On Anderson-Badawi conjectures

Smach Sihem ${ }^{1}$ • Hizem Sana ${ }^{1}$

Received: 20 January 2017 / Accepted: 22 May 2017 / Published online: 30 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract

Let R be a commutative ring with identity. Badawi (Bull Aust Math Soc 75(3), 417-429, 2007) introduced a generalization of prime ideals called 2-absorbing ideals, and this idea is further generalized in a paper by Anderson and Badawi (Commun Algebra 39(5), 1646-1672, 2011) to a concept called n-absorbing ideals. A proper ideal I of R is said to be an n-absorbing ideal if whenever $x_{1} \ldots x_{n+1} \in I$ for x_{1}, \ldots, $x_{n+1} \in R$ then there are n of the x_{i} 's whose product is in I. It was conjectured by Anderson and Badawi (Commun Algebra 39(5), 1646-1672, 2011) that if I is an n absorbing ideal of R then I is strongly n-absorbing (Conjecture 1) and $\operatorname{Rad}(I)^{n} \subseteq I$ (Conjecture 2). In Cahen et al. (in: Fontana et al., Commutative rings. Integer-valued polynomials, and polynomial function, Springer, New York, 2014, Problem 30c), it was conjectured also that $I[X]$ is an n-absorbing ideal of the polynomial ring $R[X]$ for each n-absorbing ideal of the ring R (Conjecture 3). In this paper we give an answer to (Conjecture 2) for $n=3, n=4$ and $n=5$ and we prove that (Conjecture 1) and (Conjecture 3) hold in various classes of rings.

Keywords 2-Absorbing ideal $\cdot n$-Absorbing ideal \cdot Strongly n-absorbing $\cdot U$-ring . Prüfer • PVD

Mathematics Subject Classification 13A15 - 13F05 •13F25

[^0]
1 Introduction

We assume throughout that all rings are commutative with $1 \neq 0$. In this paper, we study Anderson-Badawi conjectures. The concept of 2 -absorbing ideals was introduced and investigated in Badawi (2007). Recall that a proper ideal I of R is called a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. More generally, let n be a positive integer, a proper ideal I of R is said to be an n-absorbing ideal if whenever $x_{1} \ldots x_{n+1} \in I$ for $x_{1}, \ldots, x_{n+1} \in R$ then there are n of the x_{i} 's whose product is in I. And I is said to be a strongly n-absorbing ideal if whenever $I_{1} \ldots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R, then the product of some n of the I_{i} 's is in I. Anderson and Badawi (2011) conjectured that every n-absorbing ideal of R is strongly n-absorbing (Conjecture $\mathbf{1}$) and $\operatorname{Rad}(I)^{n} \subseteq I$, where $\operatorname{Rad}(I)$ denotes the radical ideal of I (Conjecture 2).

In Sect. 2, we give an answer to (Conjecture 2) in the case where $n=3, n=4$ and $n=5$. After that, we give some equivalent characterizations of n-absorbing ideals and we prove that (Conjecture 1) is true in the class of U-rings. Recall that a commutative ring R is said to be a U-ring provided R has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals.

An ideal I of a ring R is an SFT (strong finite type) ideal if there exists an ideal F of finite type with $F \subseteq I$ and an integer n such that for any $a \in I, a^{n} \in F$. A ring R is an SFT-ring if every ideal of R is SFT, which is equivalent to each prime ideal of R is SFT (Arnold 1973). We prove that if every nonzero proper ideal of a ring R is a 2 -absorbing ideal of R then R is an SFT ring.

Finally, we prove that if n is an integer with $n \geq 3$, then I is an n-absorbing ideal of R if and only if $I[X]$ (respectively $I[[X]]$) is an n-absorbing ideal of $R[X]$ (Conjecture 3) (respectively $R[[X]]$), if the ring R is a Gaussian ring (respectively Noetherian Gaussian ring) or the ring R is a pseudo-valuation domain (PVD).

We start by recalling some background material.
An integral domain R is said to be a valuation domain if $x \mid y$ (in R) or $y \mid x$ (in R) for every nonzero $x, y \in R$. An integral domain R is called a Prüfer domain if R_{P} is a valuation domain for each prime ideal P of R.

The content of a polynomial (respectively a power series) f over a commutative ring R is the ideal $C(f)$ of R generated by all the coefficients of f. A commutative ring R is said to be a Gaussian (respectively P-Gaussian) ring if $C(f g)=C(f) C(g)$ for every f and g in $R[X]$ (respectively f and g in $R[[X]]$).

Let R be an integral domain with quotient field K. A prime ideal P of R is called strongly prime if whenever $x, y \in K$ and $x y \in P$ then $x \in P$ or $y \in P$. A domain R is called a pseudo-valuation domain if P is a strongly prime ideal for each prime ideal P of R.

A prime ideal P of a ring R is said to be a divided prime ideal if $P \subset x R$ for every $x \in R \backslash P$; thus a divided prime ideal is comparable to every ideal of R. An integral domain R is said to be a divided domain if every prime ideal of R is a divided prime ideal.

Let R be a ring, $\operatorname{Spec}(R)$ denotes the set of prime ideals of R and $\operatorname{Nil(R)}$ denotes the ideal of nilpotent elements of R. If I is a proper ideal of R, then $\operatorname{Min}_{R}(I)$ denotes the set of prime ideals of R minimal over I.

