′
(1,g) − k′

(1,n,S̄)
k(1,g)(

k2
(1,n,S̄)

+ k2(1,g)

) ∼ τ(1,r ,S).

This, matching the expression for the relative torsion from Lemma 3.2, shows that in
this extreme setting the developable on the other side of M with respect to γ2 (the new
one we want to define) is approximately a continuation of the developable on the other
side of M with respect to γ1. A more formal discussion of this behaviour will be given
in Sect. 6.

6 Propagation to several foldlines

In this section we discuss how for any natural number N , by choosing a family of
uniformly rescaled foldlines close enough to each other, it is possible to propagate
the proper fold along the first foldline onto an arbitrary ridge to the remaining N − 1
foldlines in the way we described in Sect. 5. Fig. 6 provides a visualization of what
we mean with uniformly rescaled; the rigorous definition of such a family is given
directly in Theorem 6.1.

Theorem 6.1 Let γ̄1 be a C∞ foldine with nonzero curvature along which a proper
fold onto the C∞ ridge γ1 is locally well defined. Let p ∈ R

2 be such that no ray
γ̄1 − p is parallel to γ̄ ′

1 then, for any N ∈ N, there exists a scaling factor c̄ > 0 such
that for all 0 < c < c̄ the proper fold along γ̄1 propagates to the family of foldlines
γ̄ j = (1+ ( j − 1) · c)(γ̄1 − p) + p for 1 < j ≤ N, possibly restricting the definition
domain [a j , b j ] of γ̄ j to [a j + ρ j (c), b j − ρ j (c)] with limc→0 ρ j (c) = 0.

For the sake of clarity, we proceed by presenting a technical lemma before providing
the actual proof of the theorem, which is essentially obtained as a consquence of
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Fig. 6 Family of foldlines obtained by rescaling γ̄1 with respect to the center p

Observation 5.6 plus somework to make the argument rigorous. Given a scaling factor
c, in the following we will always assume the family γ̄ j defined as in the statement of
the theorem. If s1 is the arc-length parameter of γ̄1 then the arc-length parameter s j
of γ̄ j can be expressed as l j (s1) = s1/(1 + ( j − 1) · c).

Although the statements of Theorem 6.1 and Lemma 6.2 are given for a positive
value of c, this is just for convenience, and analogous conclusions hold for rescaled
copies of γ̄1 on the same side of p (c < 0).

Lemma 6.2 Let γ̄1 be a C∞ planar curve with nonzero curvature parametrized by arc-
length over the interval I . Assume that p ∈ R

2 is such that no ray γ̄1 − p is parallel
to γ̄ ′

1. If r̄ is a C
∞ family of ruling directions defined on I , such that no direction r̄ is

parallel to γ̄ ′
1, then for any open interval A ⊂ I and any j ∈ N there exists c̄ > 0 such

that for any 0 < c < c̄ the family of rulings direction r̄ identifies a bijection between
γ̄ j

(
l j (A)

)
and γ̄ j+1

(
s j+1

(
l j (A)

))
, constructed by considering the intersection of the

line γ̄ j
(
l j (s1)

)+v · r̄(s1) with the curve γ̄ j+1 on the side pointed by γ̄ j − p.
Moreover, if β j and β j+1 are the angles between r̄ and γ̄ ′

j and γ̄ ′
j+1 respectively,

then

lim
c→0

|β(h)
j+1

(
s j+1(s j )

)−β
(h)
j (s j )| = 0, ∀ 0 ≤ h ∈ N, and

lim
c→0

|s′
j+1 − 1| = lim

c→0
|s(h)

j+1| = 0, ∀ 2 ≤ h ∈ N,

Here all derivatives are taken with respect to s j and r̄ is considered as the function
r̄
(
l−1
j (s j )

)
.

Proof By the definition of γ̄ j , since by continuity limc→0 γ̄ ′
j+1

(
l j+1(s1)

)
= limc→0 γ̄ ′

j

(
l j (s1)

)= γ̄ ′(s1) we have

lim
c→0

|β j+1
(
s j+1(s j )

)−β j (s j )| = 0.
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By the expression for the velocity given in Lemma 5.3 we obtain, for v(c, s1) such
that γ̄ j

(
l j (s1)

)+v(c, s1) · r̄(s1) = γ̄ j+1
(
s j+1

(
l j (s1)

))
,

lim
c→0

s′
j+1 = lim

c→0

sin β j

sin β j+1

(
1 − v(c, s1)

β ′
j + k j

sin(β j )

)
= 1,

where k j is the curvature of the j-th foldline. For the derivatives of higher order of
s j+1, β j+1 and β j we recall from Lemma 5.1 that s′

j+1 = (
k j + (β j − β j+1)

)
/k j+1

and therefore

lim
c→0

β ′
j+1 = lim

c→0
β ′
j − s′

j+1k j+1 + k j = lim
c→0

β ′
j .

