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Abstract Let R be a commutative ring with identity. Badawi (Bull Aust Math Soc
75(3), 417429, 2007) introduced a generalization of prime ideals called 2-absorbing
ideals, and this idea is further generalized in a paper by Anderson and Badawi (Com-
mun Algebra 39(5), 1646—1672,2011) to a concept called n-absorbing ideals. A proper
ideal I of R is said to be an n-absorbing ideal if whenever x1 ... x,4+1 € I forxy, ...,
Xn+1 € R then there are n of the x;’s whose product is in /. It was conjectured by
Anderson and Badawi (Commun Algebra 39(5), 1646-1672, 2011) that if [ is an n-
absorbing ideal of R then [ is strongly n-absorbing (Conjecture 1) and Rad (/)" < 1
(Conjecture 2). In Cahen et al. (in: Fontana et al., Commutative rings. Integer-valued
polynomials, and polynomial function, Springer, New York, 2014, Problem 30c), it
was conjectured also that /[ X] is an n-absorbing ideal of the polynomial ring R[ X ] for
each n-absorbing ideal of the ring R (Conjecture 3). In this paper we give an answer
to (Conjecture 2) for n = 3, n = 4 and n = 5 and we prove that (Conjecture 1) and
(Conjecture 3) hold in various classes of rings.
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1 Introduction

We assume throughout that all rings are commutative with 1 % 0. In this paper, we
study Anderson—Badawi conjectures. The concept of 2-absorbing ideals was intro-
duced and investigated in Badawi (2007). Recall that a proper ideal / of R is called a
2-absorbing ideal of R if whenever a, b, c € R and abc € I,thenab € [ orac € I or
bc € 1. More generally, let n be a positive integer, a proper ideal I of R is said to be

an n-absorbing ideal if whenever x1 ...x,41 € I forxy, ..., x,41 € R then there are
n of the x;’s whose product is in /. And [ is said to be a strongly n-absorbing ideal
if whenever I ... I,y € [ forideals Iy, ..., I,41 of R, then the product of some n

of the I;’s is in /. Anderson and Badawi (2011) conjectured that every n-absorbing
ideal of R is strongly n-absorbing (Conjecture 1) and Rad(I)" C I, where Rad (1)
denotes the radical ideal of I (Conjecture 2).

In Sect. 2, we give an answer to (Conjecture 2) in the case where n = 3, n = 4 and
n = 5. After that, we give some equivalent characterizations of n-absorbing ideals and
we prove that (Conjecture 1) is true in the class of U-rings. Recall that a commutative
ring R is said to be a U-ring provided R has the property that an ideal contained in a
finite union of ideals must be contained in one of those ideals.

An ideal I of aring R is an SFT (strong finite type) ideal if there exists an ideal F
of finite type with F C I and an integer n such that forany a € I, a" € F. Aring R
is an SFT-ring if every ideal of R is SFT, which is equivalent to each prime ideal of
R is SFT (Arnold 1973). We prove that if every nonzero proper ideal of a ring R is a
2-absorbing ideal of R then R is an SFT ring.

Finally, we prove that if n is an integer with n > 3, then [ is an n-absorbing
ideal of R if and only if /[X] (respectively /[[X]]) is an n-absorbing ideal of R[X]
(Conjecture 3) (respectively R[[X]]), if the ring R is a Gaussian ring (respectively
Noetherian Gaussian ring) or the ring R is a pseudo-valuation domain (PVD).

We start by recalling some background material.

An integral domain R is said to be a valuation domain if x|y (in R) or y|x (in R)
for every nonzero x, y € R. An integral domain R is called a Priifer domain if Rp is
a valuation domain for each prime ideal P of R.

The content of a polynomial (respectively a power series) f over a commutative
ring R is the ideal C(f) of R generated by all the coefficients of f. A commutative
ring R is said to be a Gaussian (respectively P-Gaussian) ring if C(fg) = C(f)C(g)
for every f and g in R[X] (respectively f and g in R[[X]]).