2 On the Anderson-Badawi conjectures

Let R be a commutative ring. Anderson and Badawi (2011) conjectured that every n-absorbing ideal of R is strongly n-absorbing (Conjecture 1) and $\operatorname{Rad}(I)^{n} \subseteq I$ (Conjecture 2). As observed in Anderson and Badawi (2011), it is easy to see that Conjecture 1 implies Conjecture 2. Conjecture 1 was proved for $n=2$, see Anderson and Badawi (2011, Theorem 2.13). It was also verified for arbitrary n when R is a Prüfer domain (Anderson and Badawi 2011, Corollary 6.9). Darani (2013, Theorem 4.2) proved that Conjecture $\mathbf{1}$ is true for all commutative rings with torsion-free additive group. Donadze (2016) gives answers for the two conjectures in special cases. Moreover, Conjecture 2 is true in the case where I is an n-absorbing ideal with exactly n minimal prime ideals $\left\{P_{1}, \ldots, P_{n}\right\}$. In fact, by Anderson and Badawi (2011, Theorem 2.14) we have $P_{1} \ldots P_{n} \subseteq I$. Since $\operatorname{Rad}(I)=\cap_{P_{i} \in \operatorname{Min}_{R}(I)} P_{i} \subseteq P_{j}$ for each $1 \leq j \leq n$, we have $\operatorname{Rad}(I)^{n} \subseteq I$. If in addition, the P_{i} 's are comaximal, then $I=P_{1} \cap \cdots \cap P_{n}$, (Anderson and Badawi 2011, Corollary 2.15) so $I[X]=$ $P_{1}[X] \cap \cdots \cap P_{n}[X]$ (respectively $I[[X]]=P_{1}[[X]] \cap \cdots \cap P_{n}[[X]]$), which implies, by Anderson and Badawi (2011, Theorem 2.1), that $I[X]$ (respectively $I[[X]]$) is an n-absorbing ideal of $R[X]$ (respectively $R[[X]]$).

Theorem 2.1 Let I be a 3-absorbing ideal of R. Then $\operatorname{Rad}(I)^{3} \subseteq I$.
Proof Let $x, y, z \in \operatorname{Rad}(I)$. First observe that $x^{2} y^{2} \in I$. In fact, we have $x^{3} \in I$ for all $x \in \operatorname{Rad}(I)$, by Anderson and Badawi (2011, Theorem 2.1). Since $x^{2} y^{2}(x+y)=$ $x x y^{2}(x+y) \in I$ and I is a 3-absorbing ideal, we conclude that either $x y^{2}(x+y) \in I$ or $x^{2}(x+y) \in I$ or $x^{2} y^{2} \in I$, thus $x^{2} y^{2} \in I$. Now, we prove that $x^{2} y \in I$. Since $x^{2} y\left(x^{2}+y\right)=x x y\left(x^{2}+y\right) \in I$ we have that $x y\left(x^{2}+y\right) \in I$ or $x^{2}\left(x^{2}+y\right) \in I$ or $x^{2} y \in I$. So $x^{2} y \in I$ or $x y^{2} \in I$. If $x y^{2} \in I$, since $x^{2} y(x+y)=x x y(x+y) \in I$, we conclude that $x^{2} y \in I$. Finally, since $x y z(x+y+z) \in I$ we have $x y z \in I$.

Theorem 2.2 Let I be a 4-absorbing ideal of R. Then $\operatorname{Rad}(I)^{4} \subseteq I$.
Proof By Anderson and Badawi (2011, Theorem 2.1), $x^{4} \in I$ for each $x \in \operatorname{Rad}(I)$. Now following these steps we get the result:

- Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{3} x_{2}^{3} \in I$. In fact, we have $x_{1}^{3}\left(x_{1}+x_{2}\right) x_{2}^{3} \in I$ and I is a 4-absorbing ideal.
- Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{3} x_{2}^{2} \in I$. In fact, by the last step, as $x_{1}^{3} x_{2}^{3} \in I$, then either $x_{1}^{3} x_{2}^{2} \in I$ or $x_{1}^{2} x_{2}^{3}$. If $x_{1}^{2} x_{2}^{3} \in I$ and since $x_{1}^{3} x_{2}^{2}\left(x_{1}+x_{2}\right) \in I$, we have the result.
- Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{2} x_{2}^{2} \in I$ and $x_{1}^{3} x_{2} \in I$. In fact, we have $x_{1}^{3} x_{2}^{2} \in I$ (and $\left.x_{1}^{2} x_{2}^{3} \in I\right)$, then either $x_{1}^{2} x_{2}^{2} \in I$ or $x_{1}^{3} x_{2} \in I$. If $x_{1}^{2} x_{2}^{2} \in I$, since $x_{1}^{3} x_{2}\left(x_{1}+x_{2}\right) \in I$, we conclude that $x_{1}^{3} x_{2} \in I$. If $x_{1}^{3} x_{2} \in I$, since $x_{1}^{2}\left(x_{1}+x_{2}\right) x_{2}^{2} \in I$, we conclude that $x_{1}^{2}\left(x_{1}+x_{2}\right) x_{2} \in I$ or $x_{1}^{2} x_{2}^{2} \in I$ or $x_{1}\left(x_{1}+x_{2}\right) x_{2}^{2} \in I$. In the first and second cases, we get $x_{1}^{2} x_{2}^{2} \in I$. In the last case, since $x_{1}^{2} x_{2}^{3} \in I$ we have the result.
- Let $x_{1}, x_{2}, x_{3} \in \operatorname{Rad}(I)$ then $x_{1}^{2} x_{2}^{2} x_{3}^{2} \in I$. In fact, it suffices to remark that $x_{1}^{2} x_{2}^{2} x_{3}^{2}\left(x_{1}+x_{2}+x_{3}\right) \in I$.
- Let $x_{1}, x_{2}, x_{3} \in \operatorname{Rad}(I)$ then $x_{1}^{2} x_{2} x_{3} \in I$, since $x_{1}^{2} x_{2} x_{3}\left(x_{2}+x_{3}\right) \in I$.
- Let $x_{1}, x_{2}, x_{3}, x_{4} \in \operatorname{Rad}(I)$ then $x_{1} x_{2} x_{3} x_{4} \in I$. In fact, we have $x_{1} x_{2} x_{3} x_{4}\left(x_{1}+\right.$ $\left.x_{2}+x_{3}+x_{4}\right) \in I$ and since I is a 4 -absorbing ideal, the result is clear.

Theorem 2.3 Let I be a 5 -absorbing ideal of R. Then $\operatorname{Rad}(I)^{5} \subseteq I$.
Proof By Anderson and Badawi (2011, Theorem 2.1), $x^{5} \in I$ for each $x \in \operatorname{Rad}(I)$.

- Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{4} x_{2}^{4} \in I$, since $x_{1}^{4}\left(x_{1}+x_{2}\right) x_{2}^{4} \in I$.
- Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{4} x_{2}^{3} \in I$. In fact, we have $x_{1}^{4} x x_{2}^{4} \in I$. Hence, either $x_{1}^{4} x_{2} \in I$ or $x_{1}^{4} x_{2}^{3} \in I$ or $x_{1}^{3} x_{2}^{4} \in I$. If $x_{1}^{3} x_{2}^{4} \in I$, we have either $x_{1}^{3} x_{2}^{3} \in I$ or $x_{1}^{2} x_{2}^{4} \in I$. Suppose that $x_{1}^{2} x_{2}^{4} \in I$, then either $x_{1} x_{2}^{4} \in I$ or $x_{1} x_{2}^{3} \in I$. If $x_{1} x_{2}^{4} \in I$ and since $x_{1}^{4} x_{2}^{3}\left(x_{1}+x_{2}\right) \in I$, then we get the result.
- Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{3} x_{2}^{3} \in I$ and $x_{1}^{4} x_{2}^{2} \in I$. In fact, since $x_{1}^{4} x_{2}^{3} \in I$ and I is a 5-absorbing ideal we have either $x_{1}^{4} x_{2}^{2} \in I$ or $x_{1}^{3} x_{2}^{3} \in I$. Suppose that $x_{1}^{4} x_{2}^{2} \in I$, since $x_{1}^{3}\left(x_{1}+x_{2}\right) x_{2}^{3} \in I$ and $x_{1}^{3} x_{2}^{4} \in I$, we prove that $x_{1}^{3} x_{2}^{3} \in I$. Suppose that $x_{1}^{3} x_{2}^{3} \in I$ and since $x_{1}^{4} x_{2}^{2}\left(x_{1}+x_{2}\right) \in I$, we conclude that $x_{1}^{4} x_{2}^{2} \in I$.
- Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{3} x_{2}^{2} \in I$ and $x_{1}^{4} x_{2} \in I$. In fact, we have $x_{1}^{4} x_{2}^{2} \in I$ so either $x_{1}^{3} x_{2}^{2} \in I$ or $x_{1}^{4} x_{2} \in I$. If $x_{1}^{4} x_{2} \in I$ we prove that $x_{1}^{3} x_{2}^{2} \in I$ since $x_{1}^{3} x_{2}^{3} \in I$ and $x_{1}^{3}\left(x_{1}+x_{2}\right) x_{2}^{2} \in I$. If $x_{1}^{3} x_{2}^{2} \in I$, we prove that $x_{1}^{4} x_{2} \in I$ since $x_{1}^{4}\left(x_{1}+x_{2}\right) x_{2} \in I$.
- Let $x_{1}, x_{2}, x_{3} \in \operatorname{Rad}(I)$ then $\left(x_{1} x_{2} x_{3}\right)^{2} \in I$. It suffices to remark that $x_{1}^{2} x_{2}^{2} x_{3}^{2}\left(x_{1}+\right.$ $\left.x_{2}+x_{3}\right) \in I$.
- Let $x_{1}, x_{2}, x_{3} \in \operatorname{Rad}(I)$ then $x_{1}^{3} x_{2} x_{3} \in I$. In fact, it is clear since $x_{1}^{3} x_{2} x_{3}\left(x_{2}+x_{3}\right) \in$ I and $x_{1}^{3} x_{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right) \in I$.
- Let $x_{1}, x_{2}, x_{3} \in \operatorname{Rad}(I)$ then $x_{1}^{2} x_{2}^{2} x_{3} \in I$ since $x_{1}^{2} x_{2}^{2} x_{3}\left(x_{1}+x_{2}+x_{3}\right) \in I$, then either $x_{1}^{2} x_{2}^{2} x_{3}+x_{1} x_{2}^{2} x_{3}^{2} \in I\left(1^{\prime}\right)$ or $x_{1}^{2} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}^{2} \in I\left(2^{\prime}\right)$ or $x_{1}^{2} x_{2}^{2} x_{3} \in I$. If ($\left.1^{\prime}\right)$ is true, since $x_{1}^{2} x_{2}^{2} x_{3}^{2} \in I$ then either $x_{1} x_{2}^{2} x_{3}^{2} \in I$ or $x_{1}^{2} x_{2} x_{3}^{2} \in I$ or $x_{1}^{2} x_{2}^{2} x_{3} \in I$. If $x_{1} x_{2}^{2} x_{3}^{2} \in I$, we get the result. If $x_{1}^{2} x_{2} x_{3}^{2} \in I$, since $x_{1} x_{2}^{2} x_{3}^{2}\left(x_{1}+x_{2}+x_{3}^{2}\right) \in I$, we conclude.
If (2') is true, since $x_{1}^{2} x_{2}^{2} x_{3}^{2} \in I$ then either $x_{1} x_{2}^{2} x_{3}^{2} \in I$ or $x_{1}^{2} x_{2} x_{3}^{2} \in I$ or $x_{1}^{2} x_{2}^{2} x_{3} \in$ I. If $x_{1}^{2} x_{2} x_{3}^{2} \in I$, we get the result. If $x_{1} x_{2}^{2} x_{3}^{2} \in I$, since $x_{1}^{2} x_{2} x_{3}^{2}\left(x_{1}+x_{2}+x_{3}^{2}\right) \in I$, we conclude.
- Let $x_{1}, x_{2}, x_{3}, x_{4} \in \operatorname{Rad}(I)$ then $x_{1}^{2} x_{2} x_{3} x_{4} \in I$. It is clear since $x_{1}^{2} x_{2} x_{3} x_{4}\left(x_{1}+\right.$ $\left.x_{2}+x_{3}+x_{4}\right) \in I$ and $x_{1}^{2} x_{2} x_{3} x_{4}\left(x_{2}+x_{3}+x_{4}\right) \in I$.
- Let $x_{1}, x_{2}, x_{3}, x_{4} \in \operatorname{Rad}(I)$ then $x_{1} x_{2} x_{3} x_{4} \in I$. In fact, remark that $x_{1} x_{2} x_{3} x_{4}\left(x_{1}+\right.$ $\left.x_{2}+x_{3}+x_{4}\right) \in I$.

