ORIGINAL PAPER

On Anderson-Badawi conjectures

Smach Sihem¹ · Hizem Sana¹

Received: 20 January 2017 / Accepted: 22 May 2017 / Published online: 30 May 2017 © The Author(s) 2017. This article is an open access publication

Abstract Let *R* be a commutative ring with identity. Badawi (Bull Aust Math Soc 75(3), 417–429, 2007) introduced a generalization of prime ideals called 2-absorbing ideals, and this idea is further generalized in a paper by Anderson and Badawi (Commun Algebra 39(5), 1646–1672, 2011) to a concept called *n*-absorbing ideals. A proper ideal *I* of *R* is said to be an *n*-absorbing ideal if whenever $x_1 ldots x_{n+1} \in I$ for $x_1, \ldots, x_{n+1} \in R$ then there are *n* of the x_i 's whose product is in *I*. It was conjectured by Anderson and Badawi (Commun Algebra 39(5), 1646–1672, 2011) that if *I* is an *n*-absorbing ideal of *R* then *I* is strongly *n*-absorbing (**Conjecture 1**) and $Rad(I)^n \subseteq I$ (**Conjecture 2**). In Cahen et al. (in: Fontana et al., Commutative rings. Integer-valued polynomials, and polynomial function, Springer, New York, 2014, Problem 30c), it was conjectured also that I[X] is an *n*-absorbing ideal of the polynomial ring R[X] for each *n*-absorbing ideal of the ring *R* (**Conjecture 3**). In this paper we give an answer to (**Conjecture 2**) for n = 3, n = 4 and n = 5 and we prove that (**Conjecture 1**) and (**Conjecture 3**) hold in various classes of rings.

Keywords 2-Absorbing ideal \cdot *n*-Absorbing ideal \cdot Strongly *n*-absorbing \cdot *U*-ring \cdot Prüfer \cdot PVD

Mathematics Subject Classification 13A15 · 13F05 · 13F25

Smach Sihem smach_sihem@yahoo.com

¹ Department of Mathematics, Faculty of Sciences, Monastir, Tunisia

1 Introduction

We assume throughout that all rings are commutative with $1 \neq 0$. In this paper, we study Anderson–Badawi conjectures. The concept of 2-absorbing ideals was introduced and investigated in Badawi (2007). Recall that a proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. More generally, let n be a positive integer, a proper ideal I of R is said to be an n-absorbing ideal if whenever $x_1 \dots x_{n+1} \in I$ for $x_1, \dots, x_{n+1} \in R$ then there are n of the x_i 's whose product is in I. And I is said to be a strongly n-absorbing ideal if whenever $I_1 \dots I_{n+1} \subseteq I$ for ideals I_1, \dots, I_{n+1} of R, then the product of some n of the I_i 's is in I. Anderson and Badawi (2011) conjectured that every n-absorbing ideal of R is strongly n-absorbing (**Conjecture 1**) and $Rad(I)^n \subseteq I$, where Rad(I) denotes the radical ideal of I (**Conjecture 2**).

In Sect. 2, we give an answer to (**Conjecture 2**) in the case where n = 3, n = 4 and n = 5. After that, we give some equivalent characterizations of *n*-absorbing ideals and we prove that (**Conjecture 1**) is true in the class of *U*-rings. Recall that a commutative ring *R* is said to be a *U*-ring provided *R* has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals.

An ideal *I* of a ring *R* is an SFT (strong finite type) ideal if there exists an ideal *F* of finite type with $F \subseteq I$ and an integer *n* such that for any $a \in I$, $a^n \in F$. A ring *R* is an SFT-ring if every ideal of *R* is SFT, which is equivalent to each prime ideal of *R* is SFT (Arnold 1973). We prove that if every nonzero proper ideal of a ring *R* is a 2-absorbing ideal of *R* then *R* is an SFT ring.

Finally, we prove that if *n* is an integer with $n \ge 3$, then *I* is an *n*-absorbing ideal of *R* if and only if I[X] (respectively I[[X]]) is an *n*-absorbing ideal of R[X] (**Conjecture 3**) (respectively R[[X]]), if the ring *R* is a Gaussian ring (respectively Noetherian Gaussian ring) or the ring *R* is a pseudo-valuation domain (PVD).

We start by recalling some background material.

An integral domain *R* is said to be a valuation domain if x|y (in *R*) or y|x (in *R*) for every nonzero $x, y \in R$. An integral domain *R* is called a Prüfer domain if R_P is a valuation domain for each prime ideal *P* of *R*.

The content of a polynomial (respectively a power series) f over a commutative ring R is the ideal C(f) of R generated by all the coefficients of f. A commutative ring R is said to be a Gaussian (respectively P-Gaussian) ring if C(fg) = C(f)C(g) for every f and g in R[X] (respectively f and g in R[[X]]).

Let *R* be an integral domain with quotient field *K*. A prime ideal *P* of *R* is called strongly prime if whenever $x, y \in K$ and $xy \in P$ then $x \in P$ or $y \in P$. A domain *R* is called a pseudo-valuation domain if *P* is a strongly prime ideal for each prime ideal *P* of *R*.

A prime ideal *P* of a ring *R* is said to be a divided prime ideal if $P \subset xR$ for every $x \in R \setminus P$; thus a divided prime ideal is comparable to every ideal of *R*. An integral domain *R* is said to be a divided domain if every prime ideal of *R* is a divided prime ideal.

Let *R* be a ring, Spec(R) denotes the set of prime ideals of *R* and Nil(R) denotes the ideal of nilpotent elements of *R*. If *I* is a proper ideal of *R*, then $Min_R(I)$ denotes the set of prime ideals of *R* minimal over *I*.