Let R be an integral domain with quotient field K. A prime ideal P of R is called
strongly prime if whenever x, y € K and xy € P thenx € P or y € P. A domain
R is called a pseudo-valuation domain if P is a strongly prime ideal for each prime
ideal P of R.

A prime ideal P of aring R is said to be a divided prime ideal if P C x R for every
x € R\ P; thus a divided prime ideal is comparable to every ideal of R. An integral
domain R is said to be a divided domain if every prime ideal of R is a divided prime
ideal.

Let R be aring, Spec(R) denotes the set of prime ideals of R and Nil(R) denotes
the ideal of nilpotent elements of R. If I is a proper ideal of R, then Ming(I) denotes
the set of prime ideals of R minimal over /.
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2 On the Anderson-Badawi conjectures

Let R be a commutative ring. Anderson and Badawi (2011) conjectured that every
n-absorbing ideal of R is strongly n-absorbing (Conjecture 1) and Rad(I)" < [
(Conjecture 2). As observed in Anderson and Badawi (2011), it is easy to see that
Conjecture 1 implies Conjecture 2. Conjecture 1 was proved for n = 2, see Ander-
son and Badawi (2011, Theorem 2.13). It was also verified for arbitrary n when R is
a Priifer domain (Anderson and Badawi 2011, Corollary 6.9). Darani (2013, Theo-
rem 4.2) proved that Conjecture 1 is true for all commutative rings with torsion-free
additive group. Donadze (2016) gives answers for the two conjectures in special cases.
Moreover, Conjecture 2 is true in the case where [ is an n-absorbing ideal with
exactly n minimal prime ideals { P, ..., P,}. In fact, by Anderson and Badawi (2011,
Theorem 2.14) we have Py ... P, C I. Since Rad(I) = NpemingyPi S P; for
each 1 < j < n, we have Rad(I)* C I. If in addition, the P;’s are comaximal,
then I = Py N---N P,, (Anderson and Badawi 2011, Corollary 2.15) so I[X] =
Pi[X]N---NP,[X] (respectively I[[X]] = Pi[[XT]IN---N P,[[X]]), which implies,
by Anderson and Badawi (2011, Theorem 2.1), that I[X] (respectively I[[X]]) is an
n-absorbing ideal of R[X] (respectively R[[X]]).

Theorem 2.1 Let I be a 3-absorbing ideal of R. Then Rad(I)? C I.

Proof Letx, y, z € Rad(I). First observe that )czy2 € I.In fact, we have x> € I for
all x € Rad(I), by Anderson and Badawi (2011, Theorem 2.1). Since x2y2(x +y) =
xxy?(x 4+ y) € I and I is a 3-absorbing ideal, we conclude that either xy>(x +y) € I
or x2(x +y) € I or x*y? € I, thus x?y? € I. Now, we prove that x>y € I. Since
x2y(x%2 +y) = xxy(x*> + y) € I we have that xy(x> 4+ y) € I or x>(x> +y) € I or
x2y el.Sox?>y e Iorxy? e I.Ifxy? € I, since x*y(x + y) = xxy(x +y) € I,
we conclude that x>y € I. Finally, since xyz(x +y +2z) €  wehavexyz € I. O

Theorem 2.2 Let I be a 4-absorbing ideal of R. Then Rad(I)* C I.

Proof By Anderson and Badawi (2011, Theorem 2.1), x* e I for each x € Rad(I).
Now following these steps we get the result:

e Let x1, x» € Rad(I) then x?x%’ € 1. In fact, we have xf’(xl + xg)xg eland ] is
a 4-absorbing ideal.

o Letxy, xy € Rad(]) then X x2 € I. In fact, by the last step, as x?x; € I, then
either xfx% el orx Ifx x2 € I and since x x%(xl + xp) € I, we have the
result.

e Letx1,xp € Rad(I) then xlzxg e [ and x13x2 € I. In fact, we have x?x% e I (and
x2x§ el), thene1therx e Iorx13x2 € I.Ifxlzxg € I,sincex%xz(x1+x2) el,
we conclude that x; xz e I. If xfxz € I, since x%(xl + xz)x22 e I, we conclude
that xlz(xl +x2)x2 e I or )clz)c22 € I orxi(xg +xz)x22 € I. In the first and second
cases, we get x1x2 € I. In the last case, since xlzxg € I we have the result.

