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Abstract Motivated by the appearance of multisemigroups in the study of additive 2-
categories,wedefine and investigate the notionof amultisemigroupwithmultiplicities.
This notion seems to be well suited for applications in higher representation theory.
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1 Introduction

Abstract 2-representation theory originates from the papers (Bernstein et al. 1999;
Khovanov 2000; Chuang and Rouquier 2008) and is nowadays formulated as the study
of 2-representations of additive k-linear 2-categories, where k is the base field, see
e.g. Mazorchuk (2012) for details. Various aspects of general 2-representation theory
of abstract additive k-linear 2-categories were studied in the series (Mazorchuk and
Miemietz 2011, 2014, 2016a, b) of papers byMazorchuk andMiemietz. An important
role in this study is played by the so-called multisemigroup of an additive k-linear 2-
category which was originally introduced in Mazorchuk and Miemietz (2016b).

Recall that a multisemigroup is a set S endowed with a multioperation, that is a
map ∗ : S × S → 2S which satisfies the following associativity axiom:

⋃

s∈a∗b
s ∗ c =

⋃

t∈b∗c
a ∗ t
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for all a, b, c ∈ S (see Kudryavtseva and Mazorchuk 2015 for more details and exam-
ples). This is the precise notion of associativity that makes 2S into a semigroup with
the usual notion of associativity. The original observation inMazorchuk andMiemietz
(2016b) is that the set S of isomorphism classes of indecomposable 1-morphisms in an
additive k-linear 2-category C has the natural structure of a multisemigroup, given as
follows: for two indecomposable (which in this setting is well-defined) 1-morphisms
F and G, we have

[F] ∗ [G] = {[H] : H is isomorphic to a direct summand of F ◦ G},

where [F] stands for the isomorphism class of F and ◦ denotes composition in C . We
refer the reader to Mazorchuk andMiemietz (2016b) for details. The combinatorics of
thismultisemigroup reflects and encodes various structural properties of the underlying
additive k-linear 2-category and controls major parts of the 2-representation theory of
the latter, see Mazorchuk and Miemietz (2011, 2014, 2016a, b) for details.

However, this notion of amultisemigroup of an additive k-linear 2-category has one
disadvantage: it seems to forget too much information. In more details, it only records
information about direct summands appearing in the composition F ◦ G, however, it
forgets information about themultiplicitieswith which these direct summands appear.
As as result, the multisemigroup of an additive k-linear 2-category can not be directly
applied to the study of the split Grothendieck category of C and linear representations
of the latter.

It is quite clear how one can amend the situation: one has to define a weaker
notion than a multisemigroup which should keep track of multiplicities in question.
This naturally leads to the notion of multisemigroups with multiplicities, or multi-
multisemigroupswhich is the object of the study in this paper (the idea of such an object
is mentioned in [Mazorchuk and Miemietz (2016b), Remark 8] without any details).
Although the definition is rather obvious under a natural finiteness assumption, the
setup in full generality has some catches and thus requires some work. The main aim
of the present paper is to analyze this situation and to propose a “correct” definition
of a multi-multisemigroup. The main value of the paper lies not in the difficulty of the
results presented but rather in the thorough analysis of the situation which explores
various connections of the theorywe initiate.Our approach utilizes the algebraic theory
of complete semirings.

The paper is organized as follows: in Sect. 2 we outline in more detail the moti-
vation for this study coming from higher representation theory. In Sect. 3 we collect
all notions and tools necessary to define our main object: multi-multisemigroups, or,
how we also call them, multisemigroups with multiplicities bounded by some car-
dinal. Section 4 ties back to the original motivation and is devoted to the analysis
of multisemigroups with multiplicities appearing in higher representation theory. In
Sect. 5 we give some explicit examples. In Sect. 6 we discuss multi-multisemigroups
for different sets of multiplicities and connection to twisted semigroup algebras.
Finally, in Sect. 7, we describe multi-multisemigroups as algebras over complete
semirings.
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2 Motivation from 2-representation theory

