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Abstract
The article contributes to the classification project of locally projective graphs and
their locally projective groups of automorphisms outlined in Chapter 10 of Ivanov
(TheMathieuGroups, CambridgeUniversity Press, Cambridge, 2018).Weprove that a
simply connected locally projective graph� of type (n, 3) for n ≥ 3 contains a densely
embedded subtree provided (a) it contains a (simply connected) geometric subgraph
at level 2 whose stabiliser acts on this subgraph as the universal completion of the
Goldschmidt amalgamG1

3
∼= {S4×2, S4×2} having S6 as another completion, (b) for a

vertex x of� the groupG 1
2
(x)which stabilizes every line passing through x induces on

the neighbourhood �(x) of x the (dual) natural module 2n of G(x)/G 1
2
(x) ∼= Ln(2),

(c) G(x) splits over G 1
2
(x), (d) the vertex-wise stabilizer G1(x) of the neighbourhood

of x is a non-trivial group, and (e) n �= 4.

1 Introduction

We start with our principal definitions.

Definition 1 Let � be a connected graph and let G be a group of automorphisms of
�. Then � is said to be locally projective of type (n, α), where n ≥ 2, α ∈ {2, 3} with
respect to the action of G, whenever the following conditions hold:

(i) G acts vertex- and edge-transitively on �;
(ii) there is a family L of complete subgraphs in � (called lines) having α vertices

each, such that (a) L is preserved by G, and (b) every edge of � is contained in
a unique line from L;
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(iii) every vertex x of � is contained in exactly (2n − 1) lines and the stabilizer
G(x) of x in G induces on this (2n − 1)-set of lines the natural doubly transitive
action of the group Ln(2) as on the set of points of the corresponding projective
GF(2)-geometry πx ;

(iv) the stabilizer in G of a line acts doubly transitively on vertex-set of the line;
(v) if α = 2 then G is not transitive on 3-paths in � and whenever {x, y} is an edge,

an element swapping x and y induces a collineation (rather than correlation)
between the residue of y in πx and the residue of x in πy .

If α = 2, then L is the edge-set of �. If α = 3, then L is a family of triangles in
�; the stabilizer G(l) of a line-triangle l induces on its vertices the symmetric group
S3 ∼= L2(2). Since by (ii)(b) any two lines intersect in at most one vertex, the valency
of � is 2 · (2n − 1). The GF(2)-vector space whose non-zero vectors are indexed
by the lines passing through x will be called the natural module of the group Ln(2)
induced by G(x) on the set of these lines.

Definition 2 Let � be a graph which is locally projective of type (n, α)with respect to
a group G. Let x be a vertex of � and let l be a line containing x . Then the amalgam

A = {G(x),G(l)}
is said to be a locally projective amalgam of type (n, α).

The vertex stabilizers in locally projective graphs of type (2, 2) were classified
by Sims (1967). This result motivated him to state the famous Sims conjecture. This
was extended to the classification of locally projective amalgams of type (2, 2) by
Djoković and Miller (1980). The classification of the amalgams of type (2, 3) is the
main result of Goldschmidt’s paper (Goldschmidt 1980), which is the most influential
publication of the second quarter of the 20-th century in finite group theory for it has
put the foundation of the amalgam method as we know it now.

The locally projective amalgams of type (n, 2) for all n ≥ 3 were classified by
Shpectorov and the present author (Ivanov and Shpectorov 2004) making use of a
fundamental result by Trofimov (2003). The classification is given in the following
theorem, where Gi (x) denotes the vertex-wise stabilizer in G of the ball of radius i in
� centered at x and Vi = Gi (x)/Gi+1(x).

Theorem 3 Ivanov and Shpectorov (2004) Let G be a group acting locally projectively
on a graph � of type (n, 2) for some n ≥ 3, and let A = {G(x),G(l)} be the cor-
responding locally projective amalgam. Then one of the following three possibilities
holds:

(i) A is isomorphic to the locally projective amalgam associated with the natural
action of the affine group AGLn(2) on the vector-set of the corresponding n-
dimensional GF(2)-space;

(ii) A is isomorphic to the locally projective amalgam associated with the natural
action of the orthogonal group O+

2n(2) on the corresponding dual polar space
graph;