° Let x1, X2, x3 € Rad(l) then xlx%x32 € I. In fact, it suffices to remark that

x2x3 (x1 +x+x3)el.

° Let X1, X2, x3 € Rad(I) then x? {Xx2x3 € I, since x xzx3(xz +x3)€el.
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o Let x1, x2, x3, x4 € Rad(I) then x;x2x3x4 € I. In fact, we have xixpx3x4(x1 +
X2 + x3 + x4) € I and since I is a 4-absorbing ideal, the result is clear.

Theorem 2.3 Let I be a 5-absorbing ideal of R. Then Rad(I)° C I.

Proof By Anderson and Badawi (2011, Theorem 2.1), x> e 1 foreach x € Rad(I).

e Letxy, xp € Rad(I) then x?xé € I, since xf(xl + xz)xg el.

e Let x1, xp € Rad(l) then xj;x% € I. In fact, we have xi‘xxg € I. Hence, either

x;‘xz elorxjx3elor xix2 € 1.1If xjxy € I, we have either x;x3 € I or
xl)c§1 € I. Suppose that x%x2 € I, then either xl)céL elor xlxg’ el. Ifx1x§ el
and since xfxg (x1 + x2) € I, then we get the result.

e Letxy, x> € Rad(I) then x?x; € I and xfx% € I.Infact, since xfx% € land s
a 5-absorbing ideal we have either xfx% elor x%x% € 1. Suppose that xfx% el,
since x?(xl + xz)xg’ € [ and xfxé' € I, we prove that xfxg’ € I. Suppose that
xfxg € I and since xfx%(xl + x2) € I, we conclude that xi‘x% el.

e Let x1, xp € Rad(l) then xfx% € I and x?xz € I. In fact, we have xfx% el

so either x?x% e I or xfxg e I. If xfxz € I we prove that x?x% € [ since

xf’x; € I and x%(xl +xz)x§ e l. If x?x% € I, we prove that xi‘xz € I since
xj‘(xl + x0)xp € 1.

e Letxy,xp,x3 € Rad(I) then (x1x2x3)2 € I.Itsuffices to remark thatxfx%x%(xl—i—
xo+x3)el.

e Letxy,xp,x3 € Rad(l) thenx13x2x3 € I.Infact,itis clear sincexfxgxg(x2~|—x3) S
I and x?x2x3(x1 +x2+x3) €l.

e Let xi, x2, x3 € Rad(I) then x12x22x3 € [ since x2x§X3(x1 + x2 + x3) € I, then

eitherx%x%xg +x1x?;x32 el (1’)orx12x§x3 +x12x2x3 el (2’)orx12x%x3 e l.If(1°)

is true, since x%x%x3 € I then either x1x§x§ el or xlzxzx% el or x%x%x3 el. If

xlxgxg € I, we get the result. If x12x2x3 e 1, since ch%x%(xl + x2 + x32) el,
we conclude.
If (2°) is true, since x%x%x% € I then either xlxgxg e lor x%xgxf el orxlzxg)@, €
1. If)clz)cz)c32 € I, we get the result. Ifxpc%x% el, sincexlzxzxg(xl +x7 +x§) el,
we conclude.

e Let x1, x2, x3,x4 € Rad(I) then x%x2x3x4 e I. It is clear since x]2x2x3x4(x1 +
X2 +x3+x4) € I and x12x2x3x4(x2 +x3+x4) €1.

e Letxy,xp,x3,x4 € Rad(I) then x1xpx3x4 € I.Infact, remark that x| xpx3x4 (x| +
X2+ x3+x4) €l

]

Notation (Anderson and Badawi 2011) If I is an n-absorbing ideal of R for some
positive integer n, then define wr (1) = min{n| I is an n —absorbing ideal of R}.
Applying Anderson and Badawi (2011, Theorem 6.3), we obtain the following result:
Corollary 2.1 Let P be a prime ideal of a ring R and n € {3, 4, 5}.