Notation (Anderson and Badawi 2011) If I is an n-absorbing ideal of R for some positive integer n, then define $\omega_{R}(I)=\min \{n \mid I$ is an $n-$ absorbing ideal of $R\}$. Applying Anderson and Badawi (2011, Theorem 6.3), we obtain the following result:

Corollary 2.1 Let P be a prime ideal of a ring R and $n \in\{3,4,5\}$.
(1) If P^{n} is a P-primary ideal of R and $P^{n} \subset P^{n-1}$, then $\omega_{R}\left(P^{n}\right)=n$.
(2) If P is a maximal ideal of R and $P^{n} \subset P^{n-1}$, then $\omega_{R}\left(P^{n}\right)=n$.
(3) Let I be a P-primary ideal of a ring R. If $P^{n} \subseteq I$ and $P^{n-1} \not \subset I$, then $\omega_{R}(I)=n$.

Remark that in the case where $n \geq 6$, we can prove the following results:
(1) Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1} x_{2}^{n-1} \in I$. In fact, since $x_{1}\left(x_{1}^{n-1}+x_{2}\right) x_{2}^{n-1} \in I$, we conclude that either $x_{1} x_{2}^{n-1} \in I$ or $x_{1}^{n-1} x_{2}^{n-1} \in I$.
Now, for each $1 \leq k \leq n-1$, we suppose that $x_{1}^{n-k} x_{2}^{n-1} \in I$ and we prove that $x_{1}^{n-k-1} x_{2}^{n-1} \in I$.
Since $x_{1}\left(x_{1}^{n-k-1}+x_{2}\right) x_{2}^{n-1} \in I$, we conclude that either $x_{1}^{n-k-1} x_{2}^{n-1} \in I$ or $x_{1} x_{2}^{n-1} \in I$ or $x_{1}^{n-k} x_{2}^{n-2}+x_{1} x_{2}^{n-1} \in I$. As $x_{1}^{n-k} x_{2}^{n-1} \in I$, then either $x_{1}^{n-k-1} x_{2}^{n-1} \in I$ or $x_{1}^{n-k} x_{2}^{n-2} \in I$. So the result is clear.
(2) Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{n-2} x_{2}^{n-2} \in I$. In fact, it is clear since $x_{1}^{n-2}\left(x_{1}+\right.$ $\left.x_{2}\right) x_{2}^{n-2}$.
(3) Let $x_{1}, x_{2} \in \operatorname{Rad}(I)$ then $x_{1}^{n-2} x_{2}^{n-3} \in I$. In fact, it is clear since $x_{1}^{n-2}\left(x_{1}+\right.$ $\left.x_{2}\right) x_{2}^{n-3} \in I$ and $x_{1}^{n-2} x_{2}^{n-2} \in I$.

In the next step, we prove that Conjecture $\mathbf{1}$ holds for U-rings.
Definition 2.1 Let R be a commutative ring, I, J two ideals of R and $a \in R$. We define:
(1) $(I: J)=\{x \in R \mid x J \subseteq I\}$.
(2) $(I: a)=\{x \in R \mid a x \in I\}$.

Notation Let R be a commutative ring, $n \in \mathbb{N}^{*}, x_{1}, \ldots, x_{n} \in R$ and I_{1}, \ldots, I_{n} be n ideals of R. For $i \in\{1, \ldots, n\}$, we denote by:

- \hat{x}_{i} the product $x_{1} \ldots x_{i-1} x_{i+1} \ldots x_{n}$.
- \hat{I}_{i} the product $I_{1} \ldots I_{i-1} I_{i+1} \ldots I_{n}$.

Proposition 2.1 Let I be a proper ideal of a commutative ring R and $n \in \mathbb{N}^{*}$. The following conditions are equivalent:
(1) I is an n-absorbing ideal of R.
(2) For every elements $x_{1}, \ldots, x_{n} \in R$ with $x_{1} \ldots x_{n} \notin I,\left(I: x_{1} \ldots x_{n}\right) \subseteq$ $\cup_{1 \leq i \leq n}\left(I: \hat{x_{i}}\right)$

Proof "1) $\Rightarrow 2)$ " Let $a \in\left(I: x_{1} \ldots x_{n}\right)$ then $a x_{1} \ldots x_{n} \in I$. Since I is an n-absorbing ideal and $x_{1} \ldots x_{n} \notin I$, we conclude that $a \hat{x}_{i} \in I$ for some i with $1 \leq i \leq n$. Thus $a \in \cup_{1 \leq i \leq n}\left(I: \hat{x}_{i}\right)$.
"2) $\Rightarrow 1$)" Let $x_{1}, \ldots, x_{n+1} \in R$ such that $x_{1} \ldots x_{n+1} \in I$, then $x_{1} \in(I$: $x_{2} \ldots x_{n+1}$). If $x_{2} \ldots x_{n+1} \in I$ then we are done. Hence we may assume that $x_{2} \ldots x_{n+1} \notin I$ and so by $(1),\left(I: x_{2} \ldots x_{n+1}\right) \subseteq \cup_{2 \leq i \leq n+1}\left(I: \hat{x_{i}}\right)$. So $x_{1} \in(I$: \hat{x}_{i}) for some i with $2 \leq i \leq n+1$.

Definition 2.2 (Quartararo and Butts 1975) A commutative ring R is said to be a U-ring provided R has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals.

Example 2.1 (1) Every Prüfer domain is a U-ring (Quartararo and Butts 1975, Corollary 1.6).
(2) Let D be an integral domain with quotiont field K. If D is a U-ring and $D \subseteq R \subseteq$ K, then R is a U-domain. If D / P is finite for all maximal ideals P of D, then D is a U-domain if and only if D is a Prüfer domain (Quartararo and Butts 1975).

Recall that a proper ideal I of a ring R is a strongly n-absorbing ideal if whenever $I_{1} \ldots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R, then the product of some n of the I_{i} 's is contained in I.

