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Abstract Let R be a commutative ring with identity. Badawi (Bull Aust Math Soc
75(3), 417–429, 2007) introduced a generalization of prime ideals called 2-absorbing
ideals, and this idea is further generalized in a paper by Anderson and Badawi (Com-
munAlgebra 39(5), 1646–1672, 2011) to a concept called n-absorbing ideals. A proper
ideal I of R is said to be an n-absorbing ideal if whenever x1 . . . xn+1 ∈ I for x1, . . . ,
xn+1 ∈ R then there are n of the xi ’s whose product is in I . It was conjectured by
Anderson and Badawi (Commun Algebra 39(5), 1646–1672, 2011) that if I is an n-
absorbing ideal of R then I is strongly n-absorbing (Conjecture 1) and Rad(I )n ⊆ I
(Conjecture 2). In Cahen et al. (in: Fontana et al., Commutative rings. Integer-valued
polynomials, and polynomial function, Springer, New York, 2014, Problem 30c), it
was conjectured also that I [X ] is an n-absorbing ideal of the polynomial ring R[X ] for
each n-absorbing ideal of the ring R (Conjecture 3). In this paper we give an answer
to (Conjecture 2) for n = 3, n = 4 and n = 5 and we prove that (Conjecture 1) and
(Conjecture 3) hold in various classes of rings.
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1 Introduction

We assume throughout that all rings are commutative with 1 �= 0. In this paper, we
study Anderson–Badawi conjectures. The concept of 2-absorbing ideals was intro-
duced and investigated in Badawi (2007). Recall that a proper ideal I of R is called a
2-absorbing ideal of R if whenever a, b, c ∈ R and abc ∈ I , then ab ∈ I or ac ∈ I or
bc ∈ I . More generally, let n be a positive integer, a proper ideal I of R is said to be
an n-absorbing ideal if whenever x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈ R then there are
n of the xi ’s whose product is in I . And I is said to be a strongly n-absorbing ideal
if whenever I1 . . . In+1 ⊆ I for ideals I1, . . . , In+1 of R, then the product of some n
of the Ii ’s is in I . Anderson and Badawi (2011) conjectured that every n-absorbing
ideal of R is strongly n-absorbing (Conjecture 1) and Rad(I )n ⊆ I , where Rad(I )
denotes the radical ideal of I (Conjecture 2).

In Sect. 2, we give an answer to (Conjecture 2) in the case where n = 3, n = 4 and
n = 5. After that, we give some equivalent characterizations of n-absorbing ideals and
we prove that (Conjecture 1) is true in the class ofU -rings. Recall that a commutative
ring R is said to be a U -ring provided R has the property that an ideal contained in a
finite union of ideals must be contained in one of those ideals.

An ideal I of a ring R is an SFT (strong finite type) ideal if there exists an ideal F
of finite type with F ⊆ I and an integer n such that for any a ∈ I , an ∈ F . A ring R
is an SFT-ring if every ideal of R is SFT, which is equivalent to each prime ideal of
R is SFT (Arnold 1973). We prove that if every nonzero proper ideal of a ring R is a
2-absorbing ideal of R then R is an SFT ring.

Finally, we prove that if n is an integer with n ≥ 3, then I is an n-absorbing
ideal of R if and only if I [X ] (respectively I [[X ]]) is an n-absorbing ideal of R[X ]
(Conjecture 3) (respectively R[[X ]]), if the ring R is a Gaussian ring (respectively
Noetherian Gaussian ring) or the ring R is a pseudo-valuation domain (PVD).

We start by recalling some background material.
An integral domain R is said to be a valuation domain if x |y (in R) or y|x (in R)

for every nonzero x , y ∈ R. An integral domain R is called a Prüfer domain if RP is
a valuation domain for each prime ideal P of R.

The content of a polynomial (respectively a power series) f over a commutative
ring R is the ideal C( f ) of R generated by all the coefficients of f . A commutative
ring R is said to be a Gaussian (respectively P-Gaussian) ring if C( f g) = C( f )C(g)
for every f and g in R[X ] (respectively f and g in R[[X ]]).

Let R be an integral domain with quotient field K . A prime ideal P of R is called
strongly prime if whenever x , y ∈ K and xy ∈ P then x ∈ P or y ∈ P . A domain
R is called a pseudo-valuation domain if P is a strongly prime ideal for each prime
ideal P of R.

A prime ideal P of a ring R is said to be a divided prime ideal if P ⊂ x R for every
x ∈ R\P; thus a divided prime ideal is comparable to every ideal of R. An integral
domain R is said to be a divided domain if every prime ideal of R is a divided prime
ideal.