(1) If P" is a P-primary ideal of R and P" C P"~!, then wg(P") = n.
(2) If P is a maximal ideal of R and P" C P" L then wg(P") = n.
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(3) LetI bea P-primary ideal of aring R. If P" C I and P"~' ¢ I, then wg(I) = n.

Remark that in the case where n > 6, we can prove the following results:

(1) Let x1, xo € Rad([I) then xlngl € I. In fact, since xl(x;’fl +x2)x§71 el,we

conclude that either xlxg_l el or xf_lxg_l el
n—k n—1

Now, foreach 1 < k < n — 1, we suppose that x; " "x, € I and we prove that
x’ffk*lngl el.
Since xl(xi'_k_l + xz)x’;_l € I, we conclude that either x{'_k_lxg_l eI
or xlngl e I or x?ikngz + xlxg’fl e I. As x;’kagfl e 1, then either
xf_k_lx’;_l el or xf_kxg_z € 1. So the result is clear.

(2) Let x1, xp € Rad(I) then x{'_zx;_z € I. In fact, it is clear since x?_z(xl +
xz)xg_z.

(3) Let x1, xo € Rad(I) then x;’fzx'z’f3 e I. In fact, it is clear since x?’72(x1 +

xz)x§’73 e I and xi’fzx’z“2 el.

In the next step, we prove that Conjecture 1 holds for U-rings.

Definition 2.1 Let R be a commutative ring, I, J two ideals of R and a € R. We
define:

D) d:J)y={xeR|xJ I}
2) I:a)={x€eR|ax e I}.

Notation Let R be a commutative ring, n € N*, x1,..., x, € Rand I1,..., I, be n
ideals of R. Fori € {1, ..., n}, we denote by:
e Xx; the product x ... x;—1X;41 ... Xy.

e [itheproduct Iy ... Ii_1liy1...1,.

Proposition 2.1 Let I be a proper ideal of a commutative ring R and n € N*. The
following conditions are equivalent:

(1) I is an n-absorbing ideal of R.
(2) For every elements x1,..., x, € Rwith x1...x, ¢ I, (I : x1...x,) C
Ulfifn(l ixAi)

Proof “1) = 2)" Leta € (I : x1...x,) then ax;...x, € I. Since I is an
n-absorbing ideal and x; ...x, ¢ I, we conclude that axX; € I for some i with
1 <i<nThusa € Ui<i<,(I : X;).
“2) = 1)’ Let x1,..., Xp+1 € R such that x;...x,41 € I, then x; € (I :
X2 ... Xxp41). If x2...x,41 € I then we are done. Hence we may assume that
X2...xp41 € Tandsoby (1), ({ : x2...xp41) C Un<i<py1(I 1 X;). Sox; € (I :
x;) forsomei with2 <i <n -+ 1. O

Definition 2.2 (Quartararo and Butts 1975) A commutative ring R is said to be a
U-ring provided R has the property that an ideal contained in a finite union of ideals
must be contained in one of those ideals.
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Example 2.1 (1) Every Priifer domain is a U -ring (Quartararo and Butts 1975, Corol-
lary 1.6).

(2) Let D be an integral domain with quotiont field K. If Disa U-ringand D € R C

K, then R is a U-domain. If D/ P is finite for all maximal ideals P of D, then D

is a U-domain if and only if D is a Priifer domain (Quartararo and Butts 1975).

Recall that a proper ideal 7 of aring R is a strongly n-absorbing ideal if whenever
Iy...I,41 C I forideals Iy, ..., I,+1 of R, then the product of some n of the I;’s is
contained in /.