The statement follows by alternately taking the derivatives with respect to s j of the
expressions for s′

j+1 and β ′
j+1 (induction on the derivatives of lower order). 	


We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1 We proceed by induction, assuming the existence of c̄ such that
the proper fold along γ̄1 onto γ1 propagates to the first N foldlines for all 0 < c < c̄.
More precisely, the inductive hypothesis we want to iterate claims that for 0 < c < c̄
a bijection between γ̄ j (s j ) and γ̄ j+1

(
s j+1(s j )

)
(or equivalently between γ j and γ j+1)

is identified by the rulings of the developable between the curves for j < N , possibly
restricting to suitable open sets. Besides, fixed any ε > 0 and H ∈ N we also ask that
in the same range of c the normal curvature and the relative torsion of the ridge γ j

with respect to the developable on the opposite side of the scaling center p satisfy

|k(h)
( j,n,S j )

(
s j (s j−1(...s2(s1)))

)−k(h)
(1,n,S j )

(s1)| < ε,

| τ (h)
( j,r ,S j )

(
s j (s j−1(...s2(s1)))

)− τ
(h)
(1,r ,S j )

(s1)| < ε, ∀ j ≤ N , h ≤ H ,

where S j has been assumed without loss of generality being+ or− if j is respectively
odd or even. The derivatives are taken with respect to the arc-length parameter s j of
the ridge of interest. Finally, still in the inductive hypothesis we ask for guarantees that
the speed of the reparametrization mediated by the ruling s j+1(s j ) does not deviate
too much from the arc-length, requiring also

|s′
j+1 − 1| < ε,

|s(h)
j+1| < ε, ∀ j < N , 1 < h ≤ H .

Assuming the inductive hypothesis for N ≥ 1, whose basis is simply provided by
the knowledge that we can properly fold along γ̄1 onto γ1, we show that it also holds
for N + 1. We carry over the proof for N odd, the even case being analogous. Since
the angle between a ruling and the tangent to the ridge is a continuous function of
k(N ,n,+) and τ(N ,r ,+) and their derivatives, for any ε > 0 and H ∈ N, we can choose
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c̄ small enough to guarantee that

|β(h)
( j,+)

(
s j (s j−1(...s2(s1)))

)−β
(h)
(1,+)(s1)| < ε, ∀ j ≤ N , h ≤ H .

The fold along γ̄1 being proper, the regression curve of the two developables on which
γ1 lies is at nonzero distance from the ridge along the ruling. If ε is small enough, such
a property passes over to the regression curves of the developables on the two sides of
γN . We can require c̄ to be small enough to have γ̄N+1 within the minimum of such
distances and hence obtain the desired bijection γN+1

(
sN+1(sN )

)
up to restriction of

the definition domains.
Next step is to control the normal curvature and the relative torsion of γN+1 with

respect to the developable on the negative side. Bymaking use of the inductive hypoth-
esis on the speed of the bijections s j and possibly further decreasing c̄, we have for
l j (s1) = s1/(1 + ( j − 1) · c)

|β(h)
( j,+)

(
l j (s1)

)−β
(h)
(1,+)(s1)| < ε, ∀ j ≤ N , h ≤ H .

Hence, for r̄ chosen to be the development of the rulings direction from γ1 to γ2,
Lemma 6.2 together with the triangular inequality allows us to conclude the desired
condition on the speed of the reparametrization sN+1(sN ) and the following bounds
on the angle β(N+1,+) and its derivatives

|β(h)
(N+1,+)

(
sN+1(sN (...s2(s1))

)−β
(h)
(1,+)(s1)| < ε.

Finally, Proposition 5.4 provides expressions for k(N+1,n,−) and τ(N+1,r ,−) which
continuously depend on the values of β(N ,+) and β(N+1,+) and their derivatives up to
degree 2. For c̄ small enough we can therefore guarantee that

|k(N+1,n,−)

(
sN+1(...s2(s1)))

)−(−k(1,n,+)(s1)
)|<ε,

|τ(N+1,r ,−)

(
sN+1(...s2(s1)))

)−
(
τ(1,r ,+) −2

k(1,n,+)k′
(1,g) − k′

(1,n,+)k(1,g)(
k2(1,n,+) + k2(1,g)

)
)

(s1)|< ε,

where k(1,g) is the geodesic curvature of γ̄1. Again exploiting the condition on the
speed of the bijections s j up to j = N + 1, the inductive hypothesis on the derivative
of β(N+1,+) and possibly making c̄ smaller enough, for any H we conclude the desired
bounds

|k(h)
(N+1,n,−)

(
sN+1(s j−1(...s2(s1)))

)−k(h)
(1,n,−)(s1)| < ε,

| τ (h)
(N+1,r ,−)

(
sN+1(s j−1(...s2(s1)))

)− τ
(h)
(1,r ,−)(s1)| < ε, ∀ h ≤ H − 2.