Let R be a ring, Spec(R) denotes the set of prime ideals of R and Nil(R) denotes
the ideal of nilpotent elements of R. If I is a proper ideal of R, then MinR(I ) denotes
the set of prime ideals of R minimal over I .
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2 On the Anderson–Badawi conjectures

Let R be a commutative ring. Anderson and Badawi (2011) conjectured that every
n-absorbing ideal of R is strongly n-absorbing (Conjecture 1) and Rad(I )n ⊆ I
(Conjecture 2). As observed in Anderson and Badawi (2011), it is easy to see that
Conjecture 1 implies Conjecture 2. Conjecture 1 was proved for n = 2, see Ander-
son and Badawi (2011, Theorem 2.13). It was also verified for arbitrary n when R is
a Prüfer domain (Anderson and Badawi 2011, Corollary 6.9). Darani (2013, Theo-
rem 4.2) proved that Conjecture 1 is true for all commutative rings with torsion-free
additive group. Donadze (2016) gives answers for the two conjectures in special cases.
Moreover, Conjecture 2 is true in the case where I is an n-absorbing ideal with
exactly n minimal prime ideals {P1, . . . , Pn}. In fact, by Anderson and Badawi (2011,
Theorem 2.14) we have P1 . . . Pn ⊆ I . Since Rad(I ) = ∩Pi∈MinR(I )Pi ⊆ Pj for
each 1 ≤ j ≤ n, we have Rad(I )n ⊆ I . If in addition, the Pi ’s are comaximal,
then I = P1 ∩ · · · ∩ Pn , (Anderson and Badawi 2011, Corollary 2.15) so I [X ] =
P1[X ]∩ · · · ∩ Pn[X ] (respectively I [[X ]] = P1[[X ]]∩ · · · ∩ Pn[[X ]]), which implies,
by Anderson and Badawi (2011, Theorem 2.1), that I [X ] (respectively I [[X ]]) is an
n-absorbing ideal of R[X ] (respectively R[[X ]]).
Theorem 2.1 Let I be a 3-absorbing ideal of R. Then Rad(I )3 ⊆ I .

Proof Let x , y, z ∈ Rad(I ). First observe that x2y2 ∈ I . In fact, we have x3 ∈ I for
all x ∈ Rad(I ), by Anderson and Badawi (2011, Theorem 2.1). Since x2y2(x + y) =
xxy2(x + y) ∈ I and I is a 3-absorbing ideal, we conclude that either xy2(x + y) ∈ I
or x2(x + y) ∈ I or x2y2 ∈ I , thus x2y2 ∈ I . Now, we prove that x2y ∈ I . Since
x2y(x2 + y) = xxy(x2 + y) ∈ I we have that xy(x2 + y) ∈ I or x2(x2 + y) ∈ I or
x2y ∈ I . So x2y ∈ I or xy2 ∈ I . If xy2 ∈ I , since x2y(x + y) = xxy(x + y) ∈ I ,
we conclude that x2y ∈ I . Finally, since xyz(x + y + z) ∈ I we have xyz ∈ I . 	

Theorem 2.2 Let I be a 4-absorbing ideal of R. Then Rad(I )4 ⊆ I .

Proof By Anderson and Badawi (2011, Theorem 2.1), x4 ∈ I for each x ∈ Rad(I ).
Now following these steps we get the result:

• Let x1, x2 ∈ Rad(I ) then x31 x
3
2 ∈ I . In fact, we have x31(x1 + x2)x32 ∈ I and I is

a 4-absorbing ideal.
• Let x1, x2 ∈ Rad(I ) then x31 x

2
2 ∈ I . In fact, by the last step, as x31 x

3
2 ∈ I , then

either x31 x
2
2 ∈ I or x21 x

3
2 . If x

2
1 x

3
2 ∈ I and since x31 x

2
2 (x1 + x2) ∈ I , we have the

result.
• Let x1, x2 ∈ Rad(I ) then x21 x

2
2 ∈ I and x31 x2 ∈ I . In fact, we have x31 x

2
2 ∈ I (and

x21 x
3
2 ∈ I ), then either x21 x

2
2 ∈ I or x31 x2 ∈ I . If x21 x

2
2 ∈ I , since x31 x2(x1+x2) ∈ I ,

we conclude that x31 x2 ∈ I . If x31 x2 ∈ I , since x21 (x1 + x2)x22 ∈ I , we conclude
that x21 (x1 + x2)x2 ∈ I or x21 x

2
2 ∈ I or x1(x1 + x2)x22 ∈ I . In the first and second

cases, we get x21 x
2
2 ∈ I . In the last case, since x21 x

3
2 ∈ I we have the result.

• Let x1, x2, x3 ∈ Rad(I ) then x21 x
2
2 x

2
3 ∈ I . In fact, it suffices to remark that

x21 x
2
2 x

2
3 (x1 + x2 + x3) ∈ I .

