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Abstract
Given an oval C in the plane, the α-isoptic Cα of C is the plane curve composed of
the points from which C can be seen under the angle π − α. We consider isoptics of
ovals parametrized with the support function p(t) = a+cos nt , n ∈ N, and present an
example of an oval such that when α increases, the α-isoptics begin to be convex, then
lose their convexity and finally are convex again along a curve intersecting the isoptics
orthogonally. Next we give an example of a curve from the same family, for which
the curvature of the isoptics changes its sign three times. These changes occur on the
symmetry axes of the oval C and coincide with the orthogonal trajectories which start
at the points with extremal curvature. Finally, we formulate the hypothesis concerning
the general case where we expect n − 1 convexity limit angles for the isoptics of an
oval parametrized by p(t) = a + cos nt .

Keywords Isoptic curve · Convex curve · Limit angle · Support function

Mathematics Subject Classification 53A04 · 53C44 · 53A25

1 Introduction

Isoptic curves were defined in 1704 by Philipe de La Hire, as mentioned in Lawrence
(1972) p. 58. These curves remain interesting, as can be seen for example in Kunkli
et al. (2013) and Dana-Picard (2020). Isoptics also have applications in mechanics and
optics (see Weiss and Martini 2000; Wunderlich 1971).

Isoptics of convex curves are not necessarily convex. For isoptics of an ellipse,
in Miernowski and Mozgawa (1997) was introduced the notion of the limit angle,
described below.
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The inspiration to study this problem came about when we noticed certain irregu-
larities. These were on graphs of the dual curves to isoptics of the oval, with support
function p(t) = 10 + cos 3t , see Skrzypiec (2018).

The results presented belowhave application to optics and architecture (i.e., lighting
and shades).

2 Isoptics with two limit angles

Theorem 1 Fix 8 < a < 8
√
2 and let C be the oval described by the support function

p(t) = a+cos 3t . For α ∈ (0, π), let Cα be the α-isoptic of C. Then there exist angles
0 < α1 < α2 < π such that the point of Cα which intersects the positive X-axis has
a positive curvature if α ∈ (0, α1) ∪ (α2, π) and a negative curvature if α ∈ (α1, α2).

Remark 1 An angle α0 for which Cα is convex for α < α0 and concave for α0 < α

(α near α0) is called a limit angle (Miernowski and Mozgawa 1997). For the sake of
clarity and generality, we call it a convexity limit angle, and extend its use also in the
case where the sign of the curvature is considered only along a curve intersecting the
isoptic orthogonally.

Proof Using the parametrization

zα(t) = p(t)eit +
{
−p(t) cot α + 1

sin α
p(t + α)

}
ieit , t ∈ R, (1)

of isoptics from Cieślak et al. (1991), we prove that the curve C given by

z(t) = p(t)eit + p′(t)ieit for t ∈ [0, 2π), (2)

with the support function p(t) = a + cos 3t , where a > 8 for some values of a, is the
example needed in our theorem.

Let us notice that this curve has three axes of symmetry. One of them is the X -
axis. We obtain the others by rotations by the angles 2

3π and 4
3π . Each of these axes of

symmetry passes through points of extremal curvature ofC . IsopticsCα are symmetric
with respect to the same axes of symmetry as C . That is why it is enough to study
them in the neighbourhood of one of these symmetry axes. Without loss of generality,
we choose the X -axis.

Let us recall that the curve, which in each point forms a right angle with a curve
from a given family of curves, is called the orthogonal trajectory. It is easy to see
that orthogonal trajectories of isoptics of the curve with the support function p(t) =
a+cos 3t , starting with the points of greatest and smallest curvature, coincide with the
parts of the symmetry axesmentioned above. Using the parametrization (1) of isoptics,
a straightforward computation shows that the points zα

(−α
2

)
lie on the positive X -axis.

Tangent vectors of isoptics at these points are equal to

z′α
(
−α

2

)
= i

2
(
p

(
α
2

)
sin α

2 − p′ (α
2

)
sin α

2

)
sin α

.