2 On the Anderson–Badawi conjectures

Let R be a commutative ring. Anderson and Badawi (2011) conjectured that every *n*-absorbing ideal of R is strongly *n*-absorbing (**Conjecture 1**) and $Rad(I)^n \subseteq I$ (Conjecture 2). As observed in Anderson and Badawi (2011), it is easy to see that **Conjecture 1** implies **Conjecture 2**. Conjecture 1 was proved for n = 2, see Anderson and Badawi (2011, Theorem 2.13). It was also verified for arbitrary n when R is a Prüfer domain (Anderson and Badawi 2011, Corollary 6.9). Darani (2013, Theorem 4.2) proved that **Conjecture 1** is true for all commutative rings with torsion-free additive group. Donadze (2016) gives answers for the two conjectures in special cases. Moreover, **Conjecture 2** is true in the case where *I* is an *n*-absorbing ideal with exactly *n* minimal prime ideals $\{P_1, \ldots, P_n\}$. In fact, by Anderson and Badawi (2011, Theorem 2.14) we have $P_1 \ldots P_n \subseteq I$. Since $Rad(I) = \bigcap_{P_i \in Min_P(I)} P_i \subseteq P_i$ for each $1 \leq j \leq n$, we have $Rad(I)^n \subseteq I$. If in addition, the P_i 's are comaximal, then $I = P_1 \cap \cdots \cap P_n$, (Anderson and Badawi 2011, Corollary 2.15) so I[X] = $P_1[X] \cap \cdots \cap P_n[X]$ (respectively $I[[X]] = P_1[[X]] \cap \cdots \cap P_n[[X]]$), which implies, by Anderson and Badawi (2011, Theorem 2.1), that I[X] (respectively I[[X]]) is an *n*-absorbing ideal of R[X] (respectively R[[X]]).

Theorem 2.1 Let I be a 3-absorbing ideal of R. Then $Rad(I)^3 \subseteq I$.

Proof Let $x, y, z \in Rad(I)$. First observe that $x^2y^2 \in I$. In fact, we have $x^3 \in I$ for all $x \in Rad(I)$, by Anderson and Badawi (2011, Theorem 2.1). Since $x^2y^2(x+y) = xxy^2(x+y) \in I$ and I is a 3-absorbing ideal, we conclude that either $xy^2(x+y) \in I$ or $x^2(x+y) \in I$ or $x^2y^2 \in I$, thus $x^2y^2 \in I$. Now, we prove that $x^2y \in I$. Since $x^2y(x^2+y) = xxy(x^2+y) \in I$ we have that $xy(x^2+y) \in I$ or $x^2(x^2+y) \in I$ or $x^2y \in I$. Since $x^2y \in I$. Since $x^2y \in I$. So $x^2y \in I$ or $xy^2 \in I$. If $xy^2 \in I$, since $x^2y(x+y) = xxy(x+y) \in I$, we conclude that $x^2y \in I$. Finally, since $xyz(x+y+z) \in I$ we have $xyz \in I$. \Box

Theorem 2.2 Let I be a 4-absorbing ideal of R. Then $Rad(I)^4 \subseteq I$.

Proof By Anderson and Badawi (2011, Theorem 2.1), $x^4 \in I$ for each $x \in Rad(I)$. Now following these steps we get the result:

- Let $x_1, x_2 \in Rad(I)$ then $x_1^3 x_2^3 \in I$. In fact, we have $x_1^3(x_1 + x_2)x_2^3 \in I$ and I is a 4-absorbing ideal.
- Let $x_1, x_2 \in Rad(I)$ then $x_1^3 x_2^2 \in I$. In fact, by the last step, as $x_1^3 x_2^3 \in I$, then either $x_1^3 x_2^2 \in I$ or $x_1^2 x_2^3$. If $x_1^2 x_2^3 \in I$ and since $x_1^3 x_2^2(x_1 + x_2) \in I$, we have the result.
- Let $x_1, x_2 \in Rad(I)$ then $x_1^2 x_2^2 \in I$ and $x_1^3 x_2 \in I$. In fact, we have $x_1^3 x_2^2 \in I$ (and $x_1^2 x_2^3 \in I$), then either $x_1^2 x_2^2 \in I$ or $x_1^3 x_2 \in I$. If $x_1^2 x_2^2 \in I$, since $x_1^3 x_2(x_1+x_2) \in I$, we conclude that $x_1^3 x_2 \in I$. If $x_1^3 x_2 \in I$, since $x_1^2(x_1+x_2)x_2^2 \in I$, we conclude that $x_1^2(x_1+x_2)x_2 \in I$ or $x_1^2 x_2^2 \in I$ or $x_1(x_1+x_2)x_2^2 \in I$. In the first and second cases, we get $x_1^2 x_2^2 \in I$. In the last case, since $x_1^2 x_2^3 \in I$ we have the result.
- Let $x_1, x_2, x_3 \in Rad(I)$ then $x_1^2 x_2^2 x_3^2 \in I$. In fact, it suffices to remark that $x_1^2 x_2^2 x_3^2 (x_1 + x_2 + x_3) \in I$.
- Let $x_1, x_2, x_3 \in Rad(I)$ then $x_1^2 x_2 x_3 \in I$, since $x_1^2 x_2 x_3 (x_2 + x_3) \in I$.

• Let $x_1, x_2, x_3, x_4 \in Rad(I)$ then $x_1x_2x_3x_4 \in I$. In fact, we have $x_1x_2x_3x_4(x_1 + x_2 + x_3 + x_4) \in I$ and since *I* is a 4-absorbing ideal, the result is clear.

