ORIGINAL PAPER

Triangles of nearly equal area

Konrad J. Swanepoel ${ }^{1}{ }^{(1)}$

Received: 2 November 2020 / Accepted: 16 February 2021 / Published online: 4 March 2021
© The Author(s) 2021

Abstract

Given any n points in the plane, not all on the same line, there exist two non-collinear triples such that the ratio of the areas of the triangles they determine, differs from 1 by at most $O\left(\log n / n^{2}\right)$. If we furthermore insist that the two triangles have a common edge, then there are two with area ratios differing from 1 by at most $O(1 / n)$. This improves some results of Ophir and Pinchasi (Discrete Appl. Math. 174 (2014), 122-127). We also give some constructions for these and related problems.

Keywords Sidon set • Triangle area • Golden ratio • Plastic number • Morphic number

Mathematics Subject Classification 52C10

Consider n points in the plane, not all on a line. We want to find two triangles determined by the points with area ratio as close as possible to 1 . Ophir and Pinchasi (2014) showed that in any set of n points in the plane with no three on a line, there are two triples $\{a, b, c\}$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ of points such that the triangles $\triangle a b c$ and $\triangle a^{\prime} b^{\prime} c^{\prime}$ have almost the same area in the precise sense that

$$
\left|\frac{\Delta a b c}{\Delta a^{\prime} b^{\prime} c^{\prime}}-1\right|<\frac{60 \log ^{1 / 3} n}{n^{2 / 3}} .
$$

We present the following two improvements of this result.
Theorem 1 Given a set S of n non-collinear points in the plane, there exist distinct points $a, b, c, d \in S$ such that c and d are both not on the line through a and b, and

$$
\frac{1}{r} \leq \frac{\Delta a b d}{\Delta a b c} \leq r
$$

where $r=3^{3 /(n-3)}=1+\frac{3 \ln 3}{n}+O\left(1 / n^{2}\right)$.

[^0]Theorem 2 Given a set S of n non-collinear points in the plane, there exist noncollinear triples of points $\{a, b, c\}$ and $\left\{a^{\prime}, b^{\prime}, c^{\prime}\right\}$ from S such that

$$
\frac{1}{r} \leq \frac{\Delta a b c}{\Delta a^{\prime} b^{\prime} c^{\prime}} \leq r
$$

where $r=1+O\left(\frac{\log n}{n^{2}}\right)$.
The proof of Theorem 1 is a simple pigeon-hole argument, that can be generalised as follows to higher dimensions.

Corollary 3 Given a set S of n points that span d-dimensional Euclidean space, there exist $d+2$ distinct points $a_{1}, a_{2}, \ldots, a_{d}, b, c \in S$ such that a_{1}, \ldots, a_{d} span a hyperplane not containing b and c, and the ratio between the volume of the simplices with vertex sets $\left\{a_{1}, \ldots, a_{d}, b\right\}$ and $\left\{a_{1}, \ldots, a_{d}, c\right\}$ lies in $[1 / r, r]$, wherer $=1+O_{d}\left(\frac{\log n}{n^{2}}\right)$.

Theorem 1 is best possible in the sense that we cannot guarantee two triangles with only one vertex in common to have almost the same area.
Proposition 4 There exists a set ofn points p_{1}, \ldots, p_{n} in the plane such that whenever $\frac{1}{14} \leq \frac{\Delta p_{i} p_{j} p_{k}}{\Delta p_{i^{\prime}} p_{j^{\prime}} p_{k^{\prime}}} \leq 14$, then $\{i, j, k\}$ and $\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$ have their two largest elements in common.

On the other hand, we do not know if Theorem 2 can be improved. Its proof depends on the following result of Ophir and Pinchasi (2014), for which it is also not known whether it is asymptotically tight.

Given any set S of n elements of \mathbb{R}, there exist two distinct pairs $\{a, b\}$ and $\left\{a^{\prime}, b^{\prime}\right\}$ of points from S such that

$$
\left|\frac{|a-b|}{\left|a^{\prime}-b^{\prime}\right|}-1\right| \leq \frac{9 \log n}{n^{2}} .
$$

This result in fact holds for any n-element metric space, where it is best possible up to the constant factor of 9 . Ophir and Pinchasi conjecture that for n points in \mathbb{R}, there are always two pairs of ratio $1+c / n^{2}$. We give the following lower bound for triangle areas, showing that the ratio in Theorem 2 cannot be improved beyond $1+O\left(1 / n^{2}\right)$ either.