123



Beitr Algebra Geom (2022) 63:55–67 57

Fig. 1 Isoptics of curves with the support function p(t) = 10+ cos 3t (left) and p(t) = 16+ cos 4t (right),
along with some of their orthogonal trajectories

Note that they are vertical. Therefore the set of points {zα
(−α

2

)
, α ∈ (0, π)} forms

the orthogonal trajectory of isoptics, starting at z(0). Similarly, the points zα
(
π − α

2

)
lying on the negative X -axis form the orthogonal trajectory, starting at z(π). The first
derivative of the curvature of isoptics (see Cieślak et al. 1991)

kα(t) = [z′α(t), z′′α(t)]
|z′α(t)|3 = sin α

|q(t)|3
(
2|q(t)| − [q(t), q ′(t)]) (3)

is zero along these trajectories.
We now compute the number of sign changes of the curvature of isoptics, along

these trajectories. Let us consider the curvature of the isoptic of the curve with support
function p(t) = a + cos 3t . It is given by the formula

kα(t) = nα(t)

dα(t)
,

where

nα(t) = 24 + a2 + 20 cosα − 8 cos 2α − 4 cos 3α + a cos 3t + a cos 3(t + α)

+ 8 cos 3(2t + α) − 9a cos(3t + α) + 8 cos 2(3t + α) − 9a cos(3t + 2α)

+ 4 cos(6t + α) + 8 cos(6t + 4α) + 4 cos(6t + 5α)

and

dα(t) = 1

cos α
2

(
12 + a2 + 14 cosα + 4 cos 2α + 2 cos 3α − 2a cos 3t − 2a cos 3(t + α)

+ 8 cos 3(2t + α) − 6a cos(3t + α) + 8 cos 2(3t + α) − 6a cos(3t + 2α)

+ 4 cos(6t + α) + 8 cos(6t + 4α) + 4 cos(6t + 5α)
)
.
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We notice that the denominator of this curvature is always positive since the tangent
vector to the isoptic is always non-zero, and for β ∈ (

0, π
2

)
we have cosβ > 0.

Along the positive X -axis the numerator of the curvature of the isoptic Cα is given
by

nα

(
−α

2

)
= −

(
−a + 6 cos

α

2
+ 2 cos

3α

2

) (
a − 12 cos

α

2
+ 4 cos

3α

2

)
.

Hence our problem simplifies to finding roots of functions

f1(a, α) = −a + 6 cos
α

2
+ 2 cos

3α

2
(4)

and

f2(a, α) = a − 12 cos
α

2
+ 4 cos

3α

2
. (5)

The denominator of the curvature of Cα at t = −α
2 can be written as

dα

(
−α

2

)
= f1(a, α)3

cos α
2

,

so the function f1 has no roots. Moreover, f1(a, α) < 0 for a > 8 and α ∈ (0, π)

since it has no roots and f1(a, 0) < 0. For the function f2 let us substitute x = cos α
2 .

Since α ∈ (0, π), we consider the resulting polynomial

v2(a, x) = 16x3 − 24x + a (6)

for x ∈ (0, 1] with the parameter a > 8. To find the number of distinct roots of
polynomial v2 we apply the Sturm theorem (see Serret 1866; Sturm 1829) on the
interval (0, 1]. Constructing the Sturm sequence

X0(a, x) = v2(a, x) = 16x3 − 24x + a,

X1(a, x) = 48x2 − 24,

X2(a, x) = 16x − a,

X3(a, x) = −3ax + 24,

X4(a, x) = −128

a
+ a = (8

√
2 − a)(8

√
2 + a)

a
,

X5(a, x) = 0

the signs of their values for a ∈ (8, 8
√
2) are presented in Table 1.

Hence for a ∈ (8, 8
√
2) we have Z(0) − Z(1) = 3 − 1 = 2. Therefore, based on

the Sturm theorem we conclude that the polynomial v2 has two zeroes in the interval
(0, 1] if the parameter a ∈ (8, 8

√
2).
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Table 1 The signs of values of
the Sturm sequence of
v2 = 16x3 − 24x + a for
x ∈ (0, 1] with the parameter
a ∈ (8, 8

√
2)

i 0 1 2 3 4 5

sign of Xi (a, 0) + − − + − 0 Z(0) = 3

sign of Xi (a, 1) + + + − − 0 Z(1) = 1

Similar computations as those above yield that along the negative X -axis the cur-
vature of isoptics of the given oval is always positive.