Theorem 2.4 Let R be a U-ring andn > 3. The following conditions are equivalent:

(1) I is a strongly n-absorbing ideal.

(2) I is an n-absorbing ideal.

(3) Forevery xi, x3,..., Xy, € Rsuchthatxy...x, ¢ I, (I : x1...xp) = (I : X})
forsome 1 <i <n.

(4) Foreverytideals Iy, ..., I;, 1 <t <n—1, and for every elements x1, ..., Xn—;
suchthat xy ... x,_¢I1 ... I; Q I (I:x1...x0—¢ 0y 1) = : 51 ... L) for
somel <i<n—tor(  :x1...xp—01...1;) = : x1 ...xn_,fj)forsome
I<j=<t

(5) Foreveryideals Iy, ... I, of Rwith Iy ... I, §Z I, :L...I)=(: fi),for
some 1 <i <n.

Proof 1) = 2) Itis clear.

2) = 3) This follows from the last proposition, since R is a U-ring.
3) = 4) We prove the result by inductionont € {1, ..., n—1}.Fort = 1 consider
Xl,..., X;—1 € R and an ideal I; of R such thatx; ...x,—11; € I.
Letae (I :x;...xy,—111). Thenl; € (I :axy...x,—1).Ifax;...x,—1 € I,then
ae(:xy...xp—1). If axy...x,—1 ¢ I, then by 3), either (1 : ax;...x,—1) =
(I:x1...xp-1)or(I:axy...xy,—1) = (I :ax;)forsomel <i <n — 1. Since
L & (I:x1...x,-1),weconcludethat I} C (I : ax;)forsomel <i < n—1,and
thusa € (I : X;I1). Hence (1 : xy...xp—101) © (L :x1 ... xp—1) UUj<i<p—1(1 :
x;iI). Since R is a U-ring, then either (1 : x;...x,—1I1) € (I : x{...Xx,-1) OF
(I:x1...x,_111) € (I :x;11). The other inclusions are evident.

Now, suppose that ¢+ > 1 and assume that the claim holds for + — 1. Let

X1,..., Xp—; be elements of R and let I,..., I; be ideals of R such that
Xt Xneghy o I E 1
Consider an element ¢ € (I : xy...xp,—¢I1...I;). Thus I, < (I

axy ... xp—hy ... L) . Ifaxy ... xy—sD... 1ty C I, thena € (I : x1...%x,_¢
Lio.. Ly Waxy ... xy_sy ... I ;(_ I, then by the induction hypothesis,
either (I : axy...xp—¢I1... 1) = (I : xt...xp—¢01...1;—1) or (
axi...xp—li ... L)) = :axil;...I,_1)forsome 1 <i <n—tor
(I Laxy.. .xn_,ll . It—l) = (1 Laxy .. .xn_,Il . Ij_llj_;,_l . It—l) for some
I1<j<t—1.

Since x1...x,—¢11...I; 51 1, then the first case is removed. Consequently,
either (I :axy...xp—Iy... I, )= :ax;Iy...I,_1)forsome 1l <i <n—t
or
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U :axy...xphy... L) = axy...xp—dy ... 1j_11jy1 ... 1) for some
I<j<t—1
Hence (I : xy...xp—l1...5;) C Ui<j<um(I @ 50 ... L) U U

I<j=<t

X1 ...xn_,fj). Now, since R is a U-ring, (I : x1...x,—¢11 ... 1I;) is included in
(I:x;Iy...1I;)forsomel <i <n-—tor(l:x ...x,,_,fj)forsomel <j<t.
The other inclusions are evident.

4) = 5) Let I, ..., I, be ideals of R such that I;...1, Q I. Suppose that
ae(:1Ii...1,). Thenl, < :aly... I,_1). Ifal,...I,_1 C I,thena € (I :
Li...Iy—1).Ifaly...I,_1 € I, then by 4), we have either (1 : aly...I,—1) =
(I:afj)forsomelgj <n—1lor(l:aly...I,_1)=U:1L...I,-1).