• Let x1, x2, x3 ∈ Rad(I ) then x21 x2x3 ∈ I , since x21 x2x3(x2 + x3) ∈ I .
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• Let x1, x2, x3, x4 ∈ Rad(I ) then x1x2x3x4 ∈ I . In fact, we have x1x2x3x4(x1 +
x2 + x3 + x4) ∈ I and since I is a 4-absorbing ideal, the result is clear.

	

Theorem 2.3 Let I be a 5-absorbing ideal of R. Then Rad(I )5 ⊆ I .

Proof By Anderson and Badawi (2011, Theorem 2.1), x5 ∈ I for each x ∈ Rad(I ).

• Let x1, x2 ∈ Rad(I ) then x41 x
4
2 ∈ I , since x41(x1 + x2)x42 ∈ I .

• Let x1, x2 ∈ Rad(I ) then x41 x
3
2 ∈ I . In fact, we have x41 xx

4
2 ∈ I . Hence, either

x41 x2 ∈ I or x41 x
3
2 ∈ I or x31 x

4
2 ∈ I . If x31 x

4
2 ∈ I , we have either x31 x

3
2 ∈ I or

x21 x
4
2 ∈ I . Suppose that x21 x

4
2 ∈ I , then either x1x42 ∈ I or x1x32 ∈ I . If x1x42 ∈ I

and since x41 x
3
2(x1 + x2) ∈ I , then we get the result.

• Let x1, x2 ∈ Rad(I ) then x31 x
3
2 ∈ I and x41 x

2
2 ∈ I . In fact, since x41 x

3
2 ∈ I and I is

a 5-absorbing ideal we have either x41 x
2
2 ∈ I or x31 x

3
2 ∈ I . Suppose that x41 x

2
2 ∈ I ,

since x31(x1 + x2)x32 ∈ I and x31 x
4
2 ∈ I , we prove that x31 x

3
2 ∈ I . Suppose that

x31 x
3
2 ∈ I and since x41 x

2
2 (x1 + x2) ∈ I , we conclude that x41 x

2
2 ∈ I .

• Let x1, x2 ∈ Rad(I ) then x31 x
2
2 ∈ I and x41 x2 ∈ I . In fact, we have x41 x

2
2 ∈ I

so either x31 x
2
2 ∈ I or x41 x2 ∈ I . If x41 x2 ∈ I we prove that x31 x

2
2 ∈ I since

x31 x
3
2 ∈ I and x31(x1 + x2)x22 ∈ I . If x31 x

2
2 ∈ I , we prove that x41 x2 ∈ I since

x41 (x1 + x2)x2 ∈ I .
• Let x1, x2, x3 ∈ Rad(I ) then (x1x2x3)2 ∈ I . It suffices to remark that x21 x

2
2 x

2
3 (x1+

x2 + x3) ∈ I .
• Let x1, x2, x3 ∈ Rad(I ) then x31 x2x3 ∈ I . In fact, it is clear since x31 x2x3(x2+x3) ∈

I and x31 x2x3(x1 + x2 + x3) ∈ I .
• Let x1, x2, x3 ∈ Rad(I ) then x21 x

2
2 x3 ∈ I since x21 x

2
2 x3(x1 + x2 + x3) ∈ I , then

either x21 x
2
2 x3+x1x22 x

2
3 ∈ I (1’) or x21 x

2
2 x3+x21 x2x

2
3 ∈ I (2’) or x21 x

2
2 x3 ∈ I . If (1’)

is true, since x21 x
2
2 x

2
3 ∈ I then either x1x22 x

2
3 ∈ I or x21 x2x

2
3 ∈ I or x21 x

2
2 x3 ∈ I . If

x1x22 x
2
3 ∈ I , we get the result. If x21 x2x

2
3 ∈ I , since x1x22 x

2
3 (x1 + x2 + x23 ) ∈ I ,

we conclude.
If (2’) is true, since x21 x

2
2 x

2
3 ∈ I then either x1x22 x

2
3 ∈ I or x21 x2x

2
3 ∈ I or x21 x

2
2 x3 ∈

I . If x21 x2x
2
3 ∈ I , we get the result. If x1x22 x

2
3 ∈ I , since x21 x2x

2
3 (x1+x2+x23 ) ∈ I ,

we conclude.
• Let x1, x2, x3,x4 ∈ Rad(I ) then x21 x2x3x4 ∈ I . It is clear since x21 x2x3x4(x1 +

x2 + x3 + x4) ∈ I and x21 x2x3x4(x2 + x3 + x4) ∈ I .
• Let x1, x2, x3,x4 ∈ Rad(I ) then x1x2x3x4 ∈ I . In fact, remark that x1x2x3x4(x1+

x2 + x3 + x4) ∈ I .