(iii) A is one of the twelve exceptional amalgams in Table 1 represented by their
members G(x), where all the quotients Vi are elementary abelian 2-groups.
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Table 1 Exceptional (n, 2)-amalgams

n A G(x)/G1(x) V1 V2 V3 V4 Some special completions

3 A(1)
3 L3(2) 23 –

A(2)
3 L3(2) 23 M22

A(3)
3 L3(2) 23 –

A(4)
3 L3(2) 23 2 (S8 � 2)+

A(5)
3 L3(2) 23 2 Aut(M22)

4 A(1)
4 L4(2) M23

A(2)
4 L4(2) 26 A64

A(3)
4 L4(2) 26 24 2 Co2

A(4)
4 L4(2) 26 24 24 J4

A(5)
4 L4(2) 26 24 24 A256

5 A(1)
5 L5(2) 210 J4

A(2)
5 L5(2) 210 210 25 25 BM

2 Some (n, 3)-examples

The motivating examples for our project are the collinearity graphs of flag-transitive
Petersen and Tilde geometries classified by Spectorov and the author in Ivanov (1998)
and Ivanov and Shpectorov (2002). These and other known examples are combined
in Table 2. In this table for a group G acting locally projectively on a graph � of type
(n, 3) we denote by G 1

2
(x) the largest subgroup in G(x) which stabilizes every line

passing through x and put V0 = G 1
2
(x)/G1(x). For k ≥ 1, as in Table 1, we put

Vk = Gk(x)/Gk+1(x) which is still elementary abelian except V1 in Example 12.
The entries G for 11a and 11b contain the largest locally projective automorphism

group of the Hamming graph H(n, 3) and of the binary code, respectively. Some
smaller groups also act locally projectively and they are easy to classify.

3 Densely embedded and geometric subgraphs

When dealing with locally projective amalgams we usually assume that the graph �

is a bipartite half of the coset graph of the universal completion of the corresponding
amalgam. By the universality property, the coset graph is a tree with vertices in one
half having valency (2n−1) and the vertices in the other half (the lines) having valency
3. The problem we consider is a pushing-up type problem for Ln(2) and it is widely
open with only a few special cases settled (cf. Parker and Rowley (1996)).

We define a densely embedded subgraph in the locally projective graph of type
(n, 3).
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Definition 4 Suppose that G acts locally projectively on � of type (n, 3) for n ≥ 3,
and let � be a connected subgraph in �. Then � is said to be densely embedded in �

if the following conditions hold:

(i) the subgroup H of G which stabilizes � as a whole induces on it a locally
projective action of type (n, 2), possibly with a non-trivial kernel;

(ii) if x ∈ � then H(x) contains G1(x) and H(x)/G1(x) is an Ln(2)-complement
to G 1

2
(x)/G1(x) in G(x)/G1(x).

It is implicit in Definition 4 (ii) that a densely embedded subgraph exists only if
G(x)/G1(x) splits over G 1

2
(x)/G1(x). In fact densely embedded subgraphs exist

quite often: in Table 2 the subgraph number Nb is densely embedded into the subgraph
Na for

N = 2, 3, 6, 7, 8, 9, 10, 11.

This observation served as a starting point for our classification project, which is still
in progress. More specifically, we observed that, since both the M24- and the He-
examples correspond to the same locally projective amalgam 2a, and M24 contains a
densely embedded subgraph (stabilized by Aut(M22)), the universal cover of the Held
graph must contain a densely embedded subgraph. In fact when the universal cover is
folded onto the Held graph, the densely embedded subgraph folds onto the whole of
the Held graph, so it is hard to see its traces in the He-graph.

We turn the existence of densely embedded subgraphs into Theorem 16. Notice
that in Table 2 there is only one instance when the action of H on the corresponding
densely embedded subgraph � is unfaithful (with kernel of order 2): G is the Monster
8a and H is the double cover of the Baby Monster 8b.

Next we introduce geometric subgraphs. For the classes of Petersen, Tilde and
classical geometries the geometric subgraphs in the collinearity graphs enable to
reconstruct the elements of higher types. Recall that every vertex x is equipped with
a GF(2)-vector space πx , whose points are the lines containing x .