Proposition 5 There exists a set S of n real numbers such that the ratio between the area of any two triangles with vertices from the set $\left\{\left(s, n^{5 s}\right) \mid s \in S\right\}$ is $\gtrsim 1+1 / n^{2}$.

We say that a set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n integers is a Sidon set if the sums $a_{i}+a_{j}$, $i \leq j$, are all different. Ophir and Pinchasi noted that the example of Erdős and Turán (1941) of a Sidon set of n integers from $\left\{1,2, \ldots, n^{2}+O(n)\right\}$ is also an example of n points in \mathbb{R} for which the ratio of the distance between any two distinct pairs differ from 1 by at least $1 / n^{2}$. We next observe that there is a simple construction of n points in \mathbb{R} with a slightly better lower bound of $4 / n^{2}$. This construction additionally has a ratio of $\Theta(n)$ between the minimum and maximum distance in the set, where a Sidon set has ratio $\Theta\left(n^{2}\right)$.

Fig. 1 Apply an affine transformation so that $\triangle a b c$ is equilateral with side length 1

Fig. 2 Pigeon-hole principle inside a trapezium

Proposition 6 There exists a set of n points on the real line such that for any two distinct pairs $\{a, b\}$ and $\{c, d\}$ from the set with $|a-b| \geq|c-d|$, we have

$$
1+\frac{4}{n^{2}}+O\left(1 / n^{3}\right) \leq\left|\frac{a-b}{c-d}\right| \leq O(n)
$$

1 Proofs

Proof of Theorem 1 Choose $a, b, c \in S$ such that $\triangle a b c$ has maximum area among all triples of points from S. Without loss of generality we may apply an affine transformation so that $\triangle a b c$ becomes an equilateral triangle of side length 1, as in Figure 1.

Let $\Delta d e f$ be the triangle with sides parallel to the sides of $\Delta a b c$ and such that a, b, c are midpoints of the edges of $\Delta d e f$. Then all n points are inside $\triangle d e f$. Let p be the centroid of $\triangle a b c$ (and $\triangle d e f$). Consider the three lines through p parallel to the three sides of $\triangle a b c$. At least $n / 3$ points must lie on the side of one of these lines that is opposite to the parallel side of $\triangle a b c$. Without loss of generality the trapezium degh contains at least $n / 3$ of the points. Let $k=\lceil n / 3\rceil-1$. Subdivide the trapezium
using k parallel lines of height $\frac{1}{2 \sqrt{3}} r^{i}, i=0,1, \ldots, k-1$, above the line $b c$, where r is chosen such that $\frac{1}{2 \sqrt{3}} r^{k}=\sqrt{3} / 2$ (Figure 2). Since $k<n / 3$, there are two points in at least one of the regions, say q_{1} and q_{2}. Then $\frac{1}{r} \leq \Delta b c q_{1} / \Delta b c q_{2} \leq r$, and since $k \geq n / 3-1$,

$$
r=3^{1 / k} \leq 3^{3 /(n-3)}=1+3 \ln 3 / n+O\left(1 / n^{2}\right)
$$

Proof of Proposition 4 Let $p_{i}=\left(2^{2^{i}}, 2^{2^{i+1}}\right), i=1, \ldots, n$. If $i<j<k$, then the area of $\triangle p_{i} p_{j} p_{k}$ is

$$
\Delta p_{i} p_{j} p_{k}=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
2^{2^{i}} & 2^{2^{j}} & 2^{2^{k}} \\
2^{2^{i+1}} & 2^{2^{j+1}} & 2^{2^{k+1}}
\end{array}\right|=\frac{1}{2}\left(2^{2^{k}}-2^{2^{j}}\right)\left(2^{2^{k}}-2^{2^{i}}\right)\left(2^{2^{j}}-2^{2^{i}}\right)
$$

Thus $\triangle p_{i} p_{j} p_{k} \leq \frac{1}{2} 2^{2^{k+1}+2^{j}}$ and

$$
\begin{aligned}
\Delta p_{i} p_{j} p_{k} & \geq \frac{1}{2}\left(2^{2^{k}}-2^{2^{2}}\right)\left(2^{2^{k}}-2^{2^{1}}\right)\left(2^{2^{j}}-2^{2^{1}}\right) \\
& =\frac{1}{2} 2^{2^{k+1}+2^{j}}\left(1-2^{4-2^{k}}\right)\left(1-2^{2-2^{k}}\right)\left(1-2^{2-2^{j}}\right)
\end{aligned}
$$