	

Notation (Anderson and Badawi 2011) If I is an n-absorbing ideal of R for some
positive integer n, then define ωR(I ) = min{n| I is an n−absorbing ideal o f R}.
Applying Anderson and Badawi (2011, Theorem 6.3), we obtain the following result:

Corollary 2.1 Let P be a prime ideal of a ring R and n ∈ {3, 4, 5}.
(1) If Pn is a P-primary ideal of R and Pn ⊂ Pn−1, then ωR(Pn) = n.
(2) If P is a maximal ideal of R and Pn ⊂ Pn−1, then ωR(Pn) = n.
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(3) Let I be a P-primary ideal of a ring R. If Pn ⊆ I and Pn−1 �⊂ I , thenωR(I ) = n.

Remark that in the case where n ≥ 6, we can prove the following results:

(1) Let x1, x2 ∈ Rad(I ) then x1x
n−1
2 ∈ I . In fact, since x1(x

n−1
1 + x2)x

n−1
2 ∈ I , we

conclude that either x1x
n−1
2 ∈ I or xn−1

1 xn−1
2 ∈ I .

Now, for each 1 ≤ k ≤ n − 1, we suppose that xn−k
1 xn−1

2 ∈ I and we prove that
xn−k−1
1 xn−1

2 ∈ I .
Since x1(x

n−k−1
1 + x2)x

n−1
2 ∈ I , we conclude that either xn−k−1

1 xn−1
2 ∈ I

or x1x
n−1
2 ∈ I or xn−k

1 xn−2
2 + x1x

n−1
2 ∈ I . As xn−k

1 xn−1
2 ∈ I , then either

xn−k−1
1 xn−1

2 ∈ I or xn−k
1 xn−2

2 ∈ I . So the result is clear.
(2) Let x1, x2 ∈ Rad(I ) then xn−2

1 xn−2
2 ∈ I . In fact, it is clear since xn−2

1 (x1 +
x2)x

n−2
2 .

(3) Let x1, x2 ∈ Rad(I ) then xn−2
1 xn−3

2 ∈ I . In fact, it is clear since xn−2
1 (x1 +

x2)x
n−3
2 ∈ I and xn−2

1 xn−2
2 ∈ I .

In the next step, we prove that Conjecture 1 holds for U -rings.

Definition 2.1 Let R be a commutative ring, I , J two ideals of R and a ∈ R. We
define:

(1) (I : J ) = {x ∈ R | x J ⊆ I }.
(2) (I : a) = {x ∈ R | ax ∈ I }.
Notation Let R be a commutative ring, n ∈ N

∗, x1, . . . , xn ∈ R and I1,. . . , In be n
ideals of R. For i ∈ {1, . . . , n}, we denote by:
• x̂i the product x1 . . . xi−1xi+1 . . . xn .
• Îi the product I1 . . . Ii−1 Ii+1 . . . In .

Proposition 2.1 Let I be a proper ideal of a commutative ring R and n ∈ N
∗. The

following conditions are equivalent:

(1) I is an n-absorbing ideal of R.
(2) For every elements x1, . . . , xn ∈ R with x1 . . . xn /∈ I , (I : x1 . . . xn) ⊆

∪1≤i≤n(I : x̂i )
Proof “1) ⇒ 2)” Let a ∈ (I : x1 . . . xn) then ax1 . . . xn ∈ I . Since I is an

n-absorbing ideal and x1 . . . xn /∈ I , we conclude that ax̂i ∈ I for some i with
1 ≤ i ≤ n. Thus a ∈ ∪1≤i≤n(I : x̂i ).
“2) ⇒ 1)” Let x1, . . . , xn+1 ∈ R such that x1 . . . xn+1 ∈ I , then x1 ∈ (I :
x2 . . . xn+1). If x2 . . . xn+1 ∈ I then we are done. Hence we may assume that
x2 . . . xn+1 /∈ I and so by (1), (I : x2 . . . xn+1) ⊆ ∪2≤i≤n+1(I : x̂i ). So x1 ∈ (I :
x̂i ) for some i with 2 ≤ i ≤ n + 1. 	


Definition 2.2 (Quartararo and Butts 1975) A commutative ring R is said to be a
U -ring provided R has the property that an ideal contained in a finite union of ideals
must be contained in one of those ideals.
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Example 2.1 (1) Every Prüfer domain is aU -ring (Quartararo and Butts 1975, Corol-
lary 1.6).

(2) Let D be an integral domain with quotiont field K . If D is aU -ring and D ⊆ R ⊆
K , then R is a U -domain. If D/P is finite for all maximal ideals P of D, then D
is a U -domain if and only if D is a Prüfer domain (Quartararo and Butts 1975).