This completes the inductive step and with that the proof of the theorem. 	

Observation 6.3 If γ̄1 is a closed convex curve then the scaling center p must be in
its interior and no restriction of the definition domains is ever needed, once a scaling
factor c small enough to guarantee the propagation has been found.

123



36 Beitr Algebra Geom (2022) 63:19–43

Observation 6.4 If we are not interested in mantaining a constant scaling factor c,
then it is easy to propagate a proper fold onto an arbitrary ridge to infinitely many
additional foldlines. We can in fact just proceed by induction: once the n-th proper
fold is determined we prescribe the (n + 1)-th foldline by scaling the previous one by
a factor small enough to make the curve contained in the interior of the domain on
which the isometry identifying the next developable is well-defined.

Before moving to the next section it is worth pointing out that we focused our
attention on patterns consisting of rescaled copies of the same foldline as this is the
setting framing the conjecture from Demaine et al. (2011). Nevertheless, the same
argument can be used to guarantee the regular propagation over a pattern obtained by
perturbing the rescaled foldlines in a way that all the derivatives up to the relevant
order can still be uniformly controlled with respect to each other.

7 Why the propagation to infinitely many prescribed foldlines is hard

In this section we show that the propagation of a proper fold can turn singular with
an arbitrarily abrupt behaviour. More precisely, we will show that for any proper fold
involving N foldlines in the sense of Sect. 6, we can construct a proper fold over the
first N − 1 foldlines whose ridges are arbitrarily close to those of the first fold up to
the derivative of order 3 but such that a non-singular isometry between the (N − 1)-th
and the N -th foldline cannot be consistently constructed. This will provide evidence
that in general inductive strategies taking into account only derivatives up to a finite
order cannot be employed to guarantee the propagation of a curved fold to a prescribed
infinite family of foldlines.

Proposition 7.1 Let γ̄ j be a family of N non-intersecting C2N foldlines such that the
proper fold along γ̄1 onto the C2N ridge γ1 propagates sequentially to the foldlines 2
to N identifying bijections between ridges γ j (s j ) ↔ γ j+1(s j+1(s j )) induced by the
rulings correspondence. Then, there exists a ridge γ̃1 such that a proper fold along
γ̄1 onto γ̃1 propagates, possibly up to restriction of the definition domains, to the
foldlines 2 to N − 1, inducing ridges γ̃ j , but not to the N-th foldline, some of the
rulings emanating from γ̄N−1 on the side of γ̄N crossing the regression curve before
hitting the last foldline. Moreover, for any ε > 0, γ̃1 can be chosen such that

max |k( j,n,S j ) − k̃( j,n,S j )| < ε,

max | τ( j,r ,S j ) − τ̃( j,r ,S j ) | < ε, ∀ 1 ≤ j ≤ N − 1.

where k( j,n,S j ), τ( j,r ,S j ) and k̃( j,n,S j ), τ̃( j,r ,S j ) are the normal curvature and relative
torsion respectively of γ j and γ̃ j with respect to the developable emanating from the
ridge j on the side of j + 1.

Again, we first provide a technical lemma.
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Lemma 7.2 In the hypotheses of Theorem 7.1, with the notation k1 := k(1,n,S1) and
τ1 := τ(1,r ,S1), for j > 1 we have the equalities

τ( j,r ,S j ) = τ
(2 j−2)
1 · f j

(
s1, k1, k

′
1, ..., k

(2 j−3)
1 , τ1, τ

′
1, ..., τ

(2 j−3)
1

)

+ g j

(
s1, k1, k

′
1, ..., k

(2 j−2)
1 , τ1, τ

′
1, ..., τ

(2 j−3)
1

)
, and

k( j,n,S j ) = q j

(
s1, k1, k

′
1, ..., k

(2 j−3)
1 , τ1, τ

′
1, ..., τ

(2 j−3)
1

)
.

Here f j , g j and q j are C∞ functions depending only on the family of foldlines, and
such that f j never attains the value 0 if evaluated as above (the argument s1 of k1 and
τ1, and s j (s j−1(...s2(s1)) of τ( j,r ,S j ), k( j,n,S j ) have been omitted for brevity).