We conclude that if a ∈ (8, 8
√
2), then isoptics of the curve with support function

p(t) = a + cos 3t have two convexity limit angles. For example for a = 10 those

convexity limit angles are α1 = 2 arccos
(√

21−1
4

)
and α2 = 2

3π . ��

3 Isoptics with three limit angles

Theorem 2 Fix 15 < a < 17 and let C be the oval parametrized by the support
function p(t) = a + cos 4t . For α ∈ (0, π), let Cα be the α-isoptic of C. Then there
exist angles 0 < α1 < α2 < α3 < π such that the point of Cα which intersects
the coordinate axes has a positive curvature if α ∈ (0, α1) ∪ (α2, π) and a negative
curvature if α ∈ (α1, α2). Moreover, when Cα intersects the lines y = x and y = −x,
Cα has a positive curvature if α ∈ (0, α3) and a negative curvature if α ∈ (α3, π).

Proof Weprove that the curveC with support function p(t) = a+cos 4t , a ∈ (15, 17),
is the example needed in our theorem.

We note that this curve has four axes of symmetry. Two of them, the X and Y
axes, pass through the points of maximal curvature of C . The other two are the lines
y = x and y = −x , passing through the points of minimal curvature of C . Isoptics
Cα are symmetric with respect to the same axes of symmetry as C . Moreover, the first
derivative of the curvature of isoptics is zero along these symmetry axes. Similar to the
development above for p(t) = a + cos 3t , we can show that orthogonal trajectories
which start at z

(
k π
4

)
are straight lines and lie on the axes of symmetry of the oval C .

That is why we will study them along two orthogonal trajectories (see Fig. 1). The
first of them starts at z(0) and lies on the positive X -axis. It consists of the points
z
(

π
4

)
The second trajectory starts at z(π

4 ) and lies on the line y = x . It is the set of
the points

{
zα

(
π
4 − α

2

)
, α ∈ (0, π)

}
.

Along the positive X -axis the curvature of the isoptic Cα = {zα(t), t ∈ (0, 2π)}
is given by

kα

(
−α

2

)
= − cos α

2 (4 − a + 8 cosα + 3 cos 2α)(−8 + a − 16 cosα + 9 cos 2α)

(4 − a + 8 cosα + 3 cos 2α)3
.

Let us denote the following two functions:

f1(a, α) = 4 − a + 8 cosα + 3 cos 2α (7)
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Table 2 The signs of the values of the Sturm sequence of the polynomial v2 = 18x2 − 16x − 17 + a for
x ∈ (−1, 1] with the parameter a > 15

i 0 1 2 3 4

sign of Xi (a, −1) + − + 0 Z(−1) = 2 if a < 20.

5 + − − 0 Z(−1) = 1 if a > 20.

5 sign of Xi (a, 1) + + + 0 Z(1) = 0 if a < 20.

5 + − − 0 Z(1) = 1 if a > 20.

5

and

f2(a, α) = −8 + a − 16 cosα + 9 cos 2α. (8)

Since the curvature function of isoptics is well defined for α ∈ (0, π), the function f1
has no roots. Hence

kα

(
−α

2

)
= 0 ⇐⇒ f2(a, α) = 0.

Let us substitute x = cosα. Since α ∈ (0, π) we consider the resulting polynomial

v2(a, x) = 18x2 − 16x − 17 + a (9)

for x ∈ (−1, 1] with the parameter a > 15. Its Sturm sequence is

X0(a, x) = 18x2 − 16x − 17 + a,

X1(a, x) = 36x − 16,

X2(a, x) = 17 + 32

9
− a,

X3(a, x) = 0.

The signs of the values of the Sturm sequence are presented in Table 2.
Hence for a ∈ (15, 20.5)we have Z(−1)− Z(1) = 2 and using the Sturm theorem

we conclude that the polynomial v2 has two roots in the interval (−1, 1]. If a > 20.5
then Z(−1) − Z(1) = 0 and we conclude that v2 has no roots between −1 and 1.