Recall that a proper ideal I of a ring R is a strongly n-absorbing ideal if whenever
I1 . . . In+1 ⊆ I for ideals I1, . . . , In+1 of R, then the product of some n of the Ii ’s is
contained in I .

Theorem 2.4 Let R be a U-ring and n ≥ 3. The following conditions are equivalent:

(1) I is a strongly n-absorbing ideal.
(2) I is an n-absorbing ideal.
(3) For every x1, x2, . . . , xn ∈ R such that x1 . . . xn /∈ I , (I : x1 . . . xn) = (I : x̂i )

for some 1 ≤ i ≤ n.
(4) For every t ideals I1, . . . , It , 1 ≤ t ≤ n−1, and for every elements x1, . . . , xn−t

such that x1 . . . xn−t I1 . . . It � I , (I : x1 . . . xn−t I1 . . . It ) = (I : x̂i I1 . . . It ) for
some 1 ≤ i ≤ n − t or (I : x1 . . . xn−t I1 . . . It ) = (I : x1 . . . xn−t Î j ) for some
1 ≤ j ≤ t .

(5) For every ideals I1, . . . In of R with I1 . . . In � I , (I : I1 . . . In) = (I : Îi ), for
some 1 ≤ i ≤ n.

Proof 1) ⇒ 2) It is clear.
2) ⇒ 3) This follows from the last proposition, since R is a U -ring.
3) ⇒ 4)Weprove the result by induction on t ∈ {1, . . . , n−1}. For t = 1 consider
x1, . . . , xn−1 ∈ R and an ideal I1 of R such that x1 . . . xn−1 I1 � I .
Let a ∈ (I : x1 . . . xn−1 I1). Then I1 ⊆ (I : ax1 . . . xn−1). If ax1 . . . xn−1 ∈ I , then
a ∈ (I : x1 . . . xn−1). If ax1 . . . xn−1 /∈ I , then by 3), either (I : ax1 . . . xn−1) =
(I : x1 . . . xn−1) or (I : ax1 . . . xn−1) = (I : ax̂i ) for some 1 ≤ i ≤ n − 1. Since
I1 �⊂ (I : x1 . . . xn−1), we conclude that I1 ⊆ (I : ax̂i ) for some1 ≤ i ≤ n−1, and
thus a ∈ (I : x̂i I1). Hence (I : x1 . . . xn−1 I1) ⊆ (I : x1 . . . xn−1) ∪ ∪1≤i≤n−1(I :
x̂i I1). Since R is a U -ring, then either (I : x1 . . . xn−1 I1) ⊆ (I : x1 . . . xn−1) or
(I : x1 . . . xn−1 I1) ⊆ (I : x̂i I1). The other inclusions are evident.

Now, suppose that t > 1 and assume that the claim holds for t − 1. Let
x1, . . . , xn−t be elements of R and let I1, . . . , It be ideals of R such that
x1 . . . xn−t I1 . . . It � I .
Consider an element a ∈ (I : x1 . . . xn−t I1 . . . It ). Thus It ⊆ (I :
ax1 . . . xn−t I1 . . . It−1). If ax1 . . . xn−t I1 . . . It−1 ⊆ I , then a ∈ (I : x1 . . . xn−t

I1 . . . It−1). If ax1 . . . xn−t I1 . . . It−1 � I , then by the induction hypothesis,
either (I : ax1 . . . xn−t I1 . . . It−1) = (I : x1 . . . xn−t I1 . . . It−1) or (I :
ax1 . . . xn−t I1 . . . It−1) = (I : ax̂i I1 . . . It−1) for some 1 ≤ i ≤ n − t or
(I : ax1 . . . xn−t I1 . . . It−1) = (I : ax1 . . . xn−t I1 . . . I j−1 I j+1 . . . It−1) for some
1 ≤ j ≤ t − 1.

Since x1 . . . xn−t I1 . . . It � I , then the first case is removed. Consequently,
either (I : ax1 . . . xn−t I1 . . . It−1) = (I : ax̂i I1 . . . It−1) for some 1 ≤ i ≤ n − t
or
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(I : ax1 . . . xn−t I1 . . . It−1) = (I : ax1 . . . xn−t I1 . . . I j−1 I j+1 . . . It ) for some
1 ≤ j ≤ t − 1.
Hence (I : x1 . . . xn−t I1 . . . It ) ⊆ ∪1≤i≤n−1(I : x̂i I1 . . . It ) ∪ ∪