Theorem 2.3 Let I be a 5-absorbing ideal of R. Then $Rad(I)^5 \subseteq I$.

Proof By Anderson and Badawi (2011, Theorem 2.1), $x^5 \in I$ for each $x \in Rad(I)$.

- Let $x_1, x_2 \in Rad(I)$ then $x_1^4 x_2^4 \in I$, since $x_1^4 (x_1 + x_2) x_2^4 \in I$.
- Let $x_1, x_2 \in Rad(I)$ then $x_1^4 x_2^3 \in I$. In fact, we have $x_1^4 x x_2^4 \in I$. Hence, either $x_1^4 x_2 \in I$ or $x_1^4 x_2^3 \in I$ or $x_1^3 x_2^4 \in I$. If $x_1^3 x_2^4 \in I$, we have either $x_1^3 x_2^3 \in I$ or $x_1^2 x_2^4 \in I$. Suppose that $x_1^2 x_2^4 \in I$, then either $x_1 x_2^4 \in I$ or $x_1 x_2^3 \in I$. If $x_1 x_2^4 \in I$ and since $x_1^4 x_2^3 (x_1 + x_2) \in I$, then we get the result.
- Let $x_1, x_2 \in Rad(I)$ then $x_1^3 x_2^3 \in I$ and $x_1^4 x_2^2 \in I$. In fact, since $x_1^4 x_2^3 \in I$ and I is a 5-absorbing ideal we have either $x_1^4 x_2^2 \in I$ or $x_1^3 x_2^3 \in I$. Suppose that $x_1^4 x_2^2 \in I$, since $x_1^3(x_1 + x_2)x_2^3 \in I$ and $x_1^3 x_2^4 \in I$, we prove that $x_1^3 x_2^3 \in I$. Suppose that $x_1^3 x_2^3 \in I$ and since $x_1^4 x_2^2(x_1 + x_2) \in I$, we conclude that $x_1^4 x_2^2 \in I$.
- Let $x_1, x_2 \in Rad(I)$ then $x_1^3 x_2^2 \in I$ and $x_1^4 x_2 \in I$. In fact, we have $x_1^4 x_2^2 \in I$ so either $x_1^3 x_2^2 \in I$ or $x_1^4 x_2 \in I$. If $x_1^4 x_2 \in I$ we prove that $x_1^3 x_2^2 \in I$ since $x_1^3 x_2^3 \in I$ and $x_1^3 (x_1 + x_2) x_2^2 \in I$. If $x_1^3 x_2^2 \in I$, we prove that $x_1^4 x_2 \in I$ since $x_1^4 (x_1 + x_2) x_2 \in I$.
- Let $x_1, x_2, x_3 \in Rad(I)$ then $(x_1x_2x_3)^2 \in I$. It suffices to remark that $x_1^2x_2^2x_3^2(x_1 + x_2 + x_3) \in I$.
- Let $x_1, x_2, x_3 \in Rad(I)$ then $x_1^3 x_2 x_3 \in I$. In fact, it is clear since $x_1^3 x_2 x_3 (x_2+x_3) \in I$ and $x_1^3 x_2 x_3 (x_1 + x_2 + x_3) \in I$.
- Let $x_1, x_2, x_3 \in Rad(I)$ then $x_1^2 x_2^2 x_3 \in I$ since $x_1^2 x_2^2 x_3(x_1 + x_2 + x_3) \in I$, then either $x_1^2 x_2^2 x_3 + x_1 x_2^2 x_3^2 \in I$ (1') or $x_1^2 x_2^2 x_3 + x_1^2 x_2 x_3^2 \in I$ (2') or $x_1^2 x_2^2 x_3 \in I$. If (1') is true, since $x_1^2 x_2^2 x_3^2 \in I$ then either $x_1 x_2^2 x_3^2 \in I$ or $x_1^2 x_2 x_3^2 \in I$ or $x_1^2 x_2^2 x_3 \in I$. If $x_1 x_2^2 x_3^2 \in I$, we get the result. If $x_1^2 x_2 x_3^2 \in I$, since $x_1 x_2^2 x_3^2 (x_1 + x_2 + x_3^2) \in I$, we conclude.

If (2') is true, since $x_1^2 x_2^2 x_3^2 \in I$ then either $x_1 x_2^2 x_3^2 \in I$ or $x_1^2 x_2 x_3^2 \in I$ or $x_1^2 x_2^2 x_3 \in I$. I. If $x_1^2 x_2 x_3^2 \in I$, we get the result. If $x_1 x_2^2 x_3^2 \in I$, since $x_1^2 x_2 x_3^2 (x_1 + x_2 + x_3^2) \in I$, we conclude.

- Let $x_1, x_2, x_3, x_4 \in Rad(I)$ then $x_1^2 x_2 x_3 x_4 \in I$. It is clear since $x_1^2 x_2 x_3 x_4 (x_1 + x_2 + x_3 + x_4) \in I$ and $x_1^2 x_2 x_3 x_4 (x_2 + x_3 + x_4) \in I$.
- Let $x_1, x_2, x_3, x_4 \in Rad(I)$ then $x_1x_2x_3x_4 \in I$. In fact, remark that $x_1x_2x_3x_4(x_1 + x_2 + x_3 + x_4) \in I$.

Notation (Anderson and Badawi 2011) If *I* is an *n*-absorbing ideal of *R* for some positive integer *n*, then define $\omega_R(I) = min\{n \mid I \text{ is an } n - absorbing ideal of R\}$. Applying Anderson and Badawi (2011, Theorem 6.3), we obtain the following result:

Corollary 2.1 Let P be a prime ideal of a ring R and $n \in \{3, 4, 5\}$.