Definition 5 A connected subgraph �(k) in � is said to be geometric at level k, where
1 ≤ k ≤ n − 1, whenever together with an edge it always contains the line on this
edge, and the following conditions hold:

(i) if x ∈ �(k), then the set of neighbours �(k)(x) of x in �(k) is a k-dimensional
subspace in πx and the set-wise stabilizer of �(k)(x) in G(x) stabilizes �(k);

(ii) the stabilizer X (k) of �(k) in G acts on �(k) locally projectively with type (k, 3)
with kernel denoted by K (k).

It is clear that the geometric subgraphs at level 1 are just the lines, while the geometric
subgraphs�(2) at level 2 (called planes) are of valency 6 and the stabilizer X (2) of such
a subgraph (containing x and l) modulo its vertex-wise stabilizer K (2) is a completion
of a Goldschmidt amalgam

X (2) = {X (2)(x)/K (2), X (2)(l)/K (2)},
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which is a locally projective amalgam of type (2, 3).
Usually a locally projective graph � contains at least one family of planes (Exam-

ple 4 contins three such families) and the simply connected version of � contains a
complete set of geometric subgraphs for all levels k for 2 ≤ k ≤ n − 1. Since in
the present work we are going to assume that � contains planes anyway, we will not
discuss the existence issue further. Instead we present a classical example of densely
embedded and geometric subgraphs.

Example. Let (V2n(2), q, f ) be a 2n-dimensional GF(2)-space equipped with a non-
singular quadratic form q of maximal Witt index n whose associate bilinear form is
f . Let � = DP(n, 2) be the dual polar graph whose vertices are the maximal totally
singular subspaces in V2n(2) with respect to f , that is the n-dimensional subspaces
Wn in V2n(2) such that f (u, v) = 0 for any u, v ∈ Wn . Two vertices-subspaces are
adjacent if their intersection has codimension 1 in each. This graph is locally projective
of type (n, 3) with respect to the symplectic group G = Sp2n(2) preserving f (this
is the graph 10a in Table 2). The subgraph � formed by the n-dimensional subspaces
totally isotropic with respect to q (the n-subspaces Un such that q(u) = 0 for every
u ∈ Un) is the orthogonal graph (10b in Table 2) which is locally projective of type
(n, 2) with respect to the orthogonal group H = O+

n (2) and it is densely embedded
in DP(n, 2) with

G(x) ∼= 2n(n−1)/2+n : Ln(2) and H(x) ∼= 2n(n−1)/2 : Ln(2).

IfWn−k is a totally singular subspace in V2n(2) of dimension n− k, then the subgraph
in� formed by the vertices-subspaces containingWn−k is geometric at level k isomor-
phic to DP(k, 2). The planes DP(2, 2) are generalized quadrangles of order (2, 2)
associated with Sp4(2) ∼= S6, which is a completion of the Goldschmidt amalgam
G1

3 = {S4 × 2, S4 × 2}.

4 Constructing densely embedded subgraphs

In this section we establish the existence of densely embedded subgraphs under the
following hypothesis.

Hypothesis 6 (�,G) is a locally projective pair of type (n, 3) for n ≥ 3 satisfying the
following conditions where x is a vertex and l is a line:

(H1) � is simply connected so that the vertex-line graph � is a tree, equivalently G
is the universal completion of the locally projective amalgam {G(x),G(l)};

(H2) there is a G-orbit of planes realizing the Goldschmidt amalgam G1
3 = {S4 ×

2, S4 × 2};
(H3) G 1

2
(x)/G1(x) is the dual natural module 2n of G(x)/G 1

2
(x) ∼= Ln(2) and the

extension splits:

G(x)/G1(x) ∼= 2n : Ln(2);

(H4) G1(x) �= 1;
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(H5) n �= 4.

Among the examples in Table 2, the following ones satisfy Hypothesis 6:

2a, 3a, 7a, 8a, 10a.

They include the dual polar space graphs of Sp2m(2), the example completing in
A16 and the famous Mathieu–Conway–Monster sequence of tilde geometries. This
again demonstrates the role of the Mathieu groups, as a path towards larger sporadic
simple groups. Each of the above mentioned examples contains a densely embedded
subgraph:

2b, 3b, 7b, 8b, 10b,

respectively. In Example 6a all the conditions except (H4) and (H5) hold and the graph
still contains a densely embedded subgraph 6b.

4.1 G1(x) is a 2-group

We start by stating the fundamental Thompson–Wielandt–Weiss Theorem (Weiss
1979) in its refined version in van Bon (2003) which we apply to the vertex-line
graph � of � acted on by G.