2.1 2-categories

For details on 2-categories we refer the reader to Leinster (1998); Mazorchuk (2012).
A 2-category is a category enriched by small categories. Explicitely this means that

C consists of the following data:

• Objects i, j,
• 1-morphisms f, gi → j between objects, including an identity 1-morphism 1i :
i → i for each object i,

• 2-morphisms α, β : f → g between 1-morphisms, including an identity 2-
morphism 1 f : f → f for each 1-morphism g,

satisfying a few natural axioms. If we forget the 2-morphismsC should be an ordinary
category. We adopt the convention that i ∈ C means that i is an object in C , and where
C (i, j) is the (full) 2-subcategory with

• objects: {i, j},
• 1-morphisms: all 1-morphphisms f, g : i → j in C ,
• 2-morphisms: all 2-morphisms α, β : f → g for f, g 1-morphisms in C (i, j).

Moreover, for each pair i, j of objects we demand that C (i, j) is a (small) category with
objects the 1-morphisms f, g : i → j and morphisms all 2-morphisms between the
appearing 1-morphisms. Before we state our last requirement we need to note that
2-morphisms can be composed in two ways. Besides the one we already implicitely
mentioned, when α : f → g and β : g → h composes to a 2-morphism αβ : f → h,
we also have a composition α1 : f1 → g1 with α2 : f2 → g2 which composes to a
map (α1, α2) : f1 ◦ f2 → g1 ◦ g2. We denote the first composition by ◦1 and the latter
by ◦0. Now we require that ◦0 is associative (whenever defined) and that

(α ◦0 β) ◦1 (γ ◦0 δ) = (α ◦1 γ ) ◦0 (β ◦1 δ).

This axiom is frequently presented in the following diagrammatical form

We refer, based on the diagram above, to the composition ◦0 as horizontal, and the
composition ◦1 as vertical.

The canonical example of a 2-category is the category Cat of small categories
where
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• objects are small categories,
• morphisms are categories where objects are functors and morphisms are natural
transformations of functors,

• identities are the identity functors,
• composition is composition of functors.

Let k be a field. We will say that a 2-category C is k-admissible provided that,

• for any i,j ∈ C , the category C (i,j) is k-linear, idempotent split and Krull–
Schmidt,

• composition is k-bilinear.

For example, let A be a finite-dimensional associative algebra and C a small category
equivalent to A-mod, then the 2-full subcategoryR(A,C) of Cat with unique object C
andwhose 1-morphisms are right exact endofunctors onC, isk-admissible. The reason
for this is the fact that R(A,C)(C, C) is equivalent to the category of A-A–bimodules,
see Bass (1968) for details.

2.2 Grothendieck category of a k-admissible 2-category

Let C be an additive category. Then the split Grothendieck group [C]⊕ of C is defined
as the quotient of the free abelian group generated by [X ], where X ∈ C, modulo the
relations [X ] + [Y ] − [Z ] whenever Z ∼= X ⊕ Y . If C is idempotent split and Krull-
Schmidt, then [C]⊕ is isomorphic to the free abelian group generated by isomorphism
classes of indecomposable objects in C.

Let C be a k-admissible 2-category. The associated Grothendieck category [C ]⊕,
also called the decategorification of C , is defined as the category such that

• [C ]⊕ has the same objects as C ,
• for i,j ∈ [C ]⊕, we have [C ]⊕(i,j) := [C (i,j)]⊕,
• identity morphisms in [C ]⊕ are classes of the corresponding identity 1-morphisms
in C ,

• composition in [C ]⊕ is induced from the composition in C .

We note that the category [C ]⊕ is, by definition, preadditive, but not additive in general
(as, in general, no coproduct of objects in C was assumed to exist).

Example 1 Let S be a finite semigroup with an admissible partial order ≤. Define the
2-category S as follows:

• SS has one object i;
• 1-morphisms inSS are elements from S;
• composition of 1-morphisms is given by multiplication in S;
• for two 1-morphisms s, t ∈ S, we have

HomS (s, t) :=
{

∅, s � t;
{hs,t }, s ≤ t.
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• vertical composition of 2-morphism is defined in the unique possible way which
is justified by transitivity of <;

• horizontal composition of 2-morphism is defined in the unique possibleway,which
is justified by admissibility of <.

