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Abstract
Given any n points in the plane, not all on the same line, there exist two non-collinear
triples such that the ratio of the areas of the triangles they determine, differs from1by at
most O(log n/n2). If we furthermore insist that the two triangles have a common edge,
then there are two with area ratios differing from 1 by at most O(1/n). This improves
some results of Ophir and Pinchasi (Discrete Appl. Math. 174 (2014), 122–127). We
also give some constructions for these and related problems.
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Consider n points in the plane, not all on a line. We want to find two triangles deter-
mined by the points with area ratio as close as possible to 1. Ophir and Pinchasi (2014)
showed that in any set of n points in the plane with no three on a line, there are two
triples {a, b, c} and {a′, b′, c′} of points such that the triangles�abc and�a′b′c′ have
almost the same area in the precise sense that
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�abc

�a′b′c′ − 1

∣
∣
∣
∣
<

60 log1/3 n

n2/3
.

We present the following two improvements of this result.

Theorem 1 Given a set S of n non-collinear points in the plane, there exist distinct
points a, b, c, d ∈ S such that c and d are both not on the line through a and b, and

1

r
≤ �abd

�abc
≤ r

where r = 33/(n−3) = 1 + 3 ln 3
n + O(1/n2).

B Konrad J. Swanepoel
k.swanepoel@lse.ac.uk

1 London School of Economics, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13366-021-00567-2&domain=pdf
http://orcid.org/0000-0002-1668-887X


220 Beitr Algebra Geom (2021) 62:219–227

Theorem 2 Given a set S of n non-collinear points in the plane, there exist non-
collinear triples of points {a, b, c} and {a′, b′, c′} from S such that

1

r
≤ �abc

�a′b′c′ ≤ r

where r = 1 + O(
log n
n2

).

The proof of Theorem 1 is a simple pigeon-hole argument, that can be generalised
as follows to higher dimensions.

Corollary 3 Given a set S of n points that span d-dimensional Euclidean space, there
exist d + 2 distinct points a1, a2, . . . , ad , b, c ∈ S such that a1, . . . , ad span a hyper-
plane not containing b and c, and the ratio between the volume of the simplices with
vertex sets {a1, . . . , ad , b} and {a1, . . . , ad , c} lies in [1/r , r ], where r = 1+Od(

log n
n2

).

Theorem 1 is best possible in the sense that we cannot guarantee two triangles with
only one vertex in common to have almost the same area.

Proposition 4 There exists a set of n points p1, . . . , pn in the plane such that whenever
1
14 ≤ �pi p j pk

�pi ′ p j ′ pk′
≤ 14, then {i, j, k} and {i ′, j ′, k′} have their two largest elements in

common.

On the other hand, we do not know if Theorem 2 can be improved. Its proof depends
on the following result of Ophir and Pinchasi (2014), for which it is also not known
whether it is asymptotically tight.

Given any set S of n elements of R, there exist two distinct pairs {a, b} and
{a′, b′} of points from S such that

∣
∣
∣
∣

|a − b|
|a′ − b′| − 1

∣
∣
∣
∣
≤ 9 log n

n2
.

This result in fact holds for any n-element metric space, where it is best possible up
to the constant factor of 9. Ophir and Pinchasi conjecture that for n points in R, there
are always two pairs of ratio 1+ c/n2. We give the following lower bound for triangle
areas, showing that the ratio in Theorem 2 cannot be improved beyond 1 + O(1/n2)
either.

Proposition 5 There exists a set S of n real numbers such that the ratio between the
area of any two triangles with vertices from the set {(s, n5s)|s ∈ S} is � 1 + 1/n2.

We say that a set {a1, a2, . . . , an} of n integers is a Sidon set if the sums ai + a j ,
i ≤ j , are all different. Ophir and Pinchasi noted that the example of Erdős and Turán
(1941) of a Sidon set of n integers from {1, 2, . . . , n2 + O(n)} is also an example of
n points in R for which the ratio of the distance between any two distinct pairs differ
from 1 by at least 1/n2. We next observe that there is a simple construction of n points
in R with a slightly better lower bound of 4/n2. This construction additionally has a
ratio of �(n) between the minimum and maximum distance in the set, where a Sidon
set has ratio �(n2).
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Fig. 1 Apply an affine
transformation so that �abc is
equilateral with side length 1
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Fig. 2 Pigeon-hole principle inside a trapezium

Proposition 6 There exists a set of n points on the real line such that for any two
distinct pairs {a, b} and {c, d} from the set with |a − b| ≥ |c − d|, we have

1 + 4

n2
+ O(1/n3) ≤

∣
∣
∣
∣

a − b

c − d

∣
∣
∣
∣
≤ O(n).