Theorem 7 Let � be a connected, finite, undirected graph, {x, l} be an edge of � and
G be a subgroup of Aut (�) such that G(v)�1(v) is primitive for v = x and l. Let
μ be the set of primes dividing the order of G1(x, l) := G1(x) ∩ G1(l). Then either
|μ| = 1 or there exists p ∈ μ such that either for u = x and v = l or for u = l and
v = x, we have G1(x, l) = G2(u), G2(v) is a p-group and G2(v) = G3(v). 	

Next we present a lemma kindly offered by a referee of the present article.

Lemma 8 Assume that � and G satisfy the conditions (i) − (v) in Definition 1 with
α = 3. Let x be a vertex of �. Then either G1(x) is a 2-group or |G 1

2
(x) : G1(x)| ≤ 2.

Proof. As above let � be the vertex-line graph of � and let F denote edge-transitive
action of G on �. Let {x, l} be an edge of �. By Definition 1 (iii) and (iv) the groups
F(z)�1(z), with z ∈ {x, l} are primitive permutation groups. By Theorem 7 (where
p is clearly 2 for the considered situation) F1(x, l) is a 2-group or F1(x, l) = F2(x)
and F2(l) = F3(l) is a 2-group or F1(x, l) = F2(l) and F2(x) = F3(x) is a 2-group.
Hence F2(u) is a 2-group for at least one vertex u ∈ {x, l}. We can assume that u = l,
since otherwise there will be nothing to prove. Assume now that for a vertex x of �

the subgroup F2(x) is not a 2-group. Then F1(x, l) = F2(x), and |�1(l)| = 3 gives
|F1(x) : F2(x)| = |F1(x) : F1(x, l)| ≤ 2. 	


It follows that if x is a vertex of �, then F2(x) is a 2-group or |F1(x) : F2(x)| ≤ 2.
Thus in the action of G on �, G1(x) is a 2-group or |G 1

2
(x) : G1(x)| ≤ 2. 	


Example 12 in Table 2 is an example that |G 1
2
(x) : G1(x)| = 2 can occur with

G1(x) not a 2-group. Hypothesis 6 (H3) excludes the possibility of |G 1
2
(x) : G1(x)| ≤

2 so we have the following.
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Corollary 9 Under Hypothesis 6 G1(x) is a 2-group. 	


4.2 On the stabilizer G(l) of a line

We keep assuming Hypothesis 6. For a line l = {x, y, z} in � put

�(l) = �(x) ∪ �(y) ∪ �(z)

(the set of vertices with minimal distance at most 1 from the vertices in l), let G(l) be
the set-wise stabilizer of l in G, G(x, y, z) be the vertex-wise stabilizer and

G1(l) = G1(x) ∩ G1(y) ∩ G1(z)

be the kernel of the action of G(l) on �(l). In this subsection we describe G(l)/G1(l)
up to isomorphism and G(l)�(l) up to similarity. We start by describing the action of
G(l) ∩ G(x) on �(x).

Lemma 10 The following assertions hold:

(i) G(x, y, z)�(x) = Q : K, where K ∼= Ln−1(2) and Q ∼= 22(n−1);
(ii) Q contains exactly three copies T1, T2 and T3 of the dual natural K -module;
(iii) the orbit lengths of T1 on the set of lines other than l containing x are 1 and that

of T2 and T3 are 2;
(iv) every orbit of Q on �(x) \ l has length 4 and together with l \ {x} it comprises

the set of neighbours of x in a plane containing x;
(v) (G(l) ∩ G(x))�(x) is an extension of G(x, y, z)�(x) by an involution τx ∈

G 1
2
(x)/G1(x) which commutes with K , swaps y and z and conjugates T2 onto

T3.