1≤ j≤t
(I :

x1 . . . xn−t Î j ). Now, since R is a U -ring, (I : x1 . . . xn−t I1 . . . It ) is included in
(I : x̂i I1 . . . It ) for some 1 ≤ i ≤ n − t or (I : x1 . . . xn−t Î j ) for some 1 ≤ j ≤ t .
The other inclusions are evident.
4) ⇒ 5) Let I1, . . . , In be ideals of R such that I1 . . . In � I . Suppose that
a ∈ (I : I1 . . . In). Then In ⊆ (I : aI1 . . . In−1). If aI1 . . . In−1 ⊆ I , then a ∈ (I :
I1 . . . In−1). If aI1 . . . In−1 � I , then by 4), we have either (I : aI1 . . . In−1) =
(I : a Î j ) for some 1 ≤ j ≤ n − 1 or (I : aI1 . . . In−1) = (I : I1 . . . In−1).
By hypothesis, the second case does not hold. The first case implies that a ∈ (I :
I1 . . . I j−1 I j+1 . . . In) for some 1 ≤ j ≤ n − 1. Hence (I : I1 . . . In) ⊆ (I :
I1 . . . In−1) ∪ ∪

1≤ j≤n−1
(I : Î j ) = ∪

1≤i≤n
(I : Î j ). Since R is a U -ring, we conclude

that (I : I1 . . . In) ⊆ (I : Î j ) for some 1 ≤ j ≤ n. The other inclusions are
evident.
5) ⇒ 1) Let I1, . . . , In+1 be ideals of R such that I1 . . . In+1 ⊆ I . Then I1 ⊆
(I : I2 . . . In+1). If I2 . . . In+1 ⊆ I , that is clear. If I2 . . . In+1 � I , then by 5),
(I : I2 . . . In+1) = (I : I2 . . . I j−1 I j+1 . . . In+1) for some 2 ≤ j ≤ n + 1. So
I1 Î j ⊆ I for some 2 ≤ j ≤ n + 1. 	


Example 2.2 Let R be a Prüfer domain, I a proper ideal of R and n ≥ 3. Using Ander-
son and Badawi (2011, Theorem 5.7), we conclude that I is a strongly n-absorbing
ideal of R if and only if I is a product of prime ideals of R.

Badawi (2007) proved that if I is a 2-absorbing ideal of a commutative ring R, then
either (I : x) ⊆ (I : y) or (I : y) ⊆ (I : x) for each x , y ∈ Rad(I )\I . It is natural to
ask if this result can be generalized for each x , y ∈ R\I . The answer is given by the
next theorem. Recall, from Badawi (2007), that if I a 2-absorbing ideal, then one of
the following statements must hold:

(1) Rad(I ) = P is a prime ideal of R and P2 ⊆ I .
(2) Rad(I ) = P1 ∩ P2, P1P2 ⊆ I and Rad(I )2 ⊆ I where P1, P2 are the only

distinct prime ideals of R that are minimal over I .

Theorem 2.5 Let I be a 2-absorbing ideal of a commutative ring R.

(1) If Rad(I ) = P is a prime ideal of R, then either (I : x) ⊆ (I : y) or (I : y) ⊆
(I : x), for every x, y ∈ R\I .

(2) If Rad(I ) = P1 ∩ P2, where P1, P2 are the only distinct prime ideals of R
that are minimal over I and I �= Rad(I ), then either (I : x) ⊆ (I : y) or
(I : y) ⊆ (I : x) for every x, y ∈ R\I except if x ∈ P1\P2 and y ∈ P2\P1, in
which case (I : x) = P2 and (I : y) = P1.

Proof (1) Let I be a 2-absorbing ideal of R such that Rad(I ) = P is a prime ideal
of R. First, remark that:
(a) For each x ∈ R\P , (I : x) ⊆ P . In fact, let y ∈ R such that yx ∈ I . Since P

is a prime ideal and x /∈ P we conclude that y ∈ P .
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(b) Let x , y ∈ R\P then (I : x) and (I : y) are linearly ordered. Otherwise, let
z1 ∈ (I : x)\(I : y) and z2 ∈ (I : y)\(I : x). Then x(z1 + z2)y ∈ I . Since I
is a 2-absorbing ideal, we have x(z1 + z2) ∈ I or (z1 + z2)y ∈ I or xy ∈ I
which is impossible.

Now, let x , y ∈ R\I .
• If x , y ∈ P\I , it’s clear by Badawi (2007 Theorem 2.5).
• If x , y ∈ R\P , it’s clear by the last remark.
• if x ∈ R\P and y ∈ P\I , we have (I : x) ⊂ P ⊂ (I : y) by the last remark
and Badawi (2007 Theorem 2.5).