1 Proofs

Proof of Theorem 1 Choose a, b, c ∈ S such that �abc has maximum area among all
triples of points from S. Without loss of generality we may apply an affine transfor-
mation so that �abc becomes an equilateral triangle of side length 1, as in Figure 1.

Let �de f be the triangle with sides parallel to the sides of �abc and such that
a, b, c are midpoints of the edges of �de f . Then all n points are inside �de f . Let p
be the centroid of �abc (and �de f ). Consider the three lines through p parallel to
the three sides of �abc. At least n/3 points must lie on the side of one of these lines
that is opposite to the parallel side of �abc. Without loss of generality the trapezium
degh contains at least n/3 of the points. Let k = �n/3� − 1. Subdivide the trapezium
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using k parallel lines of height 1
2
√
3
r i , i = 0, 1, . . . , k − 1, above the line bc, where

r is chosen such that 1
2
√
3
rk = √

3/2 (Figure 2). Since k < n/3, there are two points

in at least one of the regions, say q1 and q2. Then 1
r ≤ �bcq1/�bcq2 ≤ r , and since

k ≥ n/3 − 1,

r = 31/k ≤ 33/(n−3) = 1 + 3 ln 3/n + O(1/n2). 
�
Proof of Proposition 4 Let pi = (22

i
, 22

i+1
), i = 1, . . . , n. If i < j < k, then the area

of �pi p j pk is

�pi p j pk = 1

2

∣
∣
∣
∣
∣
∣
∣

1 1 1

22
i

22
j

22
k

22
i+1

22
j+1

22
k+1

∣
∣
∣
∣
∣
∣
∣

= 1

2
(22

k − 22
j
)(22

k − 22
i
)(22

j − 22
i
).

Thus �pi p j pk ≤ 1
22

2k+1+2 j
and

�pi p j pk ≥ 1

2
(22

k − 22
2
)(22

k − 22
1
)(22

j − 22
1
)

= 1

2
22

k+1+2 j
(1 − 24−2k )(1 − 22−2k )(1 − 22−2 j

)

We now consider two distinct triples {i < j < k} and {i ′ < j ′ < k′}, where without
loss of generality, k ≥ k′. If k > k′ then

�pi p j pk
�pi ′ p j ′ pk′

≥ 22
k+1−2k+2 j−2 j ′

(1 − 24−24)(1 − 22−24)(1 − 22−22)

≥ 22
k+22−2k−2

(1 − 24−24)(1 − 22−24)(1 − 22−22)

≥ 22
4+22−24−2

(1 − 24−24)(1 − 22−24)(1 − 22−22) > 215.

If k = k′ then without loss of generality, j ≥ j ′. If j > j ′, then

�pi p j pk
�pi ′ p j ′ pk′

≥ 22
j−2 j−1

(1 − 24−23)(1 − 22−23)(1 − 22−23)

≥ 24(1 − 24−23)(1 − 22−23)(1 − 22−23) > 14.

Therefore, if the ratio is at most 14, then j = j ′ and k = k′. 
�
Proof of Theorem 2 Without loss of generality, the maximum-area triangle �abc is
equilateral with area 1. Then its height is 2, the distance between its centroid and any
side is 2/3, and its side length is 4/

√
3. Thus S is contained in �de f of Figure 1, so

any two points are at distance ≤ 8/
√
3.

Assume that for any two distinct triangles �xyz and �x ′y′z′,

max

{ �xyz

�x ′y′z′
,
�x ′y′z′

�xyz

}

≥ 1 + 6 log n

n2
.
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We next show that the distance between any two points p, p′ ∈ S is � 4 log n/n2.
Since the perpendicular distance from p to some edge of �abc, say ab, is ≥ 2/3, we
obtain

�abp′

�abp
≤ 1 + pp′

2/3
.

Similarly, since p′ is at perpendicular distance ≥ 2/3 − pp′ from ab, we obtain

�abp

�abp′ ≤ 1 + pp′

2/3 − pp′ .

It follows that

1 + 6 log n

n2
≤ 1 + pp′

2/3 − pp′ ,

from which pp′ � 4 log n/n2 follows.
Among all

(n
3

)

triples of points, the
(n
3

)−n2 smallest areas are all≤ (1+ 6 log n
n2

)−n2 ∼
n−6. Suppose that each pair of points belongs to more than 6 triangles of area � n−6.
Then there are at least 7

(n
2

)

/3 > n2 triangles of area � n−6, a contradiction.
Therefore, some pair of points {p, q} belongs to at most 6 triangles of area � n−6,

hence to at least n − 8 triangles �pqpi , i = 1, . . . , n − 8, each of area � n−6. Since
the distance between p and q is � 4 log n/n2, the perpendicular distance of any pi to
the line � through p and q is � 1/(2n4 log n).