Proof. Let L = GLn+1(2), Vn+1(2) be the natural module of L and v be a
nonzero vector in Vn+1(2). Then by (H3), G(x)�(x) is similar to the action of L(v) on
Vn+1(2) \ {0, v}, with G 1

2
(x) acting as the group of transvections with centre v. Then

G(x, y, z)�(x) is the action of L(v, u, w) on Vn+1(2)\{0, v}, where V2 := {0, v, u, w}
is a 2-subspace in Vn+1(2) and (i) follows with K corresponding to the stabilizer in
L(v, u, w) of an (n − 1)-subspace W in Vn+1(2) disjoint from V2. Now (ii) to (iv)
follow with T1, T2 and T3 being the groups of transvections with centres v, u and
w, respectively, and with axes containing V2. Finally τx acts as the transvection with
centre v and axis 〈W , v〉. It is tempting to identify v, u andw with x , y and z right now.
The former identification goes through the isomorphism Vn+1(2)/{0, v} ∼= πx but the
latter two have a limitation, since the action G(x)�(x) commutes with the involution
which flips vertices in every line through x , and this involution does not correspond
to an element of L . We will achieve an identication later when getting deeper inside
�. 	

Let M ∼= Ln(2) denote the Levi complement in G(x)�(x) ∼= 2n : Ln(2) to
G 1

2
(x)�(x) ∼= 2n which in terms of the proof of Lemma 10 is the stabilizer in L(v) of

a hyperplane disjoint from v.
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Lemma 11 The following assertions hold:

(i) if n �= 3, then M represents the only class of complements and if n = 3, there is
an additional class whose representatives act transitively on �(x);

(ii) if n �= 4, then the complement K as in Lemma 10 represents the only class of
complements to Q in G(x, y, z)�(x) and if n = 4, then there are eight classes of
such complements.

Proof. The result follows from the well known fact (Bell 1978) that the first coho-
mology group of Ln(2) on its natural module is trivial unless n = 3, in which case it
is 1-dimensional. 	

By (H2), the graph� contains planes locally isomorphic to the generalized quadrangle
of order (2, 2), a basic property of which is reminded in the next lemma.

Lemma 12 Let� be the point graph of the generalized quadrangle of order (2, 2) and
let S ∼= S6 ∼= Sp4(2) be the automorphism group of �. Then for a vertex x ∈ � the
order of S1(x) is 2 and S1(x) permutes the two lines through y ∈ �(x) not containing
x.

Proof. The vertices of � are the transpositions in S6 with two transpositions adjacent
if their supports are disjoint. The only nontrivial element of S1(x) is the vertex-
transposition x itself. If x = (12), y = (34) then the two lines containing y but
not x (they are {(34), (15), (26)} and {(34), (16), (25)}) are permuted by x . 	

By a general principle, the assertions in Lemma 12 hold for any faithful completion
of the Goldschmidt amalgam

{S(x), S{x, y}} ∼= {S4 × 2, S4 × 2} ∼= G1
3,

acting locally projectively on the coset graph of the completion, particularly for the
universal completion.

Lemma 13 The action G1(x)�(y) is an elementary abelian 2-group which is the dual
natural module for

Ln−1(2) ∼= G(x, y, z)/O2(G(x, y, z)),

and G1(x, y)�(z) = 1.

Proof. By (H4), Corollary 9 and the transitivity of G(x) on �(x) we conclude that
G1(x)�(y) is a non-trivial normal 2-subgroup inG(x, y)�(y). The structure of the latter
action follows from Lemma 10 with subgroups decorated by the superscipt (y). By
Lemma 12, G1(x)�(y) has orbits of length 2 both on �(y) \ l and on the lines other
than l passing through y. By Lemma 10 (iii), (iv) we conclude that

G1(x)
�(y) = T (y)

i for i = 2 or 3

and the claim follows. 	
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E
Dy

Qx

Dz

Qy

Dx

Qz

Fig. 1 Submodules

By Lemmas 10 and 13 we have the following (up to swapping of 2 and 3):

T2 = G1(y)
�(x), T3 = G1(z)

�(x).

Now we can describe G(x, y, x)�(l) up to isomorphism.

Proposition 14 Under Hypothesis 6 the following assertions hold:

(i) G(x, y, z)�(l) = Q(l) : K, where Q(l) = O2(G(x, y, z))�(l) and K ∼= Ln−1(2);
(ii) Q(l) is elementary abelian of order 23(n−1) isomorphic to the direct product of

G1(u)�(l)’s taken for u = x, y, z;
(iii) each direct factor G1(u)�(l) as in (i i) is the dual natural module of K which

acts faithfully on �(v) for every v ∈ l \ {u};
Proof. By Lemmas 10 and 13, the action of Q(l) on �(u) is a direct product of dual
natural modules of G(x, y, z)/O2(G(x, y, z)) ∼= Ln−1(2) for every u ∈ l. Hence it
only remains to justify that G(x, y, z) splits over Q(l). But this is clear since for every
u ∈ l the actionG(x, y, z)�(u) splits by Lemma 10 (i) and there is a symmetry between
the vertices on l performed by the setwise stabilizer G(l). 	