We now consider two distinct triples $\{i<j<k\}$ and $\left\{i^{\prime}<j^{\prime}<k^{\prime}\right\}$, where without loss of generality, $k \geq k^{\prime}$. If $k>k^{\prime}$ then

$$
\begin{aligned}
\frac{\Delta p_{i} p_{j} p_{k}}{\Delta p_{i^{\prime}} p_{j^{\prime}} p_{k^{\prime}}} & \geq 2^{2^{k+1}-2^{k}+2^{j}-2^{j^{\prime}}}\left(1-2^{4-2^{4}}\right)\left(1-2^{2-2^{4}}\right)\left(1-2^{2-2^{2}}\right) \\
& \geq 2^{2^{k}+2^{2}-2^{k-2}}\left(1-2^{4-2^{4}}\right)\left(1-2^{2-2^{4}}\right)\left(1-2^{2-2^{2}}\right) \\
& \geq 2^{2^{4}+2^{2}-2^{4-2}}\left(1-2^{4-2^{4}}\right)\left(1-2^{2-2^{4}}\right)\left(1-2^{2-2^{2}}\right)>2^{15} .
\end{aligned}
$$

If $k=k^{\prime}$ then without loss of generality, $j \geq j^{\prime}$. If $j>j^{\prime}$, then

$$
\begin{aligned}
\frac{\Delta p_{i} p_{j} p_{k}}{\Delta p_{i^{\prime}} p_{j^{\prime}} p_{k^{\prime}}} & \geq 2^{2^{j}-2^{j-1}}\left(1-2^{4-2^{3}}\right)\left(1-2^{2-2^{3}}\right)\left(1-2^{2-2^{3}}\right) \\
& \geq 2^{4}\left(1-2^{4-2^{3}}\right)\left(1-2^{2-2^{3}}\right)\left(1-2^{2-2^{3}}\right)>14
\end{aligned}
$$

Therefore, if the ratio is at most 14 , then $j=j^{\prime}$ and $k=k^{\prime}$.
Proof of Theorem 2 Without loss of generality, the maximum-area triangle $\triangle a b c$ is equilateral with area 1 . Then its height is 2 , the distance between its centroid and any side is $2 / 3$, and its side length is $4 / \sqrt{3}$. Thus S is contained in $\triangle d e f$ of Figure 1, so any two points are at distance $\leq 8 / \sqrt{3}$.

Assume that for any two distinct triangles $\Delta x y z$ and $\Delta x^{\prime} y^{\prime} z^{\prime}$,

$$
\max \left\{\frac{\Delta x y z}{\Delta x^{\prime} y^{\prime} z^{\prime}}, \frac{\Delta x^{\prime} y^{\prime} z^{\prime}}{\Delta x y z}\right\} \geq 1+\frac{6 \log n}{n^{2}}
$$

We next show that the distance between any two points $p, p^{\prime} \in S$ is $\gtrsim 4 \log n / n^{2}$. Since the perpendicular distance from p to some edge of $\triangle a b c$, say $a b$, is $\geq 2 / 3$, we obtain

$$
\frac{\triangle a b p^{\prime}}{\Delta a b p} \leq 1+\frac{p p^{\prime}}{2 / 3}
$$

Similarly, since p^{\prime} is at perpendicular distance $\geq 2 / 3-p p^{\prime}$ from $a b$, we obtain

$$
\frac{\triangle a b p}{\triangle a b p^{\prime}} \leq 1+\frac{p p^{\prime}}{2 / 3-p p^{\prime}}
$$

It follows that

$$
1+\frac{6 \log n}{n^{2}} \leq 1+\frac{p p^{\prime}}{2 / 3-p p^{\prime}}
$$

from which $p p^{\prime} \gtrsim 4 \log n / n^{2}$ follows.
Among all $\binom{n}{3}$ triples of points, the $\binom{n}{3}-n^{2}$ smallest areas are all $\leq\left(1+\frac{6 \log n}{n^{2}}\right)^{-n^{2}} \sim$ n^{-6}. Suppose that each pair of points belongs to more than 6 triangles of area $\gtrsim n^{-6}$. Then there are at least $7\binom{n}{2} / 3>n^{2}$ triangles of area $\gtrsim n^{-6}$, a contradiction.