For a field k, define the k-linearization Sk of S as follows, see [Grensing and
Mazorchuk (2014b), Sect. 4.3] for details:

• Sk has one object i;
• 1-morphisms inSk are formal finite direct sums of 1-morphisms inS ;
• 2-morphisms inSk are appropriate matrices whose entries are in khs,t ;
• compositions inSk are induced from those in S using k-bilinearity.

The 2-categorySk is, by construction, k-admissible. Moreover, the decategorification
[Sk]⊕ of this 2-category

• has one object i;
• the endomorphism ring [Sk]⊕(i,i) of the object i is isomorphic to the integral
semigroup ring Z[S].

2.3 Finitary 2-categories

A k-admissible 2-category C is called finitary, see Mazorchuk and Miemietz (2011),
provided that

• it has finitely many objects;
• it has finitely many indecomposable 1-morphisms, up to isomorphism;
• all k-spaces of 2-morphisms are finite dimensional;
• all identity 1-morphisms are indecomposable.

For example, the category Sk constructed in Example 1 is finitary (by construction
and using the fact that S is finite).

2.4 Multisemigroups of k-admissible 2-categories

Let C be a k-admissible 2-category. Consider the set S(C ) of isomorphism classes
of indecomposable 1-morphisms in C . Recall, from Sect. 1, that setting, for two
indecomposable 1-morphisms F and G in C ,

[F] ∗ [G] = {[H] : H is isomorphic to a direct summand of F ◦ G}, (1)

defines on S(C ) the structure of a multisemigroup. For example, for the category
Sk constructed in Example 1, the multisemigroup S(C ) is canonically isomorphic
to the semigroup S (by sending [s] to s, for s ∈ S). In particular, in this case the
multioperation defined by (1) is, in fact, single-valued and thus the prefix “multi” is
redundant.
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Example 2 Consider the symmetric group S3 as a Coxeter group with generators s
[standing for the elementary transposition (1, 2)] and t [standing for the elementary
transposition (2, 3)]. Then

S3 := {e, s, t, st, ts, sts},

where s2 = t2 = e and sts = tst . Then we have the followingKazhdan–Lusztig basis
in Z[S3]:

e := e, s := e + s, t := e + t, st := e + s + t + st,

ts := e + s + t + ts, sts := e + s + t + ts + st + sts.

The multiplication table of the Kazhdan–Lusztig basis elements is given by:

· e s t st ts sts

e e s t st ts sts
s s 2s st 2st sts + s 2sts
t t ts 2t tst + t 2ts 2sts
st st sts + s 2st 2tst + st 2sts + 2s 4sts
ts ts 2ts tst + t 2tst + 2t 2sts + ts 4sts
sts sts 2sts 2sts 4sts 4sts 6sts

(2)

Consider the 2-category S3 of Soergel bimodules over the coinvariant algebra of
S3 as detailed in, e.g., [Mazorchuk and Miemietz (2011), Sect. 7.1]. Consider the
correspondingGrothendieck category [S3]⊕. Then the ring [S3]⊕(i,i) is isomorphic
to Z[S3] where the isomorphism sends isomorphism classes of indecomposable 1-
morphisms in S3 to elements of the Kazhdan-Lusztig basis. This means that S[S3]
can be identified with S3 as a set. From (2) it follows that the multioperation ∗ on
S[S3] is given by:

· e s t st ts sts

e {e} {s} {t} {st} {ts} {sts}
s {s} {s} {st} {st} {sts, s} {sts}
t {t} {ts} {t} {tst, t} {ts} {sts}
st {st} {sts, s} {st} {tst, st} {sts, s} {sts}
ts {ts} {ts} {tst, t} {tst, t} {sts, ts} {sts}
sts {sts} {sts} {sts} {sts} {sts} {sts}

(3)

Here we see that the multioperation ∗ is genuinely multi-valued.