Now let us study the behaviour of the curvature of Cα along the orthogonal trajec-
tory, starting at the point ofC with maximal curvature, for example, along the half-line
l(x) = z

(
π
4

) + x · (1, 1), where x > 0.
Along the half-line l the curvature of the isoptic is given by

kα

(π

4
− α

2

)
= − cos α

2 (4 + a + 8 cosα + 3 cos 2α)(−8 − a − 16 cosα + 9 cos 2α)

(4 + a + 8 cosα + 3 cos 2α)3
.
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Table 3 The signs of values of
the Sturm sequence of
w2 = 18x2 − 16x − 17 − a for
x ∈ (−1, 1] with the parameter
a > 15

i 0 1 2 3

sign of Xi (a, −1) + − + 0 Z(−1) = 2 if a < 17

− − + 0 Z(−1) = 1 if a > 17

sign of Xi (a, 1) − + + 0 Z(1) = 1

Similarly to the development above, we can consider the functions

g1(a, α) = 4 + a + 8 cosα + 3 cos 2α (10)

and

g2(a, α) = −8 − a − 16 cosα + 9 cos 2α (11)

and substitute x = cosα. Then we can consider the polynomials

w1(a, x) = 6x2 + 8x + 1 + a (12)

and

w2(a, x) = 18x2 − 16x − 17 − a (13)

with the parameter a > 15 for x ∈ (−1, 1]. The function g1 has no roots.
Let us construct the Sturm sequence of w2

X0(a, x) = 18x2 − 16x − 17 − a,

X1(a, x) = 36x − 16,

X2(a, x) = 17 + 32

9
+ a,

X3(a, x) = 0.

The signs of its values are presented in Table 3.
Hence for a ∈ (15, 17)we have Z(−1)−Z(1) = 1 and based on the Sturm theorem

we conclude that the polynomial w2 has one root in the interval (−1, 1]. If a > 17
then Z(−1) − Z(1) = 0 which implies that w2 has no roots between −1 and 1.

Combining the results of the two trajectories we conclude that isoptics of the oval
parametrized by the support function p(t) = a + cos 4t have three convexity limit

123



62 Beitr Algebra Geom (2022) 63:55–67

angles if a ∈ (15, 17). We can describe them by the functions

α1(a) = arccos
8 + √

2
√
185 − 9a

18
,

α2(a) = arccos
8 − √

2
√
185 − 9a

18
,

α3(a) = arccos
8 − √

2
√
185 + 9a

18

of the variable a.
We note that for each a ∈ (15, 17) we have α1(a) < α2(a) < α3(a). So for

α ∈ (0, α1(a)) ∪ (α2(a), α3(a)), the isoptics of the oval C are convex and for α ∈
(α1(a), α2(a)) ∪ (α3(a), π) they are nonconvex.

��

4 General case for p(t) = a + cosnt

For a > n2 − 1 the curve C parametrized by the support function p(t) = a + cos nt
is an oval and has n axes of symmetry. Isoptics of such ovals also have n symmetry
axes, passing through the points of extremal curvature of C and coinciding with the
orthogonal trajectories of the evolutions of the ovals. Those isoptics are invariant with
respect to rotations about the origin by the angles 2kπ

n , where k = 1, . . . , n. That is
why we consider the curvature of the isoptics of the oval with the support function
p(t) = a + cos nt , where a > n2 − 1 along two half-lines.

– The first half-line starts at z(0) and lies on the positive X -axis. It starts on the
given oval, at the point in which it has maximal curvature. It is a set of the points{
zα

(−α
2

)
, α ∈ (0, π)

}
and we denote it I.

– The second half-line starts at z
(

π
n

)
and passes though the points zα

(
π
n − α

2

)
for

α ∈ (0, π). It starts on the given oval, at the point inwhich it hasminimal curvature.
We denote it II.

For the curvature

kα(t) = [z′α(t), z′′α(t)]
|z′α(t)|3

let us denote

nα(t) = [z′α(t), z′′α(t)] sin2 α, dα(t) = |z′α(t)|3 sin2 α.