- (1) If P^n is a P-primary ideal of R and $P^n \subset P^{n-1}$, then $\omega_R(P^n) = n$.
- (2) If P is a maximal ideal of R and $P^n \subset P^{n-1}$, then $\omega_R(P^n) = n$.

(3) Let I be a P-primary ideal of a ring R. If $P^n \subseteq I$ and $P^{n-1} \not\subset I$, then $\omega_R(I) = n$.

Remark that in the case where $n \ge 6$, we can prove the following results:

- (1) Let $x_1, x_2 \in Rad(I)$ then $x_1 x_2^{n-1} \in I$. In fact, since $x_1(x_1^{n-1} + x_2)x_2^{n-1} \in I$, we conclude that either $x_1 x_2^{n-1} \in I$ or $x_1^{n-1} x_2^{n-1} \in I$. Now, for each $1 \le k \le n-1$, we suppose that $x_1^{n-k} x_2^{n-1} \in I$ and we prove that $x_1^{n-k-1}x_2^{n-1} \in I.$ Since $x_1(x_1^{n-k-1} + x_2)x_2^{n-1} \in I$, we conclude that either $x_1^{n-k-1}x_2^{n-1} \in I$ or $x_1x_2^{n-1} \in I$ or $x_1^{n-k}x_2^{n-2} + x_1x_2^{n-1} \in I$. As $x_1^{n-k}x_2^{n-1} \in I$, then either $x_1^{n-k-1}x_2^{n-1} \in I$ or $x_1^{n-k}x_2^{n-2} \in I$. So the result is clear.
- (2) Let $x_1, x_2 \in Rad(I)$ then $x_1^{n-2}x_2^{n-2} \in I$. In fact, it is clear since $x_1^{n-2}(x_1 + I)$ $x_2)x_2^{n-2}$.
- (3) Let $x_1, x_2 \in Rad(I)$ then $x_1^{n-2}x_2^{n-3} \in I$. In fact, it is clear since $x_1^{n-2}(x_1 + x_2)x_2^{n-3} \in I$ and $x_1^{n-2}x_2^{n-2} \in I$.

In the next step, we prove that **Conjecture 1** holds for *U*-rings.

Definition 2.1 Let R be a commutative ring, I, J two ideals of R and $a \in R$. We define:

(1) $(I:J) = \{x \in R \mid xJ \subseteq I\}.$ (2) $(I:a) = \{x \in R \mid ax \in I\}.$

Notation Let R be a commutative ring, $n \in \mathbb{N}^*$, $x_1, \ldots, x_n \in R$ and I_1, \ldots, I_n be n ideals of R. For $i \in \{1, ..., n\}$, we denote by:

- x̂_i the product x₁...x_{i-1}x_{i+1}...x_n.
 Î_i the product I₁...I_{i-1}I_{i+1}...I_n.

Proposition 2.1 Let I be a proper ideal of a commutative ring R and $n \in \mathbb{N}^*$. The following conditions are equivalent:

- (1) I is an n-absorbing ideal of R.
- (2) For every elements $x_1, \ldots, x_n \in R$ with $x_1 \ldots x_n \notin I$, $(I : x_1 \ldots x_n) \subseteq$ $\cup_{1 < i < n} (I : \hat{x_i})$

Proof "1) \Rightarrow 2)" Let $a \in (I : x_1 \dots x_n)$ then $ax_1 \dots x_n \in I$. Since I is an *n*-absorbing ideal and $x_1 \dots x_n \notin I$, we conclude that $a\hat{x}_i \in I$ for some *i* with $1 \leq i \leq n$. Thus $a \in \bigcup_{1 \leq i \leq n} (I : \hat{x_i})$. "2) \Rightarrow 1)" Let $x_1, \ldots, x_{n+1} \in R$ such that $x_1 \ldots x_{n+1} \in I$, then $x_1 \in (I : I)$ $x_2 \dots x_{n+1}$). If $x_2 \dots x_{n+1} \in I$ then we are done. Hence we may assume that $x_2 \dots x_{n+1} \notin I$ and so by (1), $(I : x_2 \dots x_{n+1}) \subseteq \bigcup_{2 \le i \le n+1} (I : \hat{x_i})$. So $x_1 \in (I : x_1 \dots x_{n+1})$ $\hat{x_i}$) for some *i* with $2 \le i \le n+1$. П

Definition 2.2 (Quartararo and Butts 1975) A commutative ring R is said to be a U-ring provided R has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals.

Example 2.1 (1) Every Prüfer domain is a *U*-ring (Quartararo and Butts 1975, Corollary 1.6).

(2) Let *D* be an integral domain with quotiont field *K*. If *D* is a *U*-ring and $D \subseteq R \subseteq K$, then *R* is a *U*-domain. If D/P is finite for all maximal ideals *P* of *D*, then *D* is a *U*-domain if and only if *D* is a Prüfer domain (Quartararo and Butts 1975).

Recall that a proper ideal *I* of a ring *R* is a strongly *n*-absorbing ideal if whenever $I_1 \ldots I_{n+1} \subseteq I$ for ideals I_1, \ldots, I_{n+1} of *R*, then the product of some *n* of the I_i 's is contained in *I*.