(2) Let I be a 2-absorbing ideal such that Rad(I ) = P1 ∩ P2 and x ∈ R\Rad(I ).
Then (I : x) ⊆ P1 ∪ P2. In fact, let z ∈ (I : x), so zx ∈ I ⊆ P1 ∩ P2. Since
x /∈ Rad(I ), we have x /∈ P1 or x /∈ P2. So we conclude that z ∈ P1 or z ∈ P2.
Remark that if x ∈ P1\P2, then (I : x) = P2. In fact, let z ∈ (I : x) then
xz ∈ I ⊆ P1 ∩ P2 ⊆ P2. As x /∈ P2 then z ∈ P2. So (I : x) ⊆ P2. Conversely,
let z ∈ P2 then xz ∈ P1P2 ⊆ I . So z ∈ (I : x).
Similarly, if x ∈ P2\P1 then (I : x) = P1.
Now let x , y ∈ R\I .
If x , y ∈ Rad(I )\I , then (I : x) and (I : y) are linearly ordered by Badawi
(2007 Theorem 2.6).
If not, we have the following cases:
• If x ∈ Rad(I )\I and y ∈ R\Rad(I ), we have (I : y) ⊆ P1 ∪ P2 ⊆ (I : x).
• If x , y ∈ R\Rad(I ):

– if x , y ∈ P1\P2, we conclude that (I : x) = (I : y) = P2.
– if x , y ∈ P2\P1, in this case we have (I : x) = (I : y) = P1.
– if x , y ∈ R\(P1 ∪ P2), we assume that (I : x) and (I : y) are not linearly
ordered. Then there exist z1 ∈ (I : x)\(I : y) and z2 ∈ (I : y)\(I : x).
So x(z1 + z2)y ∈ I and no product of two elements is in I which is a
contradiction.

– if x ∈ P1\P2 and y ∈ P2\P1, we have (I : x) = P2 and (I : y) = P1 and
it is clear that (I : x) and (I : y) are not linearly ordered in this case.

	


Recall that a 2-absorbing ideal is a generalization of a prime ideal and there are
many characterization of a commutative ring with their set of prime ideals , so one can
ask if we have a similar result for a commutative ring such that every nonzero proper
ideal of R is a 2-absorbing ideal. The following proposition gives an answer.

Proposition 2.2 Let R be a commutative ring. If every nonzero proper ideal of R is a
2-absorbing ideal then R is an SFT ring.

Proof By Badawi (2007 Theorem 3.4), R is a zero-dimensional ring and we have
three cases.

Case 1: R is quasi-local with maximal ideal M = Nil(R) �= {0} such that M2 ⊆ x R
for each nonzero x ∈ M . To prove that R is an SFT ring it suffices to prove that M
is an SFT ideal of R. Since M �= (0), then there is a nonzero element y ∈ M . Thus
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F = (y) is a principal ideal of R such that x2 ∈ F for each x ∈ M . So we conclude
that M is an SFT ideal.

Case 2: R has exactly two distinct maximal ideals, say {M1, M2}. So either R is
isomorphic to D = R/M1 ⊕ R/M2 or Nil(R)2 = {0} and Nil(R) = ωR for each
nonzero ω ∈ Nil(R). In the first situation, R is isomorphic to an SFT ring so R is an
SFT ring. In the second situation, we have R ∼= R/M2

1 ⊕ R/M2, by Badawi (2007
Lemma 3.3). The ring R/M2

1 is SFT. In fact, let J be an ideal of R/M2
1 , then there

exists an ideal I of R such that M2
1 ⊆ I ⊆ M1 and J = I/M2

1 . It is easy to see that
J ⊆ Nil(R/M2

1 ) = M1/M2
1 and for each x̄ ∈ J , we have x̄2 = 0̄. Then by Hizem

and Benhissi (2011, Proposition 2.1) R/M2
1 is an SFT ring.

Case 3: We suppose that R is isomorphic to F1 ⊕ F2 ⊕ F3, where F1, F2 and F3 are
fields. It is clear in this case that R is an SFT ring. 	

Example 2.3 (1) Let R = Z + 6XZ[X ] and P = 6XZ[X ]. First observe that P2 is

not a 2-absorbing ideal of R. In fact, let f1 = 6X2, f2 = 2 and f3 = 3 in R, then
it is clear to see that f1 f2 f3 ∈ P2 but f1 f2 /∈ I , f2 f3 /∈ I and also f1 f3 /∈ I . So
R is not an SFT ring.

(2) Let D be a valuation domain with Krull dimension n ≥ 1, K the quotient field of
D and X an indeterminate. Set R = D + XK [[X ]], by [4, Example 3.12], R is
not a 2-absorbing ring so R is not an SFT ring.