2.5 Multisemigroups and decategorification

Comparing (2) with (3), it is easy to see that the information encoded by the mul-
tisemigroup, that is (3), is not enough to recover the “associative algebra structure”
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which exists on the level of the Grothendieck decategorification presented in (2). The
essential part of the lost information is the exact values of non-zero multiplicities with
which indecomposable 1-morphisms appear in composition of two given indecom-
posable 1-morphisms.

One can say that the situation is even worse. Let us try to use (3) to define some
associative algebra structure on the abelian group Z[S3]. The only reasonable guess
would be to define, on generators, an operation 	 as follows:

x 	 y =
∑

z∈x∗y
z

and then extend this to Z[S3] by bilinearity. However, this is not associative, for
example, (sts 	 st) 	 s 
= sts 	 (st 	 s), indeed,

(sts 	 st) 	 s = sts 	 s = sts, sts 	 (st 	 s) = sts 	 (sts + s) = 2sts.

To have associativity, we should have considered B[S3], where B is the Boolean
semiring. This will be explained in detail later.

Therefore, if we want to define some discrete object which we could use to recover
the associative algebra structure given by theGrothendieck decategorification,we need
to keep track of multiplicities. This naturally leads to the notion of multisemigroups
with multiplicities.

3 Multisemigroups with multiplicities

3.1 Semirings

A semiring is a weaker notion than that of a ring and the difference is that it is only
required to form a commutative monoid (not a group) with respect to addition. More
precisely, a unital semiring is a tuple (R,+, · , 0, 1), where

• R is a set;
• + and · are binary operations on R;
• 0 and 1 are two different elements of R.

These data is required to satisfy the following axioms.

• (R,+, 0) is a commutative monoid with identity element 0;
• (R, ·, 1) is a monoid with identity element 1;
• multiplication distributes over addition both from the left and from the right;
• 0 · R = R · 0 = 0.

We refer to Golan (1999); Karner (1992) for more details.
Here are some examples of semirings:

• Any unital ring is a unital semiring.
• Z≥0 = ({0, 1, 2, 3, . . . },+, ·, 0, 1).
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• The Boolean semiring B = ({0, 1},+, ·, 0, 1) with respect to the usual boolean
addition and multiplication given by:

+ 0 1

0 0 1
1 1 1

and
· 0 1

0 0 0
1 0 1

• The dual Boolean semiring B∗ = ({0, 1}, ·,+, 1, 0) with respect to the boolean
multiplication (as addition) and boolean addition (as multiplication).

• If R is a semiring, then the set Matn×n(R) of n×n matrices with coefficients in R
forms a semiring with respect to the usual addition and multiplication of matrices.

• For any nonempty set X , we have the semiring BX := (BX ,∪,∩, ∅, X). This
semiring is isomorphic to

∏

x∈X
B(x),

where B(x) = B, a copy of the Boolean semiring B indexed by x .

Given two semirings R and R′, a homomorphism ϕ : R → R′ is a map from R to
R′ such that

• ϕ(r + s) = ϕ(r) + ϕ(s), for all r, s ∈ R;
• ϕ(r · s) = ϕ(r) · ϕ(s), for all r, s ∈ R;
• ϕ(0) = 0;
• ϕ(1) = 1,

where we for simplicity suppress notation. Semirings and homomorphisms form a
category, denoted by SRing.

3.2 Complete semirings

A commutative monoid (S,+, 0) is called complete provided that it is equipped, for
any indexing set I , with the sum operation

∑

i∈I
such that

•
∑

i∈∅

ri = 0;

•
∑

i∈{ j}
ri = r j ;

•
∑

j∈J

∑

i∈I j
ri =

∑

s∈I
rs when

⋃

j∈J

I j = I and I j ∩ I j ′ = ∅ for j 
= j ′.

We refer the reader to Hebisch (1992) for more details.
A semiring (R,+, · , 0, 1) is called complete provided that

• (R,+, 0) is a complete monoid;
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• multiplication distributes over all operations
∑

i∈I
on both sides, that is

r ·
(

∑

i∈I
ri

)
=

∑

i∈I
r · ri and

(
∑

i∈I
ri

)
· r =

∑

i∈I
ri · r.