The irreducible K ∼= Ln−1(2)-submodules in O2(G(x, y, z)�(l)) can be naturally
labeled by the points of a Fano plane as on the Fig. 1 below, where Qu = G1(u)�(l) for
u ∈ l and the rest are various diagonal modules with E acting asG 1

2
(u) on every u ∈ l.

This picture enjoyed the obvious S3-symmetry which is essential for the structure of
G(l)�(l) to be revealed in our next result.
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Proposition 15 The group G(l)�(l) is a semidirect product of G(x, y, z)�(l) and an
S3-subgroup R which permutes the vertices on l and conjugates the direct factors
G1(u)�(l) for u ∈ l in accordance. The subgroup R is generated by a preimage in G(l)
of the involutions τx , τy and τz as in Lemma 10 (v) andwhich can be chosen to commute
with a common Ln−1(2)-complement K to O2(G(x, y, z)�(l)) in G(x, y, z)�(l).

Proof. Since n �= 4 by (H5), by Lemma 11 all Ln−1(2)-complements to Q(l) in
G(x, y, z)�(l) are conjugates of K . Thenby considering the normalizer of K inG(l)�(l)

and applying a Frattini type argument we conclude that all the τu’s can be chosen to
centralize K . 	


4.3 The construction

We are ready to prove our main result.

Theorem 16 Under Hypothesis 6 � contains a densely embedded subtree.

Proof. By (H3) we can find a subgroup H(x) in G(x) containing G1(x) such that
H(x)/G1(x) is an Ln(2)-complement toG 1

2
(x)/G1(x) inG(x)/G1(x) ∼= 2n : Ln(2).

We always take H(x) such that H(x)/G1(x) is the complement M as in Lemma 11
so that H(x) has wo orbits on �(x). Then H(x) is in fact the stabilizer in G(x) of
the ordered partition of �(x) into the two H(x)-orbits. Thus H(x)/G1(x) is a Levi
complement in terms of the proof of Lemma 10. Next we take H(x, y, z) := H(x) ∩
G(x, y, z) which is the preimage of the maximal parabolic P = 2(n−1) : Ln−1(2)
in the action on �(x). By Lemmas 10 and 13, we observe that O2(P) is G1(u)�(x)

for u = y or z. The particular u depends on the choice of the Ln(2)-complement
H(x)/G1(x) and the conjugation of H(x) by the preimage of an element from G 1

2
(x)

which swaps y and z, say by τx , changes the vertex u attached to H(x). Therefore,
without loss of generality we can assume that u = y. Then by Lemma 13, the preimage
of P in G(x, y, z) (which is H(x, y, z)) is the direct product of G1(x)/G1(l) and
G1(y)/G1(l) semidirecty multiplied by the complement K which is normalized by
the S3-complement to G(x, y, z)/G1(l). Hence the normalizer of H(x, y, z) in G(l)
picks up a preimage of the involution τz . 	


Now we start defining � by putting into it x and the H(x)-orbit on �(x) which
contains y. Then we define H(y) as the conjugate of H(x) by τz and the vertices of
�(y) to be put in� form the H(y)-orbit containing x . Then we proceed in the obvious
way inductively on the distance from x . Suppose we know that a vertex v is in �, and
also know the subgroup H(v) which is a conjugate of H(x) along the path joining x
with v. Then a vertex w ∈ �(v) is contained in � if and only if H(v,w) is not self-
normalized inG{v,w}. The result of this construction is uniquely determined by H(x)
and, therefore, is invariant under H(x). The invariance under NG(l)(H(x, y, z)) is also
quite clear. The resulted graph� is a tree by (H1). The subgroup H of G generated by
H(x) and τz (equivalently by H(x) and NG(l)(H(x, y, z))) acts locally projectively
on � with type (n, 2). The group H is the universal completion of the corresponding
locally projective amalgam (cf. Neumann 1954). The geometric subgraphs intersected
with � give geometric subgraphs in �, which in turn force the action to be striclty
2-arc transitive of collineation type. This completes the proof. 	
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