Theorem 2.4 Let R be a U-ring and $n \ge 3$. The following conditions are equivalent:

- (1) I is a strongly n-absorbing ideal.
- (2) *I* is an *n*-absorbing ideal.
- (3) For every $x_1, x_2, \ldots, x_n \in R$ such that $x_1 \ldots x_n \notin I$, $(I : x_1 \ldots x_n) = (I : \hat{x_i})$ for some $1 \le i \le n$.
- (4) For every t ideals $I_1, \ldots, I_t, 1 \le t \le n-1$, and for every elements x_1, \ldots, x_{n-t} such that $x_1 \ldots x_{n-t}I_1 \ldots I_t \notin I$, $(I : x_1 \ldots x_{n-t}I_1 \ldots I_t) = (I : \hat{x_i}I_1 \ldots I_t)$ for some $1 \le i \le n-t$ or $(I : x_1 \ldots x_{n-t}I_1 \ldots I_t) = (I : x_1 \ldots x_{n-t}\hat{I_j})$ for some $1 \le j \le t$.
- (5) For every ideals $I_1, \ldots I_n$ of R with $I_1 \ldots I_n \nsubseteq I$, $(I : I_1 \ldots I_n) = (I : \hat{I}_i)$, for some $1 \le i \le n$.

Proof $(1) \Rightarrow 2$) It is clear.

2) \Rightarrow 3) This follows from the last proposition, since *R* is a *U*-ring.

3) \Rightarrow 4) We prove the result by induction on $t \in \{1, ..., n-1\}$. For t = 1 consider $x_1, ..., x_{n-1} \in R$ and an ideal I_1 of R such that $x_1 ... x_{n-1}I_1 \nsubseteq I$.

Let $a \in (I : x_1 \dots x_{n-1}I_1)$. Then $I_1 \subseteq (I : ax_1 \dots x_{n-1})$. If $ax_1 \dots x_{n-1} \in I$, then $a \in (I : x_1 \dots x_{n-1})$. If $ax_1 \dots x_{n-1} \notin I$, then by 3), either $(I : ax_1 \dots x_{n-1}) = (I : x_1 \dots x_{n-1})$ or $(I : ax_1 \dots x_{n-1}) = (I : a\hat{x}_i)$ for some $1 \le i \le n-1$. Since $I_1 \not\subset (I : x_1 \dots x_{n-1})$, we conclude that $I_1 \subseteq (I : a\hat{x}_i)$ for some $1 \le i \le n-1$, and thus $a \in (I : \hat{x}_iI_1)$. Hence $(I : x_1 \dots x_{n-1}I_1) \subseteq (I : x_1 \dots x_{n-1}) \cup \bigcup_{1 \le i \le n-1}(I : \hat{x}_iI_1)$. Since R is a U-ring, then either $(I : x_1 \dots x_{n-1}I_1) \subseteq (I : x_1 \dots x_{n-1})$ or $(I : x_1 \dots x_{n-1}I_1) \subseteq (I : x_1 \dots x_{n-1})$ or $(I : x_1 \dots x_{n-1}I_1) \subseteq (I : \hat{x}_iI_1)$. The other inclusions are evident.

Now, suppose that t > 1 and assume that the claim holds for t - 1. Let x_1, \ldots, x_{n-t} be elements of R and let I_1, \ldots, I_t be ideals of R such that $x_1 \ldots x_{n-t} I_1 \ldots I_t \notin I$.

Consider an element $a \in (I : x_1 \dots x_{n-t}I_1 \dots I_t)$. Thus $I_t \subseteq (I : ax_1 \dots x_{n-t}I_1 \dots I_{t-1})$. If $ax_1 \dots x_{n-t}I_1 \dots I_{t-1} \subseteq I$, then $a \in (I : x_1 \dots x_{n-t}I_1 \dots I_{t-1})$. If $ax_1 \dots x_{n-t}I_1 \dots I_{t-1} \not\subseteq I$, then by the induction hypothesis, either $(I : ax_1 \dots x_{n-t}I_1 \dots I_{t-1}) = (I : x_1 \dots x_{n-t}I_1 \dots I_{t-1})$ or $(I : ax_1 \dots x_{n-t}I_1 \dots I_{t-1}) = (I : ax_1 \dots x_{n-t}I_1 \dots I_{t-1})$ for some $1 \leq i \leq n-t$ or

 $(I : ax_1 \dots x_{n-t} I_1 \dots I_{t-1}) = (I : ax_1 \dots x_{n-t} I_1 \dots I_{j-1} I_{j+1} \dots I_{t-1})$ for some $1 \le j \le t-1$.

Since $x_1 \dots x_{n-t} I_1 \dots I_t \nsubseteq I$, then the first case is removed. Consequently, either $(I : ax_1 \dots x_{n-t} I_1 \dots I_{t-1}) = (I : a\hat{x}_i I_1 \dots I_{t-1})$ for some $1 \le i \le n-t$ or