Next, we give some classes of rings in which Conjecture 3 holds. Recall that
Conjecture 3 is true if n = 2 and we can easily prove that if I is a 2-absorbing
ideal of R then I [[X ]] is also a 2-absorbing ideal of the power series ring R[[X ]].
In fact, we prove that either Rad(I [[X ]]) = P[[X ]], with P a prime ideal of R or
Rad(I [[X ]]) = P1[[X ]] ∩ P2[[X ]], with P1 and P2 are two prime ideals of R. By
Badawi (2007 Theorems 2.8 and 2.9), we conclude that I [[X ]] is a 2-absorbing ideal
since I [[X ]] f is a prime ideal of R[[X ]] for each f ∈ Rad(I [[X ]])\I [[X ]].
Nasehpour (2016) proves that for a Prüfer domain R and n ≥ 3, an ideal I is n-
absorbing if and only if I [X ] is n-absorbing. In the following, we generalize this
result in the case of a Gaussian U -ring.

Remark also that in a Prüfer domain, we can prove the last result in the power series
ring. In fact, let I be an n-absorbing ideal then I [[X ]] = Pn1

1 [[X ]] . . . Pnk
k [[X ]], where

P1, . . . , Pk are the minimal prime ideals over I and n1, . . . , nk positive integer such
that n1+· · ·+nk = n. By Fields (1971, Corollary 4) andAnderson and Badawi (2011,
Theorems 3.1 and 2.1) we conclude that I [[X ]] is an n-absorbing ideal of R[[X ]].

Recall that a commutative ring R is said to be a Gaussian ring (respectively
P-Gaussian) if C( f g) = C( f )C(g) for every polynomials f and g in R[X ] (respec-
tively f and g in R[[X ]]).
Theorem 2.6 Let R be a Gaussian ring (respectively a Noetherian Gaussian ring).
If R is a U-ring, then I is an n-absorbing ideal of R if and only if I [X ] (respectively
I [[X ]]) is an n-absorbing ideal of R[X ] (respectively R[[X ]]). Moreover, ωR(I ) =
ωR[X ](I [X ]) (respectively ωR(I ) = ωR[[X ]](I [[X ]])).
Proof We prove the result in the case of polynomial rings.
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“⇐” It follows from Anderson and Badawi (2011, Corollary 4.3).
“⇒” Suppose that I is an n-absorbing ideal of R and let f1, f2, . . . , fn+1 ∈ R[X ]
such that f1 . . . fn+1 ∈ I [X ].
Since R is a Gaussian ring, we conclude that C( f1) · · ·C( fn+1) = C( f1 · · · fn+1) ⊆
I . As I is a strongly n-absorbing ideal of R, by Theorem 2.2, hence ˆC( fi ) ⊆ I for
some 1 ≤ i ≤ n + 1, thus f̂i ∈ I [X ].
The same proof works also in the case of power series rings as a Noetherian Gaussian
ring is P-Gaussian (Tsang 1965).

Recall that a commutative ring R is said to be a pseudo-valuation domain (PVD)
if every prime ideal of R is strongly prime.

Theorem 2.7 Let R be a pseudo-valuation domain with associated valuation domain
V and let I be an ideal of R such that Rad(I ) is not maximal. Then I is an n-
absorbing ideal of R if and only if I [X ] (respectively I [[X ]]) is an n-absorbing
ideal of R[X ] (respectively of R[[X ]]). Moreover,ωR(I ) = ωR[X ](I [X ]) (respectively
ωR(I ) = ωR[[X ]](I [[X ]])).
Proof Let I be an n-absorbing ideal of R. Then there are at most n prime ideal of R
minimal over I . Since Rad(I ) is the intersection of all the prime ideals minimal over
I and the prime ideals are comparable in a PVD, we conclude that Rad(I ) = P for
some prime ideal minimal over I .

Recall that a PVD is a divided ring, so I is a P-primary ideal of R by Anderson and
Badawi (2011, Theorem 3.2). As Rad(I ) is not maximal then I is also a P-primary
ideal of V by Anderson and Dobbs (1980, Proposition 3.13).

We show that Pn ⊆ I . Let x1, . . . , xn ∈ P , then there is an x ∈ P such that
(x1, . . . , xn)V = xV since V is a valuation domain.

Hence x1 . . . xn = xnb for some b ∈ V . As x ∈ P = Rad(I ) and I is n-absorbing
then xn ∈ I and so xnb ∈ I . Then I [X ] is an n-absorbing ideal of R[X ] by Anderson
and Badawi (2011, Theorem 3.1) (respectively, by Fields (1971, Corollary 4)), I [[X ]]
is P[[X ]]-primary since Pn[[X ]] ⊆ I [[X ]], so I [[X ]] is an n-absorbing ideal of
R[[X ]]). 	
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