We now choose coordinates so that � becomes the x-axis. Then each pi = (xi , εi ),
where |εi | � 1/(2n4 log n). Since �abc has width 2, one of its three vertices, say
a = (x, h), is at distance |h| ≥ 1 from �. By the result of Ophir and Pinchasi applied
to x1, x2, . . . , xn−8, there are two pairs {i, j} and {s, t} such that

|xi − x j |
|xs − xt | = 1 + O(log n/n2).

Wenext show that the ratio between the areas of�api p j and�aps pt is asymptotically
the same as |xi − x j |/|xs − xt |.

We claim that �api p j = |h(xi − x j )|(1 + o(log n/n2)). Indeed,

±2�api p j =
∣
∣
∣
∣
∣
∣

1 1 1
x xi x j
h εi ε j

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

1 1 1
0 xi − x x j − x
h εi ε j

∣
∣
∣
∣
∣
∣

= h(x j − xi )

(

1 − εi (x j − x)

h(x j − xi )
+ ε j (xi − x)

h(x j − xi )

)

.
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Since |x j − x | ≤ p j p ≤ 8/
√
3, |h| ≥ 1, and

|x j − xi | ≥ pi p j − |εi | − |ε j | � 4 log n

n2
− 1

n4 log n
� 4 log n

n2
,

we obtain

∣
∣
∣
∣

εi (x j − x)

h(x j − xi )

∣
∣
∣
∣
= O

(
1

n2 log2 n

)

.

Similarly,

∣
∣
∣
∣

ε j (xi − x)

h(x j − xi )

∣
∣
∣
∣
= O

(
1

n2 log2 n

)

,

and it follows that

2�api p j = |h(xi − x j )|(1 + O(1/(n2 log2 n))).

Similarly,

2�aps pt = |h(xs − xt )|(1 + O(1/(n2 log2 n))),

and we conclude that

�api p j

�aps pt
= |xi − x j |

|xs − xt | (1 + O(1/(n2 log n))) = 1 + O(log n/n2). 
�

Proof of Proposition 5 Let S be a Sidon set of n elements from {1, 2, . . . , N } where
N = n2 + O(n). Write ps = (s, n5s) and qs = (s, 0) for each s ∈ S. Consider three
s, t, u ∈ S with s < t < u.

Then

2�ps pt pu =
∣
∣
∣
∣
∣
∣

1 1 1
s t u
n5s n5t n5u

∣
∣
∣
∣
∣
∣

= n5u(t − s) + n5t (s − u) + n5s(u − t)

and

2�qsqt pu =
∣
∣
∣
∣
∣
∣

1 1 1
s t u
0 0 n5u

∣
∣
∣
∣
∣
∣

= n5u(t − s).
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Since the ratio between these two areas is close to 1, we can replace �ps pt pu with
�qsqt pu in our calculations. Specifically,

∣
∣
∣
∣

�ps pt pu
�qsqt pu

− 1

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n5t (s − u) + n5s(u − t)

n5u(t − s)

∣
∣
∣
∣
∣

≤ n5(t−u)

∣
∣
∣
∣

s − u

t − s

∣
∣
∣
∣
+ n5(s−u)

∣
∣
∣
∣

u − t

t − s

∣
∣
∣
∣

< n−5N + n−10N ∼ 1

n3
.

Consider distinct triples {a < b < c} and {d < e < f } of elements from S, where
we assume without loss of generality that c ≥ f . Then

�pa pb pc
�pd pe p f

�
(

1 − 1

n3

)2 �qaqb pc
�qdqe p f

=
(

1 − 1

n3

)2 n5c(b − a)

n5 f (e − d)
.

If c = f then {a, b} = {d, e}, and we assume without loss of generality that b − a >

e − d. We obtain

�pa pb pc
�pd pe p f

≥
(

1 − 1

n3

)2 b − a

e − d
≥

(

1 − 1

n3

)2 N

N − 1
� 1 + 1

n2
.

On the other hand, if c > f then the ratio is even larger:

�pa pb pc
�pd pe p f

≥
(

1 − 1

n3

)2

n5
1

N
� n3. 
�

Proof of Proposition 6 Fix ε > 0, and let pi = (1+ ε)i − 1, i = 0, 1, . . . , n − 1. Then
for any integer a, b with 0 ≤ a < b ≤ n − 1,

pb − pa = (1 + ε)b − (1 + ε)a .

