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Abstract
The problem of Euler/Tarry concerning 36 officers can be formulated in mathematical
terms: Can a latin square of order 6 have an orthogonal square, or equivalently, are
there 6 pairwise disjoint transversals? This was first answered (in the negative) by
Tarry (1900/01). We prove the following Theorem: If a latin square of order 6 admits
a reflection, i. e. an automorphism of order two which fixes the main diagonal ele-
mentwise, then it has no orthogonal square. We list the 12 isomorphism types of latin
squares of order 6 and see: they all admit such a reflection. So we get a solution of the
Euler problem without the tedious task of tracing the transversals.

Keywords Orthogonal arrays · Latin squares · Room squares · Orthogonal designs ·
configurations

1 Recalling some notions

We recall Euler’s 36 officers Problem: Can 36 officers, drawn from 6 different ranks
and also from 6 different regiments, be ranged in a square so that in each line (both
horizontal and vertical) there are 6 officers of different rank and different regiments?

This was a famous problem at Euler’s time, and Euler wrote a paper concerning
it, Euler (1782). The first proof of the non-existence was by Tarry (1901), so we may
call this problem now the Euler/Tarry problem. The problem can be formulated in
mathematical terms by the existence of a MOL(6) (a pair of orthogonal latin squares
LQ(6) of order 6), Denes and Keedwell (1974). Further proofs for the non-existence
were given, also very short ones, (Betten 1983; Beth et al. 1985; Stinson 1984).

We give an example (Fig. 1): In each cell of the (6 × 6)-array, there is a pair of
numbers. We call the first number the digit (corresponding to the rank) and the second
number the transversal (corresponding to the regiment).
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Fig. 1 Example of a MOL(6)

Fig. 2 Incidence structure of the
MOL(6)

We can describe this as an incidence structure on 24 variables with 4 subsets of
order 6 (the 6-blocks) and 36 subsets of order 4 (the 4-blocks), Fig. 2. The four 6-
blocks are R = {r1, r2, . . . , r6} (the six rows), C = {c1, c2, . . . , c6} the six columns,
D = {d1, d2, . . . , d6} (the six digits) and T = {t1, t2, . . . , t6} (the six transversals).
Each 4-block has the form (r , c, d, t), r ∈ R, c ∈ C, d ∈ D, t ∈ T . The main
condition is: each pair of distinct variables in on exactly one block.

In the last line of the first figure we had to put two question marks since a MOL(6)
does not exist. We also marked a special 4-block (r , c, d, t) = (2, 4, 3, 5). This can
be seen in Fig. 2 as the 4-block with O instead of X.

In the standard notation (Fig. 1) the sets of rows R and columns C are distinguished:
they define the (6×6)-array, where the 36 pairs (d, t) ∈ D×T are inserted. But in the
notation of Fig. 2 (linear space on 24 variables) none of the four sets R (first 6-tuple),
C (second 6-tuple), D (third 6-tuple) and T (fourth 6-tuple) is preferred. Here one can
also see the four latin squares of order 6, which are contained in the MOL(6): these
are the restrictions to the sets R ∪ C ∪ D, R ∪ C ∪ T , R ∪ D ∪ T and C ∪ D ∪ T .

The notion of isomorphism:
We call two latin squares V1 = R1 ∪C1 ∪ D1 and V2 = R2 ∪C2 ∪ D2 isomorphic

if there is a bijection ϕ : V1 → V2 which maps blocks to blocks. If ϕ maps rows
to rows, columns to columns and digits to digits, we get 22 types, called the isotopy
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types in Colbourne and Dinitz (1996). But if in the general case, the map ϕ is allowed
to permute the three sets R,C and D, then the number of types is 12. These are the
isomorphism types as linear spaces, called the main types in Colbourne and Dinitz
(1996).

2 The 12 latin squares LQ(6) of order 6

For each pair of rows of a given latin square of order 6 there are four permutations
possible.We describe the permutations by their cycle distribution and abbreviate these
by 6, 2, 4 and 3:

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
2 3 4 5 6 1 2 1 4 3 6 5 2 1 4 5 6 3 2 3 1 5 6 4

(6): 6 (2)(2)(2): 2 (2)(4) :4 (3)(3): 3

In Betten (1984) we proved that each LQ(6) has up to isomorphism a pair of type 3,
and using this, we gave a quick classification of the 12 isomorphism types of latin
squares LQ(6). These 12 squares also occur in Betten and Betten (2001) where we
classified linear spaces with 18 points. In the following list we give the 12 types of
LQ(6) together with some invariants.