 $(I : ax_1 \dots x_{n-t}I_1 \dots I_{t-1}) = (I : ax_1 \dots x_{n-t}I_1 \dots I_{j-1}I_{j+1} \dots I_t)$ for some $1 \le j \le t - 1.$ Hence $(I : x_1 \dots x_{n-t} I_1 \dots I_t) \subseteq \bigcup_{1 \le i \le n-1} (I : \hat{x}_i I_1 \dots I_t) \cup \bigcup_{1 \le i \le t} (I : I_i)$ $x_1 \dots x_{n-t} \hat{I}_i$). Now, since R is a U-ring, $(I : x_1 \dots x_{n-t} I_1 \dots I_t)$ is included in $(I:\hat{x_i}I_1\ldots I_t)$ for some $1 \le i \le n-t$ or $(I:x_1\ldots x_{n-t}\hat{I_i})$ for some $1 \le j \le t$. The other inclusions are evident. 4) \Rightarrow 5) Let I_1, \ldots, I_n be ideals of R such that $I_1 \ldots I_n \nsubseteq I$. Suppose that $a \in (I : I_1 \dots I_n)$. Then $I_n \subseteq (I : aI_1 \dots I_{n-1})$. If $aI_1 \dots I_{n-1} \subseteq I$, then $a \in (I : I_n)$. $I_1 \dots I_{n-1}$). If $aI_1 \dots I_{n-1} \nsubseteq I$, then by 4), we have either $(I : aI_1 \dots I_{n-1}) =$ $(I: a\hat{I}_i)$ for some $1 \le j \le n-1$ or $(I: aI_1 \dots I_{n-1}) = (I: I_1 \dots I_{n-1}).$ By hypothesis, the second case does not hold. The first case implies that $a \in (I :$ $I_1 \dots I_{j-1} I_{j+1} \dots I_n$ for some $1 \le j \le n-1$. Hence $(I : I_1 \dots I_n) \subseteq (I : I_1 \dots I_n)$ $I_1 \dots I_{n-1} \cup \bigcup_{1 \le j \le n-1} (I : \hat{I}_j) = \bigcup_{1 \le i \le n} (I : \hat{I}_j)$. Since *R* is a *U*-ring, we conclude that $(I : I_1 \dots I_n) \subseteq (I : \hat{I}_j)$ for some $1 \leq j \leq n$. The other inclusions are evident. 5) \Rightarrow 1) Let I_1, \ldots, I_{n+1} be ideals of R such that $I_1 \ldots I_{n+1} \subseteq I$. Then $I_1 \subseteq I$. $(I : I_2 \dots I_{n+1})$. If $I_2 \dots I_{n+1} \subseteq I$, that is clear. If $I_2 \dots I_{n+1} \not\subseteq I$, then by 5), $(I : I_2 \dots I_{n+1}) = (I : I_2 \dots I_{j-1} I_{j+1} \dots I_{n+1})$ for some $2 \le j \le n+1$. So $I_1I_j \subseteq I$ for some $2 \leq j \leq n+1$.

Example 2.2 Let *R* be a Prüfer domain, *I* a proper ideal of *R* and $n \ge 3$. Using Anderson and Badawi (2011, Theorem 5.7), we conclude that *I* is a strongly *n*-absorbing ideal of *R* if and only if *I* is a product of prime ideals of *R*.

Badawi (2007) proved that if *I* is a 2-absorbing ideal of a commutative ring *R*, then either $(I : x) \subseteq (I : y)$ or $(I : y) \subseteq (I : x)$ for each $x, y \in Rad(I) \setminus I$. It is natural to ask if this result can be generalized for each $x, y \in R \setminus I$. The answer is given by the next theorem. Recall, from Badawi (2007), that if *I* a 2-absorbing ideal, then one of the following statements must hold:

- (1) Rad(I) = P is a prime ideal of R and $P^2 \subseteq I$.
- (2) $Rad(I) = P_1 \cap P_2$, $P_1P_2 \subseteq I$ and $Rad(I)^2 \subseteq I$ where P_1 , P_2 are the only distinct prime ideals of *R* that are minimal over *I*.

Theorem 2.5 Let I be a 2-absorbing ideal of a commutative ring R.

- (1) If Rad(I) = P is a prime ideal of R, then either $(I : x) \subseteq (I : y)$ or $(I : y) \subseteq (I : x)$, for every $x, y \in R \setminus I$.
- (2) If $Rad(I) = P_1 \cap P_2$, where P_1 , P_2 are the only distinct prime ideals of R that are minimal over I and $I \neq Rad(I)$, then either $(I : x) \subseteq (I : y)$ or $(I : y) \subseteq (I : x)$ for every $x, y \in R \setminus I$ except if $x \in P_1 \setminus P_2$ and $y \in P_2 \setminus P_1$, in which case $(I : x) = P_2$ and $(I : y) = P_1$.
- *Proof* (1) Let *I* be a 2-absorbing ideal of *R* such that Rad(I) = P is a prime ideal of *R*. First, remark that:
 - (a) For each $x \in R \setminus P$, $(I : x) \subseteq P$. In fact, let $y \in R$ such that $yx \in I$. Since *P* is a prime ideal and $x \notin P$ we conclude that $y \in P$.

(b) Let $x, y \in R \setminus P$ then (I : x) and (I : y) are linearly ordered. Otherwise, let $z_1 \in (I : x) \setminus (I : y)$ and $z_2 \in (I : y) \setminus (I : x)$. Then $x(z_1 + z_2)y \in I$. Since I is a 2-absorbing ideal, we have $x(z_1 + z_2) \in I$ or $(z_1 + z_2)y \in I$ or $xy \in I$ which is impossible.

Now, let $x, y \in R \setminus I$.

- If $x, y \in P \setminus I$, it's clear by Badawi (2007 Theorem 2.5).
- If $x, y \in R \setminus P$, it's clear by the last remark.
- if $x \in R \setminus P$ and $y \in P \setminus I$, we have $(I : x) \subset P \subset (I : y)$ by the last remark and Badawi (2007 Theorem 2.5).
- (2) Let *I* be a 2-absorbing ideal such that $Rad(I) = P_1 \cap P_2$ and $x \in R \setminus Rad(I)$. Then $(I : x) \subseteq P_1 \cup P_2$. In fact, let $z \in (I : x)$, so $zx \in I \subseteq P_1 \cap P_2$. Since $x \notin Rad(I)$, we have $x \notin P_1$ or $x \notin P_2$. So we conclude that $z \in P_1$ or $z \in P_2$. Remark that if $x \in P_1 \setminus P_2$, then $(I : x) = P_2$. In fact, let $z \in (I : x)$ then $xz \in I \subseteq P_1 \cap P_2 \subseteq P_2$. As $x \notin P_2$ then $z \in P_2$. So $(I : x) \subseteq P_2$. Conversely, let $z \in P_2$ then $xz \in P_1P_2 \subseteq I$. So $z \in (I : x)$. Similarly, if $x \in P_2 \setminus P_1$ then $(I : x) = P_1$. Now let $x, y \in R \setminus I$.