Proof We proceed by induction, the basis step being provided by Proposition 5.4,
where s′′

2 is rewritten making use of the expressions for s′
2 from Lemma 5.3 and

for β ′
(1,S1)

from Lemma 3.3. We employ a similar strategy to prove the inductive
step, applying Proposition 5.4 between ridges j and j + 1. The characterization for
k( j+1,n,S j+1) = −k( j+1,n,S̄ j+1)

is easily obtained after observing that by Lemma 5.1 it
depends only on k( j,n,S̄ j )

and τ( j,r ,S̄ j )
and their first derivative, and concluding by the

inductive hypothesis. We look then at the term s′′
j+1k( j+1,n,S̄ j+1)

k( j+1,g) containing
the derivative of highest order of the expression for τ( j+1,r ,S̄ j ). Further decomposing

s′′
j+1, by Lemmas 5.3 and 3.3 we end up looking at

−τ ′′
( j,r ,S j )

v̄k( j,n,S j )

τ 2( j,r ,S j )
+ k2( j,n,S j )

k( j+1,n,S̄ j+1)
k( j+1,g),

as the term of highest differential order in τ( j,r ,S j ), where v̄ is the distance function
between γ j and γ j+1 along the ruling. Again we conclude by induction after observing
that the factor multiplying τ ′′

( j,r ,S j )
is nonzero. 	


Proof of Proposition 7.1 Without loss of generality in the proof argument, we assume
S1 = + and N even with SN−1 = S̄N = +.

For any s1 and M ∈ R, we can locally perturbate τ
(2N−3)
1 to τ̃

(2N−3)
1 , for example

with a very steep bump function, to have τ̃
(2N−3)
1 (s1) = M , but still for any ρ > 0,

taking the antiderivatives of τ̃
(2N−3)
1 with suitable boundary conditions

max |τ (h)
1 − τ̃

(h)
1 | < ρ, h < 2N − 3,

which is possible because we are constraining finitely many antiderivatives defined
on compact domains. We define γ̃1 as the ridge having k̃1 := k1 and τ̃1 as normal
curvature and relative torsion and propagate the fold along γ̄1 onto such a ridge. By
Lemmma 7.2 if ρ is small enough, again by continuity and compactness, the normal
curvature and the relative torsion of the new ridges γ̃1 to γ̃N−1 are arbitrarily close to
those of the original ridges γ1 to γN−1, which proves the second part from the claim
of the theorem.

123



38 Beitr Algebra Geom (2022) 63:19–43

Fig. 7 For the three developables of Fig. 2, comparison of the signed distance along the ruling between
concentric circles d( j,S) and between the ridge and the regression curve v̄( j,S). The surfaces are regular
since the rulings reach the next foldline without first crossing the regression curve

It remains to show that we can exploit the perturbation freedomwe have on τ̃
(2N−3)
1

to (heavily) modify the behaviour of the regression curve of the developable between
the ridges N − 1 and N . We do that by recalling that the distance of such a curve from
the ridge along a ruling emanating from γ̃N−1 is given by

sin(β̃(N−1,+))

β̃ ′
(N−1,+) + k(N−1,g)

and β̃ ′
(N−1,+) = τ̃ ′

(N−1,r ,+)k̃(N−1,n,+) − k̃′
(N−1,n,+)τ̃(N−1,r ,+)(

τ̃ 2(N−1,r ,+) + k̃2(N−1,n,+)

) ,

where β̃(N−1,+) is the angle function between the ruling and the tangent γ̃ ′
N−1 and

k(N−1,g) is the curvature of the respective foldline. By Lemma 7.2, τ̃ ′
(N−1,r ,+) can be

made arbitrarily large/small while keeping all the other functions almost unchanged,
and with that, since k̃(N−1,n,+) �= 0, the same behaviour translates to β̃ ′

(N−1,+), hence
forcing the point of the regression curve to be arbitrarily located along the ruling and
preventing the isometry to be extended to the final foldline. 	