By hypothesis, the second case does not hold. The first case implies that a € (I :
Ii...lj1ljyy... 1) forsome 1 < j <n-—1.Hence (I : Iy...1;,) € (I :
L...L,.pypu U (I: fj) = U (: fj). Since R is a U-ring, we conclude

1<j<n-—1 1<i<n

that (I : Iy...1,) € (I : fj) for some 1 < j < n. The other inclusions are
evident.

5) = 1) Let I1, ..., I,4+1 be ideals of R such that I;...I,4+1 € I. Then I} C
(I:Dh...Dyy)). I L. Iy C 1, thatis clear. If I ... I,41 € I, then by 5),
U:DL...Iyy1)=U:DL...Ij1ljt1...Ip11) forsome 2 < j < n+ 1. So
I1fj§1f0rsome2§j§n+l. |

Example 2.2 Let R be a Priifer domain, I a proper ideal of R and n > 3. Using Ander-
son and Badawi (2011, Theorem 5.7), we conclude that I is a strongly n-absorbing
ideal of R if and only if 7 is a product of prime ideals of R.

Badawi (2007) proved that if I is a 2-absorbing ideal of a commutative ring R, then
either (/ : x) € (I :y)or(I :y) € (I :x)foreachx,y € Rad(I)\I.Itis natural to
ask if this result can be generalized for each x, y € R\/. The answer is given by the
next theorem. Recall, from Badawi (2007), that if I a 2-absorbing ideal, then one of
the following statements must hold:

(1) Rad(l) = P is a prime ideal of R and PrC1.
(2) Rad(I) = PN Py, PP, C I and Rad(I)?> C I where P;, P, are the only
distinct prime ideals of R that are minimal over /.

Theorem 2.5 Let I be a 2-absorbing ideal of a commutative ring R.

(1) If Rad(I) = P is a prime ideal of R, then either (I : x) € (I : y)or (I : y) C
(I : x), forevery x, y € R\I.

(2) If Rad(I) = Py N Py, where Py, Py are the only distinct prime ideals of R
that are minimal over I and 1 # Rad(l), then either (I : x) € (I : y) or
(I:y) S :x)foreveryx,y € R\I exceptifx € PI\P,andy € P\ Py, in
which case (I : x) = Pyand (I : y) = Py.

Proof (1) Let I be a 2-absorbing ideal of R such that Rad(l) = P is a prime ideal
of R. First, remark that:
(a) Foreachx € R\P, (I : x) € P.Infact,let y € R such that yx € I. Since P
is a prime ideal and x ¢ P we conclude that y € P.
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(b) Letx, y € R\P then (I : x) and (I : y) are linearly ordered. Otherwise, let
z1€ (I :x)\(I:y)andzp € (I : y)\(I : x). Then x(z; + z2)y € I. Since I
is a 2-absorbing ideal, we have x(z1 +2z2) € [ or (z1 + z2)y € L orxy € [
which is impossible.

Now, let x, y € R\I.

o Ifx,
o Ifx,

o if x

y € P\I,it’s clear by Badawi (2007 Theorem 2.5).
y € R\ P, it’s clear by the last remark.
€ R\Pandy € P\I,wehave (I : x) C P C (I : y) by the last remark

and Badawi (2007 Theorem 2.5).

(2) Let I be a 2-absorbing ideal such that Rad(l) = P; N P> and x € R\Rad(I).
Then (/ : x) € PyU Py. Infact,letz € (I : x),sozx € I C P; N P;. Since
x ¢ Rad(I), wehave x ¢ Py orx ¢ P>. So we conclude thatz € Py orz € P>.
Remark that if x € P\ P>, then (I : x) = Pp. In fact, let z € (I : x) then
xzel CPINP,C P.Asx ¢ Pythenz € P,.So (I : x) € P,. Conversely,
letze Pothenxz € P1P, C1.Soz € (I :x).