Given two complete semirings R and R′, a homomorphism ϕ : R → R′ is a
homomorphism of underlying semirings such that

ϕ

(
∑

i∈I
ri

)
=

′∑

i∈I
ϕ(ri ), for all ri ∈ R.

Complete semirings and homomorphisms form a subcategory in SRing, denoted by
CSRing.

Here are some examples of complete semirings:

• Any complete lattice is a complete commutative semi-ring with respect to both
choices {+, ·} = {∨,∧}.

• (BX ,∪,∩, ∅, X), for some set X , where
∑

i∈I is the usual union.• The set of open sets for a topological space X , with respect to union and intersec-
tion.

• Unital quantales with join as addition and the underlying associative operation as
multiplication.

• Integral tropical semiring (Z≥0 ∪ {−∞},max,+,−∞, 0), where
∑

i∈I is just
taking the supremum.

• The semiring (Z≥0 ∪ {∞},+,min, 0,∞), where the sum of infinitely many
nonzero elements is set to be ∞.

• The semiring (R≥0 ∪ {∞},+, ·, 0, 1), where ∑
i∈I is defined as the supremum

over all finite partial subsums.
• The semiring (R≥0∪{∞},+, ·, 0, 1), where any infinite sum of non-zero elements
is defined to be ∞.

It is very tempting to add to the above the following “example”: all cardinal num-
bers form a complete semiring with respect to the usual addition (disjoint union) and
multiplication (Cartesian product) of cardinals. There is one problemwith this “exam-
ple”, namely, the fact that cardinals do not form a set but, rather, a proper class. This
problem can be overcome in an artificial and non-canonical way described in the next
example. This example is separated from the rest due to its importance inwhat follows.

Example 3 For a fixed cardinal κ , let Cardκ denote the set of all cardinals which are
not greater than κ . Then Cardκ has the structure of a complete semiring where

• addition (of any number of elements) is given by disjoint union with convention
that all cardinals greater than κ are identified with κ;

• multiplication is given by Cartesian product with convention that all cardinals
greater than κ are identified with κ .

Note that the Boolean semiring B is isomorphic to Card1.
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3.3 Multisets

Recall, see e.g. [Aigner (1979), p. 1], that a classical multiset is a pair (A, μ), where

• A is a set;
• μ : A → Z≥0 is a function, called the multiplicity function.

A natural, more general, notion is that of a genuine multiset, which is a pair (A, μ),
where

• A is a set;
• μ is the multiplicity function from A to the class of all cardinals.

3.4 Multi-Booleans

Recall that, given a base set X , the BooleanB(X) = BX of X is the set of all subsets of
X . This can be identified with the set of all functions from X to the Boolean semiring
B. In this way, B(X) gets the natural structure of a complete semiring with respect to
the union and intersection of subsets. The additive identity is the empty subset while
the multiplicative identity is X . Note that we can also consider the dual Boolean of
X which is the set of all functions from X to the dual Boolean semiring B∗. This gets
the natural structure of a complete semiring with respect to the intersection and union
of subsets. The additive identity is X while the multiplicative identity is the empty
subset.

The above point of view allows us to generalize the definition of the Boolean to
multiset structures. Given a base set X , define the full multi-Boolean of X to be the
class of all functions from X to the class of all cardinal numbers. To create any sensible
theory, we need sets. This motivates the following definition.

Given a base set X and a cardinal number κ , define the κ-multi-BooleanBκ(X) of X
to be the set of all functions from X to the complete semiring Cardκ . By construction,
Bκ(X) is equipped with the natural structure of a complete semiring. Also, we have
B(X) = B1(X).

Clearly κ = 0 would give us a singelton, on which no semi-ring structure exists.
From now on we agree that any cardinal κ in this paper is greater than or equal to 1.