If $x, y \in Rad(I) \setminus I$, then (I : x) and (I : y) are linearly ordered by Badawi (2007 Theorem 2.6).

If not, we have the following cases:

• If $x \in Rad(I) \setminus I$ and $y \in R \setminus Rad(I)$, we have $(I : y) \subseteq P_1 \cup P_2 \subseteq (I : x)$.

- If $x, y \in R \setminus Rad(I)$:
 - if $x, y \in P_1 \setminus P_2$, we conclude that $(I : x) = (I : y) = P_2$.
 - if $x, y \in P_2 \setminus P_1$, in this case we have $(I : x) = (I : y) = P_1$.
 - if $x, y \in R \setminus (P_1 \cup P_2)$, we assume that (I : x) and (I : y) are not linearly ordered. Then there exist $z_1 \in (I : x) \setminus (I : y)$ and $z_2 \in (I : y) \setminus (I : x)$. So $x(z_1 + z_2)y \in I$ and no product of two elements is in I which is a contradiction.
 - if $x \in P_1 \setminus P_2$ and $y \in P_2 \setminus P_1$, we have $(I : x) = P_2$ and $(I : y) = P_1$ and it is clear that (I : x) and (I : y) are not linearly ordered in this case.

Recall that a 2-absorbing ideal is a generalization of a prime ideal and there are many characterization of a commutative ring with their set of prime ideals, so one can ask if we have a similar result for a commutative ring such that every nonzero proper ideal of R is a 2-absorbing ideal. The following proposition gives an answer.

Proposition 2.2 Let *R* be a commutative ring. If every nonzero proper ideal of *R* is a 2-absorbing ideal then *R* is an SFT ring.

Proof By Badawi (2007 Theorem 3.4), R is a zero-dimensional ring and we have three cases.

Case 1: *R* is quasi-local with maximal ideal $M = Nil(R) \neq \{0\}$ such that $M^2 \subseteq xR$ for each nonzero $x \in M$. To prove that *R* is an SFT ring it suffices to prove that *M* is an SFT ideal of *R*. Since $M \neq (0)$, then there is a nonzero element $y \in M$. Thus

F = (y) is a principal ideal of R such that $x^2 \in F$ for each $x \in M$. So we conclude that M is an SFT ideal.

Case 2: *R* has exactly two distinct maximal ideals, say $\{M_1, M_2\}$. So either *R* is isomorphic to $D = R/M_1 \oplus R/M_2$ or $Nil(R)^2 = \{0\}$ and $Nil(R) = \omega R$ for each nonzero $\omega \in Nil(R)$. In the first situation, *R* is isomorphic to an SFT ring so *R* is an SFT ring. In the second situation, we have $R \cong R/M_1^2 \oplus R/M_2$, by Badawi (2007 Lemma 3.3). The ring R/M_1^2 is SFT. In fact, let *J* be an ideal of R/M_1^2 , then there exists an ideal *I* of *R* such that $M_1^2 \subseteq I \subseteq M_1$ and $J = I/M_1^2$. It is easy to see that $J \subseteq Nil(R/M_1^2) = M_1/M_1^2$ and for each $\bar{x} \in J$, we have $\bar{x}^2 = \bar{0}$. Then by Hizem and Benhissi (2011, Proposition 2.1) R/M_1^2 is an SFT ring.

Case 3: We suppose that *R* is isomorphic to $F_1 \oplus F_2 \oplus F_3$, where F_1 , F_2 and F_3 are fields. It is clear in this case that *R* is an SFT ring.

- *Example 2.3* (1) Let $R = \mathbb{Z} + 6X\mathbb{Z}[X]$ and $P = 6X\mathbb{Z}[X]$. First observe that P^2 is not a 2-absorbing ideal of R. In fact, let $f_1 = 6X^2$, $f_2 = 2$ and $f_3 = 3$ in R, then it is clear to see that $f_1 f_2 f_3 \in P^2$ but $f_1 f_2 \notin I$, $f_2 f_3 \notin I$ and also $f_1 f_3 \notin I$. So R is not an SFT ring.
- (2) Let *D* be a valuation domain with Krull dimension n ≥ 1, K the quotient field of *D* and *X* an indeterminate. Set R = D + XK[[X]], by [4, Example 3.12], R is not a 2-absorbing ring so *R* is not an SFT ring.

Next, we give some classes of rings in which **Conjecture 3** holds. Recall that **Conjecture 3** is true if n = 2 and we can easily prove that if I is a 2-absorbing ideal of R then I[[X]] is also a 2-absorbing ideal of the power series ring R[[X]]. In fact, we prove that either Rad(I[[X]]) = P[[X]], with P a prime ideal of R or $Rad(I[[X]]) = P_1[[X]] \cap P_2[[X]]$, with P_1 and P_2 are two prime ideals of R. By Badawi (2007 Theorems 2.8 and 2.9), we conclude that I[[X]] is a 2-absorbing ideal since $I[[X]]_f$ is a prime ideal of R[[X]] for each $f \in Rad(I[[X]]) \setminus I[[X]]$.

Nasehpour (2016) proves that for a Prüfer domain R and $n \ge 3$, an ideal I is *n*-absorbing if and only if I[X] is *n*-absorbing. In the following, we generalize this result in the case of a Gaussian U-ring.