Theorem 2.4 Let R be a U-ring and $n \geq 3$. The following conditions are equivalent:
(1) I is a strongly n-absorbing ideal.
(2) I is an n-absorbing ideal.
(3) For every $x_{1}, x_{2}, \ldots, x_{n} \in R$ such that $x_{1} \ldots x_{n} \notin I,\left(I: x_{1} \ldots x_{n}\right)=\left(I: \hat{x_{i}}\right)$ for some $1 \leq i \leq n$.
(4) For every tideals $I_{1}, \ldots, I_{t}, 1 \leq t \leq n-1$, and for every elements x_{1}, \ldots, x_{n-t} such that $x_{1} \ldots x_{n-t} I_{1} \ldots I_{t} \nsubseteq I,\left(I: x_{1} \ldots x_{n-t} I_{1} \ldots I_{t}\right)=\left(I: \hat{x_{i}} I_{1} \ldots I_{t}\right)$ for some $1 \leq i \leq n-t$ or $\left(I: x_{1} \ldots x_{n-t} I_{1} \ldots I_{t}\right)=\left(I: x_{1} \ldots x_{n-t} \hat{I}_{j}\right)$ for some $1 \leq j \leq t$.
(5) For every ideals $I_{1}, \ldots I_{n}$ of R with $I_{1} \ldots I_{n} \nsubseteq I$, $\left(I: I_{1} \ldots I_{n}\right)=\left(I: \hat{I}_{i}\right)$, for some $1 \leq i \leq n$.

Proof 1) $\Rightarrow 2$) It is clear.
$2) \Rightarrow 3)$ This follows from the last proposition, since R is a U-ring.
$3) \Rightarrow 4)$ We prove the result by induction on $t \in\{1, \ldots, n-1\}$. For $t=1$ consider $x_{1}, \ldots, x_{n-1} \in R$ and an ideal I_{1} of R such that $x_{1} \ldots x_{n-1} I_{1} \nsubseteq I$.
Let $a \in\left(I: x_{1} \ldots x_{n-1} I_{1}\right)$. Then $I_{1} \subseteq\left(I: a x_{1} \ldots x_{n-1}\right)$. If $a x_{1} \ldots x_{n-1} \in I$, then $a \in\left(I: x_{1} \ldots x_{n-1}\right)$. If $a x_{1} \ldots x_{n-1} \notin I$, then by 3), either $\left(I: a x_{1} \ldots x_{n-1}\right)=$ $\left(I: x_{1} \ldots x_{n-1}\right)$ or $\left(I: a x_{1} \ldots x_{n-1}\right)=\left(I: a \hat{x_{i}}\right)$ for some $1 \leq i \leq n-1$. Since $I_{1} \not \subset\left(I: x_{1} \ldots x_{n-1}\right)$, we conclude that $I_{1} \subseteq\left(I: a \hat{x_{i}}\right)$ for some $1 \leq i \leq n-1$, and thus $a \in\left(I: \hat{x_{i}} I_{1}\right)$. Hence $\left(I: x_{1} \ldots x_{n-1} I_{1}\right) \subseteq\left(I: x_{1} \ldots x_{n-1}\right) \cup \cup_{1 \leq i \leq n-1}(I:$ $\left.\hat{x}_{i} I_{1}\right)$. Since R is a U-ring, then either $\left(I: x_{1} \ldots x_{n-1} I_{1}\right) \subseteq\left(I: x_{1} \ldots x_{n-1}\right)$ or $\left(I: x_{1} \ldots x_{n-1} I_{1}\right) \subseteq\left(I: \hat{x_{i}} I_{1}\right)$. The other inclusions are evident.

Now, suppose that $t>1$ and assume that the claim holds for $t-1$. Let x_{1}, \ldots, x_{n-t} be elements of R and let I_{1}, \ldots, I_{t} be ideals of R such that $x_{1} \ldots x_{n-t} I_{1} \ldots I_{t} \nsubseteq I$.
Consider an element $a \in\left(I: x_{1} \ldots x_{n-t} I_{1} \ldots I_{t}\right)$. Thus $I_{t} \subseteq(I$: $\left.a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1}\right)$. If $a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1} \subseteq I$, then $a \in\left(I: x_{1} \ldots x_{n-t}\right.$ $\left.I_{1} \ldots I_{t-1}\right)$. If $a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1} \nsubseteq I$, then by the induction hypothesis, either $\left(I: a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1}\right)=\left(I: x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1}\right)$ or $(I:$ $\left.a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1}\right)=\left(I: a \hat{x}_{i} I_{1} \ldots I_{t-1}\right)$ for some $1 \leq i \leq n-t$ or $\left(I: a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1}\right)=\left(I: a x_{1} \ldots x_{n-t} I_{1} \ldots I_{j-1} I_{j+1} \ldots I_{t-1}\right)$ for some $1 \leq j \leq t-1$.