Recall that the union of multisets X = ∪i Xi contains an element x as many times
as the supremum of the number times x appears in Xi . Now we have to make a choice.
Either we permit∞ as a coefficient, or we disallow some unions.We chose the former,
as this only causes problems when considering multiset subtractions, which we are in
any case not interested in. Similarly, the intersection of two multisets corresponds to
infimum. Unfortunately, for κ > 1, the natural complete semiring structure on Bκ(X)

does not correspond to the usual set-theoretic notions of union and intersection of
multisets. Note that these notions generalize union and intersection of normal sets.
Indeed, the multiplicity analogue of the intersection of multisets is the arithmetic
operation of takingminimum,while themultiplicity analogue of the union ofmultisets
is the arithmetic operation of taking maximum. These differ from the usual addition
and multiplication in Cardκ , if κ > 1.
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3.5 Multisemigroups with multiplicity

Now we are ready to present our main definition. Let κ be a fixed cardinal. A multi-
semigroup with multiplicities bounded by κ is a pair (S, μ), where

• S is a non-empty set;
• μ : S × S → Bκ(S), written (s, t) �→ μs,t : S → Cardκ ;

such that the following distributivity requirement is satisfied: for all r, s, t ∈ S, we
have ∑

i∈S
μs,t (i)μr,i =

∑

j∈S
μr,s( j)μ j,t . (4)

We note that here, for a cardinal λ and a function ν : S → Cardκ , by λν we mean the
function from S to Cardκ defined as

λν =
∑

i∈λ

ν,

or, in other words, this is just adding up λ copies of ν.
The informal explanation for the requirement (4) is as follows: the left hand side

corresponds to the “product” r ∗ (s ∗ t). Here s ∗ t givesμs,t , which counts every i ∈ S
with multiplicity μs,t (i). The result of r ∗ (s ∗ t), written when we distribute r∗ over
all such i ∈ S and taking multiplicities into account, gives exactly the left hand side
in (4). Similarly, the right hand side corresponds to the “product” (r ∗ s) ∗ t .

If κ is clear from the context, we will sometimes use the shorthand multi-multi-
semigroup instead of “multisemigroup with multiplicities bounded by κ”.

Here are some easy examples of multisemigroups with multiplicities:

• A usual multisemigroup is a multisemigroup with multiplicities bounded by one.
• For any κ and any λ < κ , the set {a} has the structure of a multisemigroup with
multiplicities bounded by κ , if we set μa,a = λ. Moreover, these exhaust all such
structures on {a}.
Here is a more involved example:

Example 4 Let A be a finite dimensional R-algebra with a fixed basis {ai : i ∈ I }
such that ai · a j =

∑
s∈I μs

i, j as and all μs
i, j ∈ Z≥0. Then (I, μ), where we define

μi, j (s) := μs
i, j , is a multisemigroup with multiplicities bounded byω, the first infinite

cardinal. This follows from the associativity ofmultiplication in A via the computation

∑

s

∑

t

μt
i, jμ

s
t,kas = (ai · a j ) · ak = ai · (a j · ak) =

∑

x

∑

y

μx
i,yμ

y
j,kax ,

which is equivalent to (4) in this case since basis elements are linearly independent.

Let (S, μ) and (S′, μ′) be two multisemigroups with multiplicities bounded by κ .
We will say that they are isomorphic provided that there is a bijection ϕ : S → S′
such that μ′ = ϕ ◦ μ.
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Let (S, μ) be a multisemigroups with multiplicities bounded by κ . Let S	 denote
the set of all words in the alphabet S of length at least two. Define the map

μ : S	 → Bκ(S)

recursively as follows:

1. μst = μs,t , if s, t ∈ S;
2. if w = sx , where x has length at least two, then set

μw(t) :=
∑

a∈S
μx (a)μs,a(t). (5)

The definition ofμ does not really depend on our choice of prefix above (in contrast
to suffix), as is clear from the following statement.