Remark also that in a Prüfer domain, we can prove the last result in the power series ring. In fact, let *I* be an *n*-absorbing ideal then $I[[X]] = P_1^{n_1}[[X]] \dots P_k^{n_k}[[X]]$, where P_1, \dots, P_k are the minimal prime ideals over *I* and n_1, \dots, n_k positive integer such that $n_1 + \dots + n_k = n$. By Fields (1971, Corollary 4) and Anderson and Badawi (2011, Theorems 3.1 and 2.1) we conclude that I[[X]] is an *n*-absorbing ideal of R[[X]].

Recall that a commutative ring R is said to be a *Gaussian ring* (respectively *P*-*Gaussian*) if C(fg) = C(f)C(g) for every polynomials f and g in R[X] (respectively f and g in R[[X]]).

Theorem 2.6 Let *R* be a Gaussian ring (respectively a Noetherian Gaussian ring). If *R* is a *U*-ring, then *I* is an *n*-absorbing ideal of *R* if and only if *I*[*X*] (respectively *I*[[*X*]]) is an *n*-absorbing ideal of *R*[*X*] (respectively *R*[[*X*]]). Moreover, $\omega_R(I) = \omega_{R[X]}(I[X])$ (respectively $\omega_R(I) = \omega_{R[X]}(I[X])$).

Proof We prove the result in the case of polynomial rings.

"⇐" It follows from Anderson and Badawi (2011, Corollary 4.3).

"⇒" Suppose that *I* is an *n*-absorbing ideal of *R* and let $f_1, f_2, ..., f_{n+1} \in R[X]$ such that $f_1 ... f_{n+1} \in I[X]$.

Since *R* is a Gaussian ring, we conclude that $C(f_1) \cdots C(f_{n+1}) = C(f_1 \cdots f_{n+1}) \subseteq I$. As *I* is a strongly *n*-absorbing ideal of *R*, by Theorem 2.2, hence $C(\hat{f}_i) \subseteq I$ for some $1 \leq i \leq n+1$, thus $\hat{f}_i \in I[X]$.

The same proof works also in the case of power series rings as a Noetherian Gaussian ring is P-Gaussian (Tsang 1965).

Recall that a commutative ring R is said to be a pseudo-valuation domain (PVD) if every prime ideal of R is strongly prime.

Theorem 2.7 Let *R* be a pseudo-valuation domain with associated valuation domain *V* and let *I* be an ideal of *R* such that Rad(I) is not maximal. Then *I* is an *n*-absorbing ideal of *R* if and only if I[X] (respectively I[[X]]) is an *n*-absorbing ideal of R[X] (respectively of R[[X]]). Moreover, $\omega_R(I) = \omega_{R[X]}(I[X])$ (respectively $\omega_R(I) = \omega_{R[X]}(I[X])$).

Proof Let *I* be an *n*-absorbing ideal of *R*. Then there are at most *n* prime ideal of *R* minimal over *I*. Since Rad(I) is the intersection of all the prime ideals minimal over *I* and the prime ideals are comparable in a PVD, we conclude that Rad(I) = P for some prime ideal minimal over *I*.

Recall that a PVD is a divided ring, so I is a P-primary ideal of R by Anderson and Badawi (2011, Theorem 3.2). As Rad(I) is not maximal then I is also a P-primary ideal of V by Anderson and Dobbs (1980, Proposition 3.13).

We show that $P^n \subseteq I$. Let $x_1, \ldots, x_n \in P$, then there is an $x \in P$ such that $(x_1, \ldots, x_n)_V = xV$ since V is a valuation domain.

Hence $x_1 \dots x_n = x^n b$ for some $b \in V$. As $x \in P = Rad(I)$ and I is n-absorbing then $x^n \in I$ and so $x^n b \in I$. Then I[X] is an n-absorbing ideal of R[X] by Anderson and Badawi (2011, Theorem 3.1) (respectively, by Fields (1971, Corollary 4)), I[[X]]is P[[X]]-primary since $P^n[[X]] \subseteq I[[X]]$, so I[[X]] is an n-absorbing ideal of R[[X]]).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Anderson, D.F., Badawi, A.: On n-absorbing ideals of commutative rings. Commun. Algebra 39(5), 1646– 1672 (2011)

Anderson, D.F., Dobbs, D.E.: Pairs of rings with the same prime ideals. Can. J. Math. **32**, 362–384 (1980) Arnold, J.T.: Krull dimension in power series rings. Trans. Am. Math. Soc. **177**, 299–304 (1973)

Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75(3), 417-429 (2007)

Cahen, P.J., Fontana, M., Frisch, S., Glaz, S.: Open problems in commutative ring theory. In: Fontana et al. (eds). Commutative Rings. Integer-Valued Polynomials, and Polynomial Function. Springer, New York (2014)

- Donadze, G.: The Anderson-Badawi conjecture for commutative algebras over infinite fields. Indian J. Pure Appl. Math. 47, 691–696 (2016)
- Fields, D.: Zero divisors and nilpotent elements in power series rings. Proc. Am. Math. Soc. 27, 427–433 (1971)
- Hizem, S., Benhissi, A.: Nonnil-Noetherian rings and the SFT property. Rocky Mt. J. Math. 41(5), 1483– 1500 (2011)
- Nasehpour, P.: On the Anderson-Badawi $\omega_{\mathbb{R}[X]}(I[X]) = \omega_R(I)$ conjecture. Arch. Math. Brno **52**(2), 71–78 (2016)

Quartararo, P., Butts, H.S.: Finite unions of ideals and modules. Proc. Am. Math. Soc. 52, 91-96 (1975)

Tsang, H.: Gauss's lemma. Ph.D. Thesis, University of Chicago (1965)

Yousfian Darani, A., Puczylouski, E.R.: On 2-absorbing commutative semigroup and their applications to rings. Semigroup Forum. **86**(1), 83–91 (2013)