Therefore, some pair of points $\{p, q\}$ belongs to at most 6 triangles of area $\gtrsim n^{-6}$, hence to at least $n-8$ triangles $\triangle p q p_{i}, i=1, \ldots, n-8$, each of area $\lesssim n^{-6}$. Since the distance between p and q is $\gtrsim 4 \log n / n^{2}$, the perpendicular distance of any p_{i} to the line ℓ through p and q is $\lesssim 1 /\left(2 n^{4} \log n\right)$.

We now choose coordinates so that ℓ becomes the x-axis. Then each $p_{i}=\left(x_{i}, \varepsilon_{i}\right)$, where $\left|\varepsilon_{i}\right| \lesssim 1 /\left(2 n^{4} \log n\right)$. Since $\triangle a b c$ has width 2 , one of its three vertices, say $a=(x, h)$, is at distance $|h| \geq 1$ from ℓ. By the result of Ophir and Pinchasi applied to $x_{1}, x_{2}, \ldots, x_{n-8}$, there are two pairs $\{i, j\}$ and $\{s, t\}$ such that

$$
\frac{\left|x_{i}-x_{j}\right|}{\left|x_{s}-x_{t}\right|}=1+O\left(\log n / n^{2}\right) .
$$

We next show that the ratio between the areas of $\triangle a p_{i} p_{j}$ and $\triangle a p_{s} p_{t}$ is asymptotically the same as $\left|x_{i}-x_{j}\right| /\left|x_{s}-x_{t}\right|$.

We claim that $\triangle a p_{i} p_{j}=\left|h\left(x_{i}-x_{j}\right)\right|\left(1+o\left(\log n / n^{2}\right)\right)$. Indeed,

$$
\begin{aligned}
\pm 2 \triangle a p_{i} p_{j} & =\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & x_{i} & x_{j} \\
h & \varepsilon_{i} & \varepsilon_{j}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & x_{i}-x & x_{j}-x \\
h & \varepsilon_{i} & \varepsilon_{j}
\end{array}\right| \\
& =h\left(x_{j}-x_{i}\right)\left(1-\frac{\varepsilon_{i}\left(x_{j}-x\right)}{h\left(x_{j}-x_{i}\right)}+\frac{\varepsilon_{j}\left(x_{i}-x\right)}{h\left(x_{j}-x_{i}\right)}\right) .
\end{aligned}
$$

Since $\left|x_{j}-x\right| \leq p_{j} p \leq 8 / \sqrt{3},|h| \geq 1$, and

$$
\left|x_{j}-x_{i}\right| \geq p_{i} p_{j}-\left|\varepsilon_{i}\right|-\left|\varepsilon_{j}\right| \gtrsim \frac{4 \log n}{n^{2}}-\frac{1}{n^{4} \log n} \gtrsim \frac{4 \log n}{n^{2}},
$$

we obtain

$$
\left|\frac{\varepsilon_{i}\left(x_{j}-x\right)}{h\left(x_{j}-x_{i}\right)}\right|=O\left(\frac{1}{n^{2} \log ^{2} n}\right) .
$$

Similarly,

$$
\left|\frac{\varepsilon_{j}\left(x_{i}-x\right)}{h\left(x_{j}-x_{i}\right)}\right|=O\left(\frac{1}{n^{2} \log ^{2} n}\right)
$$

and it follows that

$$
2 \triangle a p_{i} p_{j}=\left|h\left(x_{i}-x_{j}\right)\right|\left(1+O\left(1 /\left(n^{2} \log ^{2} n\right)\right)\right)
$$

Similarly,

$$
2 \triangle a p_{s} p_{t}=\left|h\left(x_{s}-x_{t}\right)\right|\left(1+O\left(1 /\left(n^{2} \log ^{2} n\right)\right)\right)
$$

and we conclude that

$$
\frac{\Delta a p_{i} p_{j}}{\Delta a p_{s} p_{t}}=\frac{\left|x_{i}-x_{j}\right|}{\left|x_{s}-x_{t}\right|}\left(1+O\left(1 /\left(n^{2} \log n\right)\right)\right)=1+O\left(\log n / n^{2}\right)
$$

Proof of Proposition 5 Let S be a Sidon set of n elements from $\{1,2, \ldots, N\}$ where $N=n^{2}+O(n)$. Write $p_{s}=\left(s, n^{5 s}\right)$ and $q_{s}=(s, 0)$ for each $s \in S$. Consider three $s, t, u \in S$ with $s<t<u$.