Proposition 5 If w ∈ S	 has the form w = xs, where x has length at least two, then

μw(t) :=
∑

a∈S
μx (a)μa,s(t). (6)

Proof Let w = s1s2 . . . sk , where k ≥ 3. Then the recursive procedure in (5) results
in ∑

i1∈S

∑

i2∈S
· · ·

∑

ik−2∈S
μs1,i1(t)μs2,i2(i1) · · · μsk−2,ik−2(ik−3)μsk−1,sk (ik−2). (7)

The recursive procedure in (6) results in

∑

j1∈S

∑

j2∈S
· · ·

∑

jk−2∈S
μs1,s2( j1)μ j1,s3( j2) · · · μ jk−3,sk−1( jk−2)μ jk−2,sk (t). (8)

The expression (7) it transferred to (8) using a repetitive application of (4). The claim
follows. ��

3.6 Finitary multisemigroups with multiplicities

We will say that a multisemigroup (S, μ) with multiplicities bounded by κ is finitary
provided that

• κ = ℵ0;
• μr,s(t) 
= ℵ0 for all r, s, t ∈ S;
• |{t ∈ S : μr,s(t) 
= 0}| < ℵ0 for all r, s ∈ S.

3.7 Multi-multisemigroup of a k-admissible 2-category

Let C be a k-admissible 2-category. Consider the set S(C ) of isomorphism classes of
indecomposable 1-morphisms in C . For F,G, H ∈ S(C ), define μF,G(H) to be the
multiplicity of H as a direct summand in the composition F ◦ G.

123



Beitr Algebra Geom (2017) 58:405–426 417

Theorem 6 The construct (S(C ), μ) is a finitary multisemigroup with multiplicities.

Proof We only have to check (4) in this case, as the rest follows by construction from
k-admissibility of C . For F,G, H, K ∈ S(C ), the multiplicity of K in (F ◦ G) ◦ H
is given by

∑

Q∈S(C )

μF,G(Q)μQ,H (K ).

In turn, the multiplicity of K in F ◦ (G ◦ H) is given by

∑

P∈S(C )

μF,P (K )μG,H (P).

As (F ◦ G) ◦ H ∼= F ◦ (G ◦ H) and S(C ) is Krull–Schmidt, we have

∑

Q∈S(C )

μF,G(Q)μQ,H (K ) =
∑

P∈S(C )

μF,P (K )μG,H (P),

which proves (4) in this case. ��
Example 7 For the 2-category S3 in Example 2, the multi-multisemigroup structure
on S(C ) is fully determined by (2). For instance, the function μst,st has the following
values:

x : e s t st ts sts

μst,st (x) : 0 0 0 1 0 2.

The function μts,sts has the following values:

x : e s t st ts sts

μst,st (x) : 0 0 0 0 0 4.

4 Multi-multisemigroup vs multisemigroup and decategorification

4.1 Multi-multisemigroup vs multisemigroup

Consider the canonical surjective semiring homomorphism � : Cardω � Card1 ∼= B
defined by

�(x) =
{
0, x = 0;
1, otherwise.

As usual, we identify subsets in a set X with BX . The following proposition says that
the multi-multisemigroup ofC has enough information to recover the multisemigroup
of C .
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Proposition 8 Let C be a k-admissible 2-category. Then, for any [F], [G] ∈ S(C ),
we have

[F] ∗ [G] = � ◦ μF,G .

Proof The left hand side is, by definition, the set of isomorphism classes of indecom-
posable 1-morphisms H such that H appears (up to isomorphism) in F ◦ G. Before
we apply �, the right hand side precisely records all indecomposable 1-morphisms
appearing in F ◦ G with multiplicities. � forgets multiplicities, but preserves the rest
of the structure. Therefore the left and right hand sides coincide for all F and G. ��

4.2 The algebra of a finitary multi-multisemigroup

Let (S, μ) be a finitary multi-multisemigroup. For a fixed commutative unital ring
k, consider the free k-module k[S] with basis S. Define on k[S] a k-bilinear binary
multiplication · by setting, for s, t ∈ S,

s · t :=
∑

r∈S
μs,t (r)r. (9)

Proposition 9 The construct (k[S], ·) is an associative k-algebra.