Along the trajectory I we obtain

dα

(
−α

2

)
= 1

sin α

((
a + cos

ns

2

)
sin

α

2
− n cos

α

2
sin

nα

2

)3
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and

nα

(
−α

2

)
= − f1(α, a, n) · f2(α, a, n),

where

f1(α, a, n) = −2a sin
α

2
+ (n + 1) sin

(n − 1)α

2
+ (n − 1) sin

(n + 1)α

2
(14)

and

f2(α, a, n) = 2a sin
α

2
− (n + 1)2 sin

(n − 1)α

2
+ (n − 1)2 sin

(n + 1)α

2
. (15)

We need to calculate the number of roots of the functions f1(α, a, n) and f2(α, a, n).
The functions vary with α, and have parameters a and n. From the form of the denomi-
natorwe observe that f1 has no roots.We can also check it applying the same procedure
for f1 as we will use for f2, below. We perform a change of variables in f2, in order
to obtain a polynomial of a real variable. We will do this for two cases: n odd and n
even.

For n odd let us substitute u = α
2 where u ∈ (0, π

2 ). Then

f2(u, a, n) = 2a sin u − (n + 1)2 sin(n − 1)u + (n − 1)2 sin(n + 1)u.

Using the trigonometric identity for sin nx we get

f2(u, a, n) = sin u
(
2a − (n + 1)2


 n−1
2 �∑

i=0

(−1)i ·
(
n − 1

2i + 1

)
cosn−2i−2 u sin2i u

+ (n − 1)2

 n+1

2 �∑
i=0

(−1)i ·
(
n + 1

2i + 1

)
cosn−2i u sin2i u

)
.

Since sin u > 0 for u ∈ (0, π
2 ), using the Pythagorean trigonometric identity and the

substitution x = cos u, with x ∈ (0, 1), for the function f2
sin u we obtain the polynomial

v2(x, a, n) = 2a − (n + 1)2

 n−1

2 �∑
i=0

(−1)i ·
(
n − 1

2i + 1

)
xn−2i−2(1 − x2)i

+ (n − 1)2

 n+1

2 �∑
i=0

(−1)i ·
(
n + 1

2i + 1

)
xn−2i (1 − x2)i .

(16)

We now need to calculate the number of zeroes for x ∈ (0, 1).
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We can repeat the above algorithm for even n. However, if we do it in a slightly
different way we will obtain polynomials of lower degrees. Noticing that n = 2k for
k ∈ Z, let us consider the function

f2(α, a, k) = 2 sin
α

2

(
a + (4k2 + 1) cos kα

− 4k(cosα + 1)


 k
2 �∑

i=0

(−1)i ·
(

k

2i + 1

)
cosk−2i−1 α sin2i α

)
.

Substituting x = cosα where x ∈ (−1, 1) and using the trigonometric identity for
cos nx , the function f2

2 sin α
2
becomes the polynomial

v2(x, a, n, k) = a + (4k2 + 1)


 k
2 �∑

i=0

(−1)i ·
(
k

2i

)
xk−2i (1 − x2)i

− 4k(x + 1)


 k
2 �∑

i=0

(−1)i ·
(

k

2i + 1

)
xk−2i−1(1 − x2)i .

(17)

Our approach would be similar to the previous cases, applying the Sturm theorem for
finding the number of roots. However, since the polynomial v2(x, a, n, k) depends on
the degree n, we need to generalize this theorem.

Along the trajectory II, after similar computations we get the following formulae

nα

(π

n
− α

2

)
= −g1(α, a, n) · g2(α, a, n)

and

dα

(π

n
− α

2

)
= (g1(α, a, n))3

sin α
,

where

g1(α, a, n) = 2a sin
α

2
+ (n + 1) sin

(n − 1)α

2
+ (n − 1) sin

(n + 1)α

2
(18)

and

g2(α, a, n) = −2a sin
α

2
− (n + 1)2 sin

(n − 1)α

2
+ (n − 1)2 sin

(n + 1)α

2
. (19)