Since $x_{1} \ldots x_{n-t} I_{1} \ldots I_{t} \nsubseteq I$, then the first case is removed. Consequently, either $\left(I: a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1}\right)=\left(I: a \hat{x_{i}} I_{1} \ldots I_{t-1}\right)$ for some $1 \leq i \leq n-t$ or
$\left(I: a x_{1} \ldots x_{n-t} I_{1} \ldots I_{t-1}\right)=\left(I: a x_{1} \ldots x_{n-t} I_{1} \ldots I_{j-1} I_{j+1} \ldots I_{t}\right)$ for some $1 \leq j \leq t-1$.
Hence $\left(I: x_{1} \ldots x_{n-t} I_{1} \ldots I_{t}\right) \subseteq \cup_{1 \leq i \leq n-1}\left(I \quad: \hat{x}_{i} I_{1} \ldots I_{t}\right) \cup \underset{1 \leq j \leq t}{\cup}(I \quad:$ $\left.x_{1} \ldots x_{n-t} \hat{I}_{j}\right)$. Now, since R is a U-ring, $\left(I: x_{1} \ldots x_{n-t} I_{1} \ldots I_{t}\right)$ is included in $\left(I: \hat{x}_{i} I_{1} \ldots I_{t}\right)$ for some $1 \leq i \leq n-t$ or $\left(I: x_{1} \ldots x_{n-t} \hat{I}_{j}\right)$ for some $1 \leq j \leq t$. The other inclusions are evident.
4) \Rightarrow 5) Let I_{1}, \ldots, I_{n} be ideals of R such that $I_{1} \ldots I_{n} \nsubseteq I$. Suppose that $a \in\left(I: I_{1} \ldots I_{n}\right)$. Then $I_{n} \subseteq\left(I: a I_{1} \ldots I_{n-1}\right)$. If $a I_{1} \ldots I_{n-1} \subseteq I$, then $a \in(I:$ $\left.I_{1} \ldots I_{n-1}\right)$. If $a I_{1} \ldots I_{n-1} \nsubseteq I$, then by 4), we have either $\left(I: a I_{1} \ldots I_{n-1}\right)=$ $\left(I: a \hat{I}_{j}\right)$ for some $1 \leq j \leq n-1$ or $\left(I: a I_{1} \ldots I_{n-1}\right)=\left(I: I_{1} \ldots I_{n-1}\right)$.
By hypothesis, the second case does not hold. The first case implies that $a \in(I$: $I_{1} \ldots I_{j-1} I_{j+1} \ldots I_{n}$) for some $1 \leq j \leq n-1$. Hence $\left(I: I_{1} \ldots I_{n}\right) \subseteq(I:$ $\left.I_{1} \ldots I_{n-1}\right) \cup \underset{1 \leq j \leq n-1}{\cup}\left(I: \hat{I}_{j}\right)=\underset{1 \leq i \leq n}{\cup}\left(I: \hat{I}_{j}\right)$. Since R is a U-ring, we conclude that $\left(I: I_{1} \ldots I_{n}\right) \subseteq\left(I: \hat{I}_{j}\right)$ for some $1 \leq j \leq n$. The other inclusions are evident.
5) $\Rightarrow 1)$ Let I_{1}, \ldots, I_{n+1} be ideals of R such that $I_{1} \ldots I_{n+1} \subseteq I$. Then $I_{1} \subseteq$ $\left(I: I_{2} \ldots I_{n+1}\right)$. If $I_{2} \ldots I_{n+1} \subseteq I$, that is clear. If $I_{2} \ldots I_{n+1} \nsubseteq I$, then by 5), $\left(I: I_{2} \ldots I_{n+1}\right)=\left(I: I_{2} \ldots I_{j-1} I_{j+1} \ldots I_{n+1}\right)$ for some $2 \leq j \leq n+1$. So $I_{1} \hat{I}_{j} \subseteq I$ for some $2 \leq j \leq n+1$.

Example 2.2 Let R be a Prüfer domain, I a proper ideal of R and $n \geq 3$. Using Anderson and Badawi (2011, Theorem 5.7), we conclude that I is a strongly n-absorbing ideal of R if and only if I is a product of prime ideals of R.

Badawi (2007) proved that if I is a 2-absorbing ideal of a commutative ring R, then either $(I: x) \subseteq(I: y)$ or $(I: y) \subseteq(I: x)$ for each $x, y \in \operatorname{Rad}(I) \backslash I$. It is natural to ask if this result can be generalized for each $x, y \in R \backslash I$. The answer is given by the next theorem. Recall, from Badawi (2007), that if I a 2-absorbing ideal, then one of the following statements must hold:
(1) $\operatorname{Rad}(I)=P$ is a prime ideal of R and $P^{2} \subseteq I$.
(2) $\operatorname{Rad}(I)=P_{1} \cap P_{2}, P_{1} P_{2} \subseteq I$ and $\operatorname{Rad}(I)^{2} \subseteq I$ where P_{1}, P_{2} are the only distinct prime ideals of R that are minimal over I.

Theorem 2.5 Let I be a 2-absorbing ideal of a commutative ring R.
(1) If $\operatorname{Rad}(I)=P$ is a prime ideal of R, then either $(I: x) \subseteq(I: y)$ or $(I: y) \subseteq$ $(I: x)$, for every $x, y \in R \backslash I$.
(2) If $\operatorname{Rad}(I)=P_{1} \cap P_{2}$, where P_{1}, P_{2} are the only distinct prime ideals of R that are minimal over I and $I \neq \operatorname{Rad}(I)$, then either $(I: x) \subseteq(I: y)$ or $(I: y) \subseteq(I: x)$ for every $x, y \in R \backslash I$ except if $x \in P_{1} \backslash P_{2}$ and $y \in P_{2} \backslash P_{1}$, in which case $(I: x)=P_{2}$ and $(I: y)=P_{1}$.

Proof (1) Let I be a 2-absorbing ideal of R such that $\operatorname{Rad}(I)=P$ is a prime ideal of R. First, remark that:
(a) For each $x \in R \backslash P,(I: x) \subseteq P$. In fact, let $y \in R$ such that $y x \in I$. Since P is a prime ideal and $x \notin P$ we conclude that $y \in P$.
(b) Let $x, y \in R \backslash P$ then $(I: x)$ and $(I: y)$ are linearly ordered. Otherwise, let $z_{1} \in(I: x) \backslash(I: y)$ and $z_{2} \in(I: y) \backslash(I: x)$. Then $x\left(z_{1}+z_{2}\right) y \in I$. Since I is a 2-absorbing ideal, we have $x\left(z_{1}+z_{2}\right) \in I$ or $\left(z_{1}+z_{2}\right) y \in I$ or $x y \in I$ which is impossible.
Now, let $x, y \in R \backslash I$.