Definition of μ3: A latin square LQ(6) is defined on a (6× 6)-array having 6 rows
r and 6 columns c. On each position (r , c), r , c ∈ {1, 2, 3, 4, 5, 6} there is given a
digit d ∈ {1, 2, 3, 4, 5, 6}. So the latin square corresponds to a 36-element subset L of
the 3-dimensional cube {(r , c, d), r , c, d ∈ {1, 2, 3, 4, 5, 6}} with edge length 6 and
63 = 216 elements. These 36 elements must be chosen suitably so that the conditions
for a latin square are fulfilled. We now consider subcubes with edge length 3, each
defined by a triple 1 ≤ r1 < r2 < r3 ≤ 6 of rows, a triple 1 ≤ c1 < c2 < c3 ≤ 6
of columns , and a triple 1 ≤ d1 < d2 < d3 ≤ 6 of digits. Let � be the set of these

subcubes, |�| = (6
3

)3 = 8000. For each W ∈ � we determine the number |W ∩ L|,
i.e., the number of elements of the latin square which are contained in W. We now set

μ3 = max {|W ∩ L|,W ∈ �}

The first 4 squares have μ3 = 9. The squares no 5–7 have μ3 = 8 and are derived
from numbers 1 to 3 by rotating the 4 central elements by 90◦. No. 7–12 have μ3 = 7.

We define λ as the number of sub-LQ(2), and τ is the number of transversals.
Then all permutations of pairs of rows, pairs of columns and pairs of digits are

given. Let A be the automorphism group and I the inner group (which maps rows to
rows, columns to columns and digits to digits) then we give the orders |A|, and |A/I |
and the type of the quotient group A/I which permutes the three dimensions (rows,
columns and digits). We give also the numbers in the list of Tarry and in the list of
Fisher Yates.
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The 12 isomorphism types of the LQ(6)

1)

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
5 4 6 2 1 3
4 6 5 1 3 2
6 5 4 3 2 1

5)

1 2 3 4 5 6
2 3 1 5 6 4
3 1 |6 2| 4 5
5 4 |2 6| 1 3
4 6 5 1 3 2
6 5 4 3 2 1

9)

1© 3 5 2 6 4
3 1© 2 4 5 6
5 2 1© 6 4 3
2 6 4 1© 3 5
4 5 6 3 1© 2
6 4 3 5 2 1©

2)

1 2 3 4 5 6
3 1 2 5 6 4
2 3 1 6 4 5
5 4 6 1 3 2
4 6 5 2 1 3
6 5 4 3 2 1

6)

1 2 3 4 5 6
3 1 2 5 6 4
2 3 |6 1| 4 5
5 4 |1 6| 3 2
4 6 5 2 1 3
6 5 4 3 2 1

10)

2 1 3 4 5 6
1 2 4 3 6 5
3 5 2 6 4 1
5 3 6 1 2 4
4 6 5 2 1 3
6 4 1 5 3 2

3)

1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
4 6 5 1 2 3
5 4 6 3 1 2
6 5 4 2 3 1

7)

1 2 3 4 5 6
3 1 2 6 4 5
2 3 |5 1| 6 4
4 6 |1 5| 2 3
5 4 6 3 1 2
6 5 4 2 3 1

11)

2© 1 3 5 4 6
1 2© 6 4 3 5
3 6 1© 2 5 4
5 4 2 1© 6 3
4 3 5 6 1© 2
6 5 4 3 2 1©

4)

3 1 2 4 5 6
1 2 3 6 4 5
2 3 1 5 6 4
4 5 6 1 2 3
6 4 5 2 3 1
5 6 4 3 1 2

8)

1© 2 3 4 5 6
2 1© 6 5 3 4
3 6 1© 2 4 5
4 5 2 1© 6 3
5 3 4 6 1© 2
6 4 5 3 2 1©

12)

1© 3 4© 2© 6 5©
3 4 6 5© 1 2©
4© 5 1© 3 2 6
2© 6© 3 4 5 1
5 1 2 6 3© 4©
6© 2© 5 1 4© 3©

3 Reflections

Let M be a MOL(6) given as a linear space on R∪C ∪ D∪T , and let L the sub-LQ(6)
defined by the linear space on R ∪ C ∪ D, then:

Theorem 1 Each collineation of L extends uniquely to a collineation of M, mapping T
to itself. Conversely, each collineation of M, which maps T to T, induces a collineation
of L.