Similarly, if x € P>\ Py then (I : x) = Pj.

Now let x, y € R\I.

If x, y € Rad(I)\I, then (I : x) and (I : y) are linearly ordered by Badawi
(2007 Theorem 2.6).

If not, we have the following cases:

o If x

o Ifx,

€ Rad(I)\I and y € R\Rad(I), wehave (I : y) € PiU P, C (I : x).
y € R\Rad(I):
if x, y € P\ P, weconclude that (/ : x) = (I : y) = P>.
if x, y € P\ Py, in this case we have (I : x) = (I : y) = Py.
if x,y € R\(P1 U P>), we assume that (/ : x) and ({ : y) are not linearly
ordered. Then there exist z; € (I : x)\({ : y)and z € (I : )\ : x).
So x(z1 + z2)y € I and no product of two elements is in I which is a
contradiction.
ifx € PI1\Pandy € P,\P;,wehave ({ : x) = P,and (/ : y) = P; and
itis clear that (/ : x) and (/ : y) are not linearly ordered in this case.

O

Recall that a 2-absorbing ideal is a generalization of a prime ideal and there are
many characterization of a commutative ring with their set of prime ideals , so one can
ask if we have a similar result for a commutative ring such that every nonzero proper
ideal of R is a 2-absorbing ideal. The following proposition gives an answer.

Proposition 2.2 Let R be a commutative ring. If every nonzero proper ideal of R is a
2-absorbing ideal then R is an SFT ring.

Proof By Badawi (2007 Theorem 3.4), R is a zero-dimensional ring and we have

three cases.

Case 1: R is quasi-local with maximal ideal M = Nil(R) # {0} such that M?> C xR
for each nonzero x € M. To prove that R is an SFT ring it suffices to prove that M
is an SFT ideal of R. Since M # (0), then there is a nonzero element y € M. Thus
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F = (y) is a principal ideal of R such that x> € F for each x € M. So we conclude
that M is an SFT ideal.

Case 2: R has exactly two distinct maximal ideals, say {M, M3}. So either R is
isomorphic to D = R/M| & R/M; or Nil(R)? = {0} and Nil(R) = wR for each
nonzero @ € Nil(R). In the first situation, R is isomorphic to an SFT ring so R is an
SFT ring. In the second situation, we have R = R /M]2 @ R/M>;, by Badawi (2007
Lemma 3.3). The ring R/M 12 is SFT. In fact, let J be an ideal of R/M?, then there
exists an ideal I of R such that M12 ClIC M and J = I/Mlz. It is easy to see that
J € Nil(R/M?) = M,/M7 and for each ¥ € J, we have ¥> = 0. Then by Hizem
and Benhissi (2011, Proposition 2.1) R/M12 is an SFT ring.

Case 3: We suppose that R is isomorphic to F| & F» & F3, where F, F> and F3 are
fields. It is clear in this case that R is an SFT ring. O

Example 2.3 (1) Let R = Z + 6XZ[X] and P = 6XZ[X]. First observe that PZis
not a 2-absorbing ideal of R. In fact, let f| = 6X2, f>»=2and f3 =3 in R, then
it is clear to see that f1 f>f3 € P2but fif> ¢ I, fof3 ¢ I andalso fif3 ¢ I. So
R is not an SFT ring.

(2) Let D be a valuation domain with Krull dimension n > 1, K the quotient field of

D and X an indeterminate. Set R = D + XK[[X]], by [4, Example 3.12], R is
not a 2-absorbing ring so R is not an SFT ring.