- If $x, y \in P \backslash I$, it's clear by Badawi (2007 Theorem 2.5).
- If $x, y \in R \backslash P$, it's clear by the last remark.
- if $x \in R \backslash P$ and $y \in P \backslash I$, we have $(I: x) \subset P \subset(I: y)$ by the last remark and Badawi (2007 Theorem 2.5).
(2) Let I be a 2 -absorbing ideal such that $\operatorname{Rad}(I)=P_{1} \cap P_{2}$ and $x \in R \backslash \operatorname{Rad}(I)$. Then $(I: x) \subseteq P_{1} \cup P_{2}$. In fact, let $z \in(I: x)$, so $z x \in I \subseteq P_{1} \cap P_{2}$. Since $x \notin \operatorname{Rad}(I)$, we have $x \notin P_{1}$ or $x \notin P_{2}$. So we conclude that $z \in P_{1}$ or $z \in P_{2}$. Remark that if $x \in P_{1} \backslash P_{2}$, then $(I: x)=P_{2}$. In fact, let $z \in(I: x)$ then $x z \in I \subseteq P_{1} \cap P_{2} \subseteq P_{2}$. As $x \notin P_{2}$ then $z \in P_{2}$. So $(I: x) \subseteq P_{2}$. Conversely, let $z \in P_{2}$ then $x z \in P_{1} P_{2} \subseteq I$. So $z \in(I: x)$.
Similarly, if $x \in P_{2} \backslash P_{1}$ then $(I: x)=P_{1}$.
Now let $x, y \in R \backslash I$.
If $x, y \in \operatorname{Rad}(I) \backslash I$, then $(I: x)$ and $(I: y)$ are linearly ordered by Badawi (2007 Theorem 2.6).
If not, we have the following cases:
- If $x \in \operatorname{Rad}(I) \backslash I$ and $y \in R \backslash \operatorname{Rad}(I)$, we have $(I: y) \subseteq P_{1} \cup P_{2} \subseteq(I: x)$.
- If $x, y \in R \backslash \operatorname{Rad}(I)$:
- if $x, y \in P_{1} \backslash P_{2}$, we conclude that $(I: x)=(I: y)=P_{2}$.
- if $x, y \in P_{2} \backslash P_{1}$, in this case we have $(I: x)=(I: y)=P_{1}$.
- if $x, y \in R \backslash\left(P_{1} \cup P_{2}\right)$, we assume that $(I: x)$ and $(I: y)$ are not linearly ordered. Then there exist $z_{1} \in(I: x) \backslash(I: y)$ and $z_{2} \in(I: y) \backslash(I: x)$. So $x\left(z_{1}+z_{2}\right) y \in I$ and no product of two elements is in I which is a contradiction.
- if $x \in P_{1} \backslash P_{2}$ and $y \in P_{2} \backslash P_{1}$, we have $(I: x)=P_{2}$ and $(I: y)=P_{1}$ and it is clear that $(I: x)$ and $(I: y)$ are not linearly ordered in this case.

Recall that a 2-absorbing ideal is a generalization of a prime ideal and there are many characterization of a commutative ring with their set of prime ideals, so one can ask if we have a similar result for a commutative ring such that every nonzero proper ideal of R is a 2-absorbing ideal. The following proposition gives an answer.

Proposition 2.2 Let R be a commutative ring. If every nonzero proper ideal of R is a 2-absorbing ideal then R is an SFT ring.

Proof By Badawi (2007 Theorem 3.4), R is a zero-dimensional ring and we have three cases.
Case 1: R is quasi-local with maximal ideal $M=\operatorname{Nil}(R) \neq\{0\}$ such that $M^{2} \subseteq x R$ for each nonzero $x \in M$. To prove that R is an SFT ring it suffices to prove that M is an SFT ideal of R. Since $M \neq(0)$, then there is a nonzero element $y \in M$. Thus
$F=(y)$ is a principal ideal of R such that $x^{2} \in F$ for each $x \in M$. So we conclude that M is an SFT ideal.

Case 2: R has exactly two distinct maximal ideals, say $\left\{M_{1}, M_{2}\right\}$. So either R is isomorphic to $D=R / M_{1} \oplus R / M_{2}$ or $\operatorname{Nil}(R)^{2}=\{0\}$ and $\operatorname{Nil}(R)=\omega R$ for each nonzero $\omega \in \operatorname{Nil}(R)$. In the first situation, R is isomorphic to an SFT ring so R is an SFT ring. In the second situation, we have $R \cong R / M_{1}^{2} \oplus R / M_{2}$, by Badawi (2007 Lemma 3.3). The ring R / M_{1}^{2} is SFT. In fact, let J be an ideal of R / M_{1}^{2}, then there exists an ideal I of R such that $M_{1}^{2} \subseteq I \subseteq M_{1}$ and $J=I / M_{1}^{2}$. It is easy to see that $J \subseteq \operatorname{Nil}\left(R / M_{1}^{2}\right)=M_{1} / M_{1}^{2}$ and for each $\bar{x} \in J$, we have $\bar{x}^{2}=\overline{0}$. Then by Hizem and Benhissi (2011, Proposition 2.1) R / M_{1}^{2} is an SFT ring.

Case 3: We suppose that R is isomorphic to $F_{1} \oplus F_{2} \oplus F_{3}$, where F_{1}, F_{2} and F_{3} are fields. It is clear in this case that R is an SFT ring.

Example 2.3 (1) Let $R=\mathbb{Z}+6 X \mathbb{Z}[X]$ and $P=6 X \mathbb{Z}[X]$. First observe that P^{2} is not a 2 -absorbing ideal of R. In fact, let $f_{1}=6 X^{2}, f_{2}=2$ and $f_{3}=3$ in R, then it is clear to see that $f_{1} f_{2} f_{3} \in P^{2}$ but $f_{1} f_{2} \notin I, f_{2} f_{3} \notin I$ and also $f_{1} f_{3} \notin I$. So R is not an SFT ring.
(2) Let D be a valuation domain with Krull dimension $n \geq 1, K$ the quotient field of D and X an indeterminate. Set $R=D+X K[[X]]$, by [4, Example 3.12], R is not a 2 -absorbing ring so R is not an SFT ring.

Next, we give some classes of rings in which Conjecture 3 holds. Recall that Conjecture 3 is true if $n=2$ and we can easily prove that if I is a 2 -absorbing ideal of R then $I[[X]]$ is also a 2-absorbing ideal of the power series ring $R[[X]]$. In fact, we prove that either $\operatorname{Rad}(I[[X]])=P[[X]]$, with P a prime ideal of R or $\operatorname{Rad}(I[[X]])=P_{1}[[X]] \cap P_{2}[[X]]$, with P_{1} and P_{2} are two prime ideals of R. By Badawi (2007 Theorems 2.8 and 2.9), we conclude that $I[[X]]$ is a 2-absorbing ideal since $I[[X]]_{f}$ is a prime ideal of $R[[X]]$ for each $f \in \operatorname{Rad}(I[[X]]) \backslash I[[X]]$.
Nasehpour (2016) proves that for a Prüfer domain R and $n \geq 3$, an ideal I is n absorbing if and only if $I[X]$ is n-absorbing. In the following, we generalize this result in the case of a Gaussian U-ring.