The function g1(α, a, n) has no roots.Wewant to transform the function g2(α, a, n)

into a real variable polynomial. For n odd using the substitution x = cos α
2 we obtain
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the following polynomial

w2(x, a, n) = −2a − (n + 1)2

 n−1

2 �∑
i=0

(−1)i ·
(
n − 1

2i + 1

)
xn−2i−2(1 − x2)i

+ (n − 1)2

 n+1

2 �∑
i=0

(−1)i ·
(
n + 1

2i + 1

)
xn−2i (1 − x2)i ,

(20)

for the interval (0, 1). For n even substituting x = cos u we obtain

w2(x, a, n, k) = a + (4k2 + 1)


 k
2 �∑

i=0

(−1)i ·
(
k

2i

)
xn−2i (1 − x2)i

− 4k(x + 1)


 k
2 �∑

i=0

(−1)i ·
(

k

2i + 1

)
xk−2i−1(1 − x2)i ,

(21)

where n = 2k and for which we are looking for the number of roots in the interval
(−1, 1). This number of zeroes depends on the parameter a and we need to find
such a1(n), that for a ∈ (

n2 − 1, a1(n)
)
the polynomials v2 have the largest possible

number of zeros in the appropriate intervals.
Whereas results for arbitrary n are as yet unknown, those for some fixed values of

n are. We also put forward a hypothesis concerning the general case.
For n = 5 the polynomial

v2(x, a, 5) = a + 256x5 − 400x3 + 120x

has two roots for a ∈
(
24,

√
6975
8 + 1293/2

8

)
≈ (24, 32.48) and the polynomial

w2(x, a, 5) = −a + 256x5 − 400x3 + 120x

has two roots for a ∈
(
24, 1

2

√
3
2 (2325 − 43

√
129)

)
≈ (24, 26.24). Hence we have

four convexity limit angles if a ∈
(
24, 1

2

√
3
2 (2325 − 43

√
129)

)
≈ (24, 26.24).

Those limit angles satisfy the inequality 0 < α1 < α2 < π
2 < α3 < α4 < π .

Moreover, α1 and α2 lie on trajectory I and α3 and α4 lie on trajectory II.
For n = 6 the polynomial

v2(x, a, 6, 3) = a + 100x3 − 48x2 − 99x + 12

has three roots for a ∈ (35, 37) and the polynomial

w2(x, a, 6, 3) = −a + 100x3 − 48x2 − 99x + 12
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Table 4 The maximal number of convexity limit angles along orthogonal trajectories I and II

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I 1 2 2 2 3 4 4 4 5 6 6 6 7 8 8 8 9

II 0 0 1 2 2 2 3 4 4 4 5 6 6 6 7 8 8

has two roots for a ∈
(
35, 7

625

(
127

√
889 − 416

))
≈ (35, 37.75). Hence we have

five convexity limit angles if a ∈ (35, 37). Those limit angles satisfy the inequality
0 < α1 < α2 < π

2 < α3 < α4 < 5
6π < α5 < π . Moreover, α1, α2 and α5 lie on

trajectory I and α3 and α4 lie on trajectory II.
The maximal number of convexity limit angles along the orthogonal trajectories

starting at the points ofC of the largest (I) and the smallest (II) curvature, are obtained
from computer experimentation, and are presented in Table 4.

These observations led us to formulate the following hypothesis

Hypothesis For the isoptics of the curve with support function p(t) = a + cos nt,
a > n2−1, for a ∈ (

n2 − 1, a1(n)
)
, where a1(n) > n2−1, there exist n−1 convexity

limit angles. These limit angles can be divided into two groups of sizes v(n) andw(n),
where v(n) + w(n) = n − 1. The first group of size v(n) appears on the orthogonal
trajectory, starting at the point z

( 2kπ
n

)
. The second group of size w(n) is found on the

orthogonal trajectory, starting at the point z
(

π
n + 2kπ

n

)
, where k = 0, 1, . . . , n − 1,

v(n) =

⎧⎪⎪⎨
⎪⎪⎩

2k, n = 4k + 0
2k, n = 4k + 1
2k + 1, n = 4k + 2
2(k + 1), n = 4k + 3

w(n) =

⎧⎪⎪⎨
⎪⎪⎩

2k − 1, n = 4k + 0
2k, n = 4k + 1
2k, n = 4k + 2
2k, n = 4k + 3

and v(n) + w(n) = n − 1.
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