Next, we give some classes of rings in which Conjecture 3 holds. Recall that
Conjecture 3 is true if » = 2 and we can easily prove that if / is a 2-absorbing
ideal of R then I[[X]] is also a 2-absorbing ideal of the power series ring R[[X]].
In fact, we prove that either Rad (I[[X]]) = P[[X]], with P a prime ideal of R or
Rad(I[[X]]) = Pil[X]] N P;[[X]], with P; and P, are two prime ideals of R. By
Badawi (2007 Theorems 2.8 and 2.9), we conclude that I[[X]] is a 2-absorbing ideal
since I[[X]]f is a prime ideal of R[[X]] for each f € Rad(I[[X]D\I[[X]].
Nasehpour (2016) proves that for a Priifer domain R and n > 3, an ideal [ is n-
absorbing if and only if /[X] is n-absorbing. In the following, we generalize this
result in the case of a Gaussian U-ring.

Remark also that in a Priifer domain, we can prove the last result in the power series
ring. In fact, let  be an n-absorbing ideal then I[[X]] = P;" [[X]]... P/*[[X]], where
P1, ..., Py are the minimal prime ideals over / and ny, ..., nj positive integer such
thatn|+- - -+n; = n. By Fields (1971, Corollary 4) and Anderson and Badawi (2011,
Theorems 3.1 and 2.1) we conclude that /[[X]] is an n-absorbing ideal of R[[X]].

Recall that a commutative ring R is said to be a Gaussian ring (respectively
P-Gaussian) if C(fg) = C(f)C(g) for every polynomials f and g in R[X] (respec-
tively f and g in R[[X]]).

Theorem 2.6 Let R be a Gaussian ring (respectively a Noetherian Gaussian ring).
If R is a U-ring, then I is an n-absorbing ideal of R if and only if I[X] (respectively
I[[X]]) is an n-absorbing ideal of R[X] (respectively R[[X]]). Moreover, wg(I) =
wr(x)(I[X]) (respectively wr (1) = wgryx)(I[[X]])).

Proof We prove the result in the case of polynomial rings.
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“<" It follows from Anderson and Badawi (2011, Corollary 4.3).

“=" Suppose that [ is an n-absorbing ideal of R and let fi, f>,..., fu+1 € R[X]
such that fi ... f+1 € I[X].

Since R is a Gaussian ring, we conclude that C(f1) - - - C(fut1) = C(f1 -+ fat1) €
I. As I is a strongly n-absorbing ideal of R, by Theorem 2.2, hence C(f;) < I for
somel <i<n-+ l,thusf,- e I[X].

The same proof works also in the case of power series rings as a Noetherian Gaussian
ring is P-Gaussian (Tsang 1965).

Recall that a commutative ring R is said to be a pseudo-valuation domain (PVD)
if every prime ideal of R is strongly prime.

Theorem 2.7 Let R be a pseudo-valuation domain with associated valuation domain
V and let I be an ideal of R such that Rad(l) is not maximal. Then I is an n-
absorbing ideal of R if and only if I[X] (respectively I[[X]]) is an n-absorbing
ideal of R[X] (respectively of R[[X]]). Moreover, wg (1) = wpr(x](I[X]) (respectively
wr(l) = orxnU[[X]]).

Proof Let I be an n-absorbing ideal of R. Then there are at most n prime ideal of R
minimal over /. Since Rad (1) is the intersection of all the prime ideals minimal over
I and the prime ideals are comparable in a PVD, we conclude that Rad(l) = P for
some prime ideal minimal over 7.

Recall that a PVD is a divided ring, so [ is a P-primary ideal of R by Anderson and
Badawi (2011, Theorem 3.2). As Rad (1) is not maximal then / is also a P-primary
ideal of V by Anderson and Dobbs (1980, Proposition 3.13).

We show that P" C [I. Let x1,..., x, € P, then there is an x € P such that
(x1,...,x,)y = xV since V is a valuation domain.

Hence xy...x, = x"bforsome b € V. Asx € P = Rad(I) and [ is n-absorbing
then x"* € [ and so x"b € I. Then I[X] is an n-absorbing ideal of R[X] by Anderson
and Badawi (2011, Theorem 3.1) (respectively, by Fields (1971, Corollary 4)), I[[X]]
is P[[X]]-primary since P"[[X]] € I[[X]], so I[[X]] is an n-absorbing ideal of
RIIX]D. o
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