Then

$$
2 \triangle p_{s} p_{t} p_{u}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
s & t & u \\
n^{5 s} & n^{5 t} & n^{5 u}
\end{array}\right|=n^{5 u}(t-s)+n^{5 t}(s-u)+n^{5 s}(u-t)
$$

and

$$
2 \triangle q_{s} q_{t} p_{u}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
s & t & u \\
0 & 0 & n^{5 u}
\end{array}\right|=n^{5 u}(t-s) .
$$

Since the ratio between these two areas is close to 1 , we can replace $\Delta p_{s} p_{t} p_{u}$ with $\Delta q_{s} q_{t} p_{u}$ in our calculations. Specifically,

$$
\begin{aligned}
\left|\frac{\Delta p_{s} p_{t} p_{u}}{\Delta q_{s} q_{t} p_{u}}-1\right| & =\left|\frac{n^{5 t}(s-u)+n^{5 s}(u-t)}{n^{5 u}(t-s)}\right| \\
& \leq n^{5(t-u)}\left|\frac{s-u}{t-s}\right|+n^{5(s-u)}\left|\frac{u-t}{t-s}\right| \\
& <n^{-5} N+n^{-10} N \sim \frac{1}{n^{3}} .
\end{aligned}
$$

Consider distinct triples $\{a<b<c\}$ and $\{d<e<f\}$ of elements from S, where we assume without loss of generality that $c \geq f$. Then

$$
\frac{\triangle p_{a} p_{b} p_{c}}{\Delta p_{d} p_{e} p_{f}} \gtrsim\left(1-\frac{1}{n^{3}}\right)^{2} \frac{\triangle q_{a} q_{b} p_{c}}{\Delta q_{d} q_{e} p_{f}}=\left(1-\frac{1}{n^{3}}\right)^{2} \frac{n^{5 c}(b-a)}{n^{5 f}(e-d)}
$$

If $c=f$ then $\{a, b\} \neq\{d, e\}$, and we assume without loss of generality that $b-a>$ $e-d$. We obtain

$$
\frac{\triangle p_{a} p_{b} p_{c}}{\triangle p_{d} p_{e} p_{f}} \geq\left(1-\frac{1}{n^{3}}\right)^{2} \frac{b-a}{e-d} \geq\left(1-\frac{1}{n^{3}}\right)^{2} \frac{N}{N-1} \gtrsim 1+\frac{1}{n^{2}}
$$

On the other hand, if $c>f$ then the ratio is even larger:

$$
\frac{\triangle p_{a} p_{b} p_{c}}{\Delta p_{d} p_{e} p_{f}} \geq\left(1-\frac{1}{n^{3}}\right)^{2} n^{5} \frac{1}{N} \gtrsim n^{3} .
$$

Proof of Proposition 6 Fix $\varepsilon>0$, and let $p_{i}=(1+\varepsilon)^{i}-1, i=0,1, \ldots, n-1$. Then for any integer a, b with $0 \leq a<b \leq n-1$,

$$
p_{b}-p_{a}=(1+\varepsilon)^{b}-(1+\varepsilon)^{a} .
$$

Take any $a, b, c, d \in\{0, \ldots, n-1\}$ with $a<b, c<d,\{a, b\} \neq\{c, d\}$ and without loss of generality, $b-a \leq d-c$. If $b-a=d-c$ then without loss of generality, $a<c$, and

$$
\frac{p_{d}-p_{c}}{p_{b}-p_{a}}=\frac{(1+\varepsilon)^{d}-(1+\varepsilon)^{c}}{(1+\varepsilon)^{b}-(1+\varepsilon)^{a}}=(1+\varepsilon)^{c-a} \frac{(1+\varepsilon)^{d-c}-1}{(1+\varepsilon)^{b-a}-1}=(1+\varepsilon)^{c-a} \geq 1+\varepsilon .
$$

If $b-a<d-c$, then, setting $b-a=k \in\{1,2, \ldots, n-2\}$,

$$
\begin{aligned}
\frac{p_{d}-p_{c}}{p_{b}-p_{a}} & \geq \frac{p_{d}-p_{d-b+a-1}}{p_{b}-p_{a}}=(1+\varepsilon)^{(d-b+a-1)+(n-1-b)} \frac{p_{k+1}-p_{0}}{p_{n-1}-p_{n-1-k}} \\
& \geq \frac{(1+\varepsilon)^{k+1}-1}{(1+\varepsilon)^{n-1}-(1+\varepsilon)^{n-1-k}}
\end{aligned}
$$