Remark also that in a Prüfer domain, we can prove the last result in the power series ring. In fact, let I be an n-absorbing ideal then $I[[X]]=P_{1}^{n_{1}}[[X]] \ldots P_{k}^{n_{k}}[[X]]$, where P_{1}, \ldots, P_{k} are the minimal prime ideals over I and n_{1}, \ldots, n_{k} positive integer such that $n_{1}+\cdots+n_{k}=n$. By Fields (1971, Corollary 4) and Anderson and Badawi (2011, Theorems 3.1 and 2.1) we conclude that $I[[X]]$ is an n-absorbing ideal of $R[[X]]$.

Recall that a commutative ring R is said to be a Gaussian ring (respectively P-Gaussian) if $C(f g)=C(f) C(g)$ for every polynomials f and g in $R[X]$ (respectively f and g in $R[[X]])$.

Theorem 2.6 Let R be a Gaussian ring (respectively a Noetherian Gaussian ring). If R is a U-ring, then I is an n-absorbing ideal of R if and only if $I[X]$ (respectively $I[[X]])$ is an n-absorbing ideal of $R[X]$ (respectively $R[[X]])$. Moreover, $\omega_{R}(I)=$ $\omega_{R[X]}(I[X])$ (respectively $\omega_{R}(I)=\omega_{R[[X]]}(I[[X]])$).

Proof We prove the result in the case of polynomial rings.
" \Leftarrow " It follows from Anderson and Badawi (2011, Corollary 4.3).
$" \Rightarrow$ " Suppose that I is an n-absorbing ideal of R and let $f_{1}, f_{2}, \ldots, f_{n+1} \in R[X]$ such that $f_{1} \ldots f_{n+1} \in I[X]$.
Since R is a Gaussian ring, we conclude that $C\left(f_{1}\right) \cdots C\left(f_{n+1}\right)=C\left(f_{1} \cdots f_{n+1}\right) \subseteq$ I. As I is a strongly n-absorbing ideal of R, by Theorem 2.2, hence $C \hat{\left(f_{i}\right)} \subseteq I$ for some $1 \leq i \leq n+1$, thus $\hat{f}_{i} \in I[X]$.
The same proof works also in the case of power series rings as a Noetherian Gaussian ring is P-Gaussian (Tsang 1965).

Recall that a commutative ring R is said to be a pseudo-valuation domain (PVD) if every prime ideal of R is strongly prime.

Theorem 2.7 Let R be a pseudo-valuation domain with associated valuation domain V and let I be an ideal of R such that Rad(I) is not maximal. Then I is an n absorbing ideal of R if and only if $I[X]$ (respectively $I[[X]]$) is an n-absorbing ideal of $R[X]$ (respectively of $R[[X]]$). Moreover, $\omega_{R}(I)=\omega_{R[X]}(I[X])$ (respectively $\left.\omega_{R}(I)=\omega_{R[[X]]}(I[[X]])\right)$.

Proof Let I be an n-absorbing ideal of R. Then there are at most n prime ideal of R minimal over I. Since $\operatorname{Rad}(I)$ is the intersection of all the prime ideals minimal over I and the prime ideals are comparable in a PVD, we conclude that $\operatorname{Rad}(I)=P$ for some prime ideal minimal over I.

Recall that a PVD is a divided ring, so I is a P-primary ideal of R by Anderson and Badawi (2011, Theorem 3.2). As $\operatorname{Rad}(I)$ is not maximal then I is also a P-primary ideal of V by Anderson and Dobbs (1980, Proposition 3.13).

We show that $P^{n} \subseteq I$. Let $x_{1}, \ldots, x_{n} \in P$, then there is an $x \in P$ such that $\left(x_{1}, \ldots, x_{n}\right)_{V}=x V$ since V is a valuation domain.

Hence $x_{1} \ldots x_{n}=x^{n} b$ for some $b \in V$. As $x \in P=\operatorname{Rad}(I)$ and I is n-absorbing then $x^{n} \in I$ and so $x^{n} b \in I$. Then $I[X]$ is an n-absorbing ideal of $R[X]$ by Anderson and Badawi (2011, Theorem 3.1) (respectively, by Fields (1971, Corollary 4)), $I[[X]]$ is $P[[X]]$-primary since $P^{n}[[X]] \subseteq I[[X]]$, so $I[[X]]$ is an n-absorbing ideal of $R[[X]])$.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Anderson, D.F., Badawi, A.: On n-absorbing ideals of commutative rings. Commun. Algebra 39(5), 16461672 (2011)
Anderson, D.F., Dobbs, D.E.: Pairs of rings with the same prime ideals. Can. J. Math. 32, 362-384 (1980)
Arnold, J.T.: Krull dimension in power series rings. Trans. Am. Math. Soc. 177, 299-304 (1973)
Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75(3), 417-429 (2007)
Cahen, P.J., Fontana, M., Frisch, S., Glaz, S.: Open problems in commutative ring theory. In: Fontana et al. (eds). Commutative Rings. Integer-Valued Polynomials, and Polynomial Function. Springer, New York (2014)

Donadze, G.: The Anderson-Badawi conjecture for commutative algebras over infinite fields. Indian J. Pure Appl. Math. 47, 691-696 (2016)
Fields, D.: Zero divisors and nilpotent elements in power series rings. Proc. Am. Math. Soc. 27, 427-433 (1971)

Hizem, S., Benhissi, A.: Nonnil-Noetherian rings and the SFT property. Rocky Mt. J. Math. 41(5), 14831500 (2011)
Nasehpour, P.: On the Anderson-Badawi $\omega_{\mathbb{R}[X]}(I[X])=\omega_{R}(I)$ conjecture. Arch. Math. Brno 52(2), 71-78 (2016)

Quartararo, P., Butts, H.S.: Finite unions of ideals and modules. Proc. Am. Math. Soc. 52, 91-96 (1975)
Tsang, H.: Gauss's lemma. Ph.D. Thesis, University of Chicago (1965)
Yousfian Darani, A., Puczylouski, E.R.: On 2-absorbing commutative semigroup and their applications to rings. Semigroup Forum. 86(1), 83-91 (2013)

[^0]: \boxtimes Smach Sihem
 smach_sihem@yahoo.com
 1 Department of Mathematics, Faculty of Sciences, Monastir, Tunisia