Proof Each 3-block of L extends uniquely to a 4-block of M. Each collineation ϕ of L
maps each transversal of L to another transversal, and each disjoint pair of transversals
to a disjoint pair. Therefore ϕ induces a bijection of T and hence a bijection of the
point set R∪C ∪ D∪T of M. Since ϕ is a collineation of L and maps 3-blocks of L to
3-blocks of L, and since each 3-block extends uniquely to a 4-block of M, it follows

123



Beitr Algebra Geom (2021) 62:815–821 819

No. (μ3, λ, τ ) |A| |I | A/I Permutations Ta Fi − Ya

1 (9, 27, 0) 1296 216 S3
[
3629

]3
1 17

2 (9, 9, 0) 432 72 S3
[
663623

]3
7 13

3 (9, 9, 0) 72 36 C2

[
4936

]2 [
663623

]
6, 12 11, 12

4 (9, 0, 0) 648 108 S3
[
3669

]3
16 14

5 (8, 19, 0) 48 8 S3
[
64443225

]3
2 7

6 (8, 9, 32) 144 24 S3
[
663623

]3
7 bis 10

7 (8, 5, 8) 8 4 C2

[
684532

]2 [
6842342

]
10, 14 1, 2

8 (7, 15, 24) 240 120 C2

[
415

]2 [
31025

]
3, 11 15, 16

9 (7, 15, 0) 24 12 C2

[
664623

]2 [
62463423

]
4, 5 8, 9

10 (7, 11, 8) 24 4 S3
[
6448322

]3
8 4

11 (7, 7, 8) 16 8 C2

[
6847

]2 [
6444362

]
9, 13 5, 6

12 (7, 4, 8) 24 4 S3
[
694432

]3
15 3

that the extension of ϕ maps 4-blocks of M to 4-blocks of M. This means that the
extension of ϕ is a collineation of M mapping T to T.

If, conversely, a collineation of M maps T to T, then it maps also R ∪ C ∪ D to
R ∪ C ∪ D and restricts therefore to a collineation of L. �	

Theorem 2 Let L be a latin square of order 6 which admits a collineation σ with
the property: σ fixes the main diagonal H elementwise and defines a reflection with
respect this diagonal. Then L has no orthogonal latin square.

Proof We suppose, by contradiction, that there exists an orthogonal square, in other
words, that L has 6 pairwise disjoint transversals. So we have a MOL(6) and by
Theorem 1 the collineation σ is also a collineation of this MOL(6).

(a) There exists no transversal S which intersects the diagonal H in exactly one
element. Proof: Since this element is fixed under σ , and since there is exactly one
transversal through this element, the transversal S is invariant under σ . There are 5
points of S in the complement of H and this set is also invariant under σ . But this set
cannot be split into an equal number of points left of H and right of T since 5 is odd,
a contradiction.

(b) The action of σ on the set D of 6 digits has at most two transpositions. Proof:
Assume there are 3 transpositions, then none of the 6 digits can occur on H, since the
elements of H are fixed, a contradiction.

(c) There exists no transversal S which is invariant under σ and disjoint to H.
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Proof: Assume there is an invariant transversal S disjoint toH. Since σ is a reflection
with respect to H, the 6 disjoint digit values of S distribute as follows: There are 3
values left side of H (say 1, 2, 3) and three values right side of H (say 4, 5, 6). Therefore
the reflection σ defines three transpositions, a contradiction to b).

Since by (a) no transversal intersects H in one element, all intersections of transver-
sals with H have at least 2 elements. Therefore the intersection lengths which partition
H are (2 + 4) or (2 + 2 + 2) or (3 + 3) or (6).

Case (2 + 4): If the digits on H are, say, 1, 1 and 2, 2, 2, 2, then a transversal through
a digit 1, which intersects H not in 1 alone intersects H in a point 2. The transversal
through the second 1 intersects in a second point 2. There remain two points with digit
2. A transversal through one of them cannot contain the second, therefore it intersects
H in only this point. Now we can apply (a) and have a contradiction.

Case (2 + 2 + 2): Let the digits be 1, 1, 2, 2, 3, 3, then they have the transversals
(second number) 11, 12, 21, 23, 32, 33, so H is met by three transversals. In the com-
plement of H are three transversals, and since σ has order 2, one of these transversals
is invariant. This is a contradiction to (c).

Case (3 + 3): The digits 1, 1, 1, 2, 2, 2 get the transversals 11, 12, 13, 21, 22, 23
and we get again 3 transversals in the complement of H, a contradiction to (c).

Case (6): Here the 6 digits 1, 1, 1, 1, 1, 1 get the transversals 11, 12, 13, 14, 15, 16
and this is a contradiction to (a). So in all cases we get a contradiction and the theorem
is proved. �	
Theorem 3 For the latin squares no 1–no 12 there exists no orthogonal square.

Proof One easily checks, using the list, that each of the 12 squares has a reflection with
respect to the main diagonal H. Therefore by Theorem 2 there exists no orthogonal
square. �	
Corollary 1 There exists no MOL(6). �	
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