This last expression will be $\geq 1+\varepsilon$ if and only if $(1+\varepsilon)^{k+1}+(1+\varepsilon)^{n-k} \geq(1+\varepsilon)^{n}+1$. If we use the Binomial Theorem to expand this up to second order, we obtain

$$
\begin{aligned}
1+ & (k+1) \varepsilon+\binom{k+1}{2} \varepsilon^{2}+O\left(k^{3} \varepsilon^{3}\right) \\
& +1+\varepsilon(n-k)+\binom{n-k}{2} \varepsilon^{2}+O\left((n-k)^{3} \varepsilon^{3}\right) \\
\geq & 1+n \varepsilon+\binom{n}{2} \varepsilon^{2}+O\left(n^{3} \varepsilon^{3}\right)+1,
\end{aligned}
$$

which is equivalent to $\varepsilon \geq\left(\binom{n}{2}-\binom{k+1}{2}-\binom{n-k}{2}\right) \varepsilon^{2}+O\left(n^{3} \varepsilon^{3}\right)$, that is, we need the inequality $1 \geq k(n-k-1) \varepsilon+O\left(n^{3} \varepsilon^{2}\right)$ to hold for all $k=1,2, \ldots, n-2$. Since $k(n-k-1) \leq\left(\frac{n-1}{2}\right)^{2}$, we obtain that we need $\varepsilon \leq \frac{4}{n^{2}}+O\left(\frac{1}{n^{3}}\right)+O\left(n \varepsilon^{2}\right)$. Thus we can take $\varepsilon=\frac{4}{n^{2}}+O\left(\frac{1}{n^{3}}\right)$.

This shows that we obtain a minimum ratio of $1+\frac{4}{n^{2}}+O\left(\frac{1}{n^{3}}\right)$.
Instead of using points where the successive distances $p_{i+1}-p_{i}$ form a geometric progression, as in the above proof, we can also use an arithmetic progression. If we take the n points $p_{0}=0, p_{i}=\sum_{j=0}^{i-1}(1+j \varepsilon), i=1,2,3, \ldots, n-1$, then a calculation shows that we obtain the same optimal asymptotics of $\varepsilon=\frac{4}{n^{2}}+O\left(\frac{1}{n^{3}}\right)$.

2 Final remarks

We did not touch on the problem of Ophir and Pinchasi on whether there exist in any set of n elements of \mathbb{R} two pairs with ratio better than $1+O\left(\log n / n^{2}\right)$, but we did find the sets of points for which the smallest ratio >1 is a maximum when $n \leq 4$. Thus consider a set $S \subset \mathbb{R}$ of n points that maximizes

$$
\min \left\{\frac{|a-b|}{|c-d|}: a, b, c, d \in S,|a-b| \geq|c-d|>0\right\}
$$

among all sets of n points in \mathbb{R}.
If $n=3$, it is easy to see that there is a unique extremal set up to similarity, namely $S=\{a<b<c\}$ such that $\frac{c-b}{b-a}$ equals the golden ratio $(1+\sqrt{5}) / 2$.

For $n=4$ the problem is already non-trivial, as there are 6 different distances. Using a case analysis, we can show that up to similarity there are two extremal sets. One of them is the above geometric progression construction $\left\{0,1,1+r, 1+r+r^{2}\right\}$, where r is the unique real root of the cubic polynomial $r^{3}-r-1$. The other configuration is $\left\{0,1, r, r^{2}\right\}$. The number

$$
r=\sqrt[3]{\frac{9+\sqrt{69}}{18}}+\sqrt[3]{\frac{9-\sqrt{69}}{18}}=1.3247179572 \ldots
$$

is known as the plastic number of van der Laan (1960), which is closely related to the golden ratio (Aarts et al. 2001; Rush 2012; Stewart 1996).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aarts, J., Fokkink, R., Kruijtzer, G.: Morphic numbers. Nieuw Arch. Wiskd. 2(5), 56-58 (2001)
Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and some related problems. J. London Math. Soc. 16, 212-215 (1941)
Ophir, A., Pinchasi, R.: Nearly equal distances in metric spaces. Discrete Appl. Math. 174, 122-127 (2014)
Rush, D.E.: Degree n relatives of the golden ratio and resultants of the corresponding polynomials. Fibonacci Quart. 50, 313-325 (2012)
Stewart, I.: Tales of a neglected number. Math. Recreat. SciAm 274(6), 102-103 (1996)
van der Laan, H.: Le nombre plastique. Brill, Leiden (1960)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Konrad J. Swanepoel
 k.swanepoel@1se.ac.uk

 1 London School of Economics, London, UK