Take any a, b, c, d ∈ {0, . . . , n − 1} with a < b, c < d, {a, b} = {c, d} and without
loss of generality, b − a ≤ d − c. If b − a = d − c then without loss of generality,
a < c, and

pd − pc
pb − pa

= (1 + ε)d − (1 + ε)c

(1 + ε)b − (1 + ε)a
= (1 + ε)c−a (1 + ε)d−c − 1

(1 + ε)b−a − 1
= (1 + ε)c−a ≥ 1 + ε.

If b − a < d − c, then, setting b − a = k ∈ {1, 2, . . . , n − 2},
pd − pc
pb − pa

≥ pd − pd−b+a−1

pb − pa
= (1 + ε)(d−b+a−1)+(n−1−b) pk+1 − p0

pn−1 − pn−1−k

≥ (1 + ε)k+1 − 1

(1 + ε)n−1 − (1 + ε)n−1−k
.
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This last expressionwill be≥ 1+ε if and only if (1+ε)k+1+(1+ε)n−k ≥ (1+ε)n+1.
If we use the Binomial Theorem to expand this up to second order, we obtain

1 + (k + 1)ε +
(
k + 1

2

)

ε2 + O(k3ε3)

+ 1 + ε(n − k) +
(
n − k

2

)

ε2 + O((n − k)3ε3)

≥ 1 + nε +
(
n

2

)

ε2 + O(n3ε3) + 1,

which is equivalent to ε ≥
((n

2

) − (k+1
2

) − (n−k
2

))

ε2 + O(n3ε3), that is, we need the

inequality 1 ≥ k(n − k − 1)ε + O(n3ε2) to hold for all k = 1, 2, . . . , n − 2. Since

k(n − k − 1) ≤ ( n−1
2

)2
, we obtain that we need ε ≤ 4

n2
+ O( 1

n3
) + O(nε2). Thus we

can take ε = 4
n2

+ O( 1
n3

).

This shows that we obtain a minimum ratio of 1 + 4
n2

+ O( 1
n3

). 
�
Instead of using points where the successive distances pi+1 − pi form a geometric
progression, as in the above proof, we can also use an arithmetic progression. If we take
the n points p0 = 0, pi = ∑i−1

j=0(1 + jε), i = 1, 2, 3, . . . , n − 1, then a calculation

shows that we obtain the same optimal asymptotics of ε = 4
n2

+ O( 1
n3

).

2 Final remarks

We did not touch on the problem of Ophir and Pinchasi on whether there exist in any
set of n elements of R two pairs with ratio better than 1 + O(log n/n2), but we did
find the sets of points for which the smallest ratio > 1 is a maximum when n ≤ 4.
Thus consider a set S ⊂ R of n points that maximizes

min

{ |a − b|
|c − d| : a, b, c, d ∈ S, |a − b| ≥ |c − d| > 0

}

among all sets of n points in R.
If n = 3, it is easy to see that there is a unique extremal set up to similarity, namely

S = {a < b < c} such that c−b
b−a equals the golden ratio (1 + √

5)/2.
For n = 4 the problem is already non-trivial, as there are 6 different distances. Using

a case analysis, we can show that up to similarity there are two extremal sets. One of
them is the above geometric progression construction {0, 1, 1+ r , 1+ r + r2}, where
r is the unique real root of the cubic polynomial r3 − r − 1. The other configuration
is {0, 1, r , r2}. The number

r = 3

√

9 + √
69

18
+ 3

√

9 − √
69

18
= 1.3247179572 . . .
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is known as the plastic number of van der Laan (1960), which is closely related to the
golden ratio (Aarts et al. 2001; Rush 2012; Stewart 1996).
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Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and some related problems. J. London

Math. Soc. 16, 212–215 (1941)
Ophir, A., Pinchasi, R.: Nearly equal distances in metric spaces. Discrete Appl. Math. 174, 122–127 (2014)
Rush,D.E.: Degree n relatives of the golden ratio and resultants of the corresponding polynomials. Fibonacci

Quart. 50, 313–325 (2012)
Stewart, I.: Tales of a neglected number. Math. Recreat. SciAm 274(6), 102–103 (1996)
van der Laan, H.: Le nombre plastique. Brill, Leiden (1960)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Triangles of nearly equal area
	Abstract
	1 Proofs
	2 Final remarks
	References