8 Future work

The construction of Sect. 6 is artificial in the measure it forces the existence of finitely
many folds by exploiting the local guarantees provided by the properness of the first
one. It would be nice to see in future years an existence proof that would work on
infinitely many uniformly rescaled foldlines. Proposition 7.1 makes it clear that such
a proof would depend on the development of an inductive tool allowing a suitable
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Fig. 8 The isometry of a
possible third outer strip induced
by the propagation would turn
singular before reaching the
boundary

Fig. 9 In the notation from Sect. 5, normal curvature and relative torsion of the two ridges in the fold of
Fig. 1. Note that k(1,n,+), τ(1,r ,+) and k(1,n,−), τ(1,r ,−) are respectively the normal curvature and relative
torsion of the first ridge (the one from which the propagation starts) w.r.t. the developables on its two sides

Fig. 10 For the four developables of Fig. 2, comparison of the signed distance along the ruling between
concentric circles d( j,S) and between the ridge and the regression curve v̄( j,S). The surfaces are regular
since the rulings reach the next foldline without first crossing the regression curve. We refer to the inner
ridge as the 0-th one
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Fig. 11 In the notation from Sect. 5, normal curvature and relative torsion of the three ridges in the fold of
Fig. 2. Note that k(1,n,+), τ(1,r ,+) and k(1,n,−), τ(1,r ,−) are respectively the normal curvature and relative
torsion of the first ridge (the one from which the propagation starts) w.r.t. the developables on its two sides.
We refer to the inner ridge as the 0-th one

control not only on the local propagation but also on the derivatives of arbitrary order
of the curves involved.
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9 Appendix A. Folding the annulus

This appendix is devoted to an explicit application of the formulae obtained in Sect. 5
of the paper to the annulus folded along conentric circles.

Lemma A.1 Let γ̄ be a circle of radius R and center in the origin traversed counter-
clockwise and r a unit vector forming with the tangent of the circle at γ̄ (s) the angle
−π < β < +π (measured counter-clockwise). The signed distance v̄ between γ̄ (s)
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and the closest intersection point between the line γ̄ (s) + v · r and the scaled circle
(1 + c)γ̄ with c ∈ R, whenever well defined, obeys the formula

v̄ = R
(
sin(β) − sgn

(
sin(β)

)√
sin(β)2 + c2 + 2c

)
.

Besides, the angle δ between γ̄ ′(s) and the tangent with the second circle at the
intersection point satisfies

sin(δ) = v̄ · cos(β)

R · (1 + c)
,

cos(δ) = R − v̄ · sin(β)

R · (1 + c)
.

Proof The lemma follows from elementary computations. 	

Given a sequence of concentric circles of radius R j and a ridge suitable to fold

along the j̄-th one, formulae from Sect. 3, Sect. 5 and Lemma A.1 can be iterated
to compute explicit parametrizations of the developables involved in the propagated
curved fold. In the notation of Sect. 5, two conditions must be met to guarantee the
regularity of such surfaces.

• Setting c( j,±) = R j±1/R j − 1, the function

v̄( j,S j ) = R j
(
sin(β( j,S j )) − sgn

(
sin(β( j,S j ))

)√
sin(β( j,S j ))

2 + c2( j,±) + 2c( j,±)

)

must be well defined, meaning the ruling intersects the next foldline.
• Let d( j,S j ) = sin(β( j,S j ))/(β

′
( j,S j )

+k( j,g)) be the signed distance of the regression
curve along the ruling, then either

sgn
(
d( j,S j ) · v̄( j,S j )

)
< 0 or |v̄( j,S j )| ≥ |d( j,S j )|,

meaning the regression curve is not intersected before the ruling reaches the next
foldline.

The regularity of the two folds represented in Figs. 1, 2 is guaranteed by comparing
the values of v̄( j,S j ) and d( j,S j ) computedwith theMathematica code available at Alese
(2020) (Figs. 7, 10). For the intersection between the unit sphere and the hyperbolic
paraboloid z − 3xy = 0 we provide the plots for one of the four arcs equivalent up to
reflection, which can be parametrized as

(
t,

√
1 − t2

1 + 9t2
, 3t

√
1 − t2

1 + 9t2

)
on

[
−

√
(−1 + √

10)/9,
√

(−1 + √
10)/9

]
.

For the toroidal curve we use the parametrization from Sect. 4 and restrict the plot to
[0, 2π ], which corresponds to one of the five arcs equivalent up to rotation. In both
cases the parametrizations are not arc-length and rather than scaling down the starting
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ridge tomatch the length of the unit circle, equivalently to our purposes we have scaled
up the unit circle (and accordingly all the concentric foldlines) to match the length of
the ridge. It is worth mentioning that in the hyperbolic paraboloid case, although the
ruling structure of the outer strip is rather well-behaved, it is not possible to further
propagate the folding to an additional strip of the samewidth, since some of the rulings
would cross the regression curve of the induced developable before they could reach
the new outer boundary (Fig. 8).

The plots of the normal curvature and those of the relative torsion of the ridges are
also provided (Figs. 9, 11).
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