Proof We need to show that (r · s) · t = r · (s · t), for all r, s, t ∈ S. Using (9) and
k-bilinearity of ·, this reduces exactly to the axiom (4). ��

4.3 Grothendieck ring of a k-admissible 2-category

Let C be a small k-admissible 2-category. The Grothendieck ring Gr(C ) of C is
defined as follows:

• elements of Gr(C ) are elements in the free abelian group generated by isomor-
phism classes of indecomposable 1-morphisms;

• addition in Gr(C ) is the obvious addition inside the free abelian group;
• multiplication in Gr(C ) is induced from composition in C using biadditivity.

The ring Gr(C ) is unital if and only if C has finitely many objects. Otherwise it is
locally unital, where local units correspond to (summands of) the identity 1-morphisms
in C .

An alternative way to look at Gr(C ) is to understand it as the ring associated with
the preadditive category [C ]⊕ in the obvious way. Conversely, [C ]⊕ is the variation
of the ring Gr(C ) which has several objects, cf. Mitchell (1972).

4.4 Multi-multisemigroup vs decategorification

Ourmain observation in this subsection is the following connection between themulti-
multisemigroup of a finitary 2-category and the Grothendieck ring of this category.
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Proposition 10 Let C be a finitary 2-category and k a field. Then there is a canonical
isomorphism of k-algebras,

k ⊗Z Gr(C ) ∼= k[S(C )].

Proof We define the map ψ : k ⊗Z Gr(C ) → k[S(C )] as the k-linear extension
of the map which sends an isomorphism class of indecomposable 1-morphisms in
C to itself. This map is, clearly, bijective. Moreover, it is a homomorphism of rings
since, on both sides, the structure constants with respect to the k-basis, consisting of
isomorphism class of indecomposable 1-morphisms in C , are given by non-negative
integers μF,G(H) as defined in Sect. 3.5. The claim of the proposition follows. ��

Altogether, for a finitary 2-category C , we have the following picture

where arrow show in which direction we can recover information.

5 Some explicit examples of multi-multisemigroups of finitary
2-categories

5.1 Projective functors for finite dimensional algebras

Let k be an algebraically closed field and A a connected, basic, non-semi-simple,
finite dimensional, unital k-algebra. Let C be a small category equivalent to A-mod.
Following [Mazorchuk and Miemietz (2011), Sect. 7.3], we define the 2-category CA

as a subcategory in Cat (not full) such that:

• CA has one object i, which we identify with C;
• 1-morphisms in CA are functors isomorphic to direct sums of the identity functors
and functors of tensoring with projective A-bimodules;

• 2-morphisms in CA are natural transformations of functors.

Note that all 1-morphisms in CA are, up to isomorphism, functors of tensoring with
A-bimodules. For simplicity we will just use certain bimodules to denote the corre-
sponding isomorphism classes of 1-morphisms.

Let 1 = e1+ e2+· · ·+ ek be a decomposition of 1 ∈ A into a sumof primitive, pair-
wise orthogonal idempotents. Then indecomposable 1-morphisms in CA correspond
to bimodule

� := A, Fi, j := Aei ⊗k e j A, where i, j = 1, 2, . . . , k.

The essential part of the composition in CA is given by

Fi, j ◦ Fi ′, j ′ = F
⊕dime j Aei ′
i, j ′ ,
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as follows from the computation

Aei ⊗k e j A ⊗A Aei ′ ⊗k e j ′ A ∼= Aei ⊗k e j ′ A
⊕dime j Aei ′ .

The above implies that

S(CA) = {1, Fi, j : i, j = 1, 2, . . . , k}

and the multiplicity function defining the multi-multisemigroup structure on S(CA)

is given by

μF,G(H) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, H = G and F = 1;
1, H = F and G = 1;
dime j Aei ′ , F = Fi, j ,G = Fi ′, j ′ , H = Fi, j ′ ;
0, otherwise.

Note also that, in this case, the multioperation in the multisemigroup (S(CA), ∗) is,
at most, single valued. By adding, if necessary, an external element 0, we can turn
(S(CA), ∗) into a genuine semigroup.

5.2 Soergel bimodules for finite Coxeter groups

Another prominent example of a finitary 2-category is the finitary 2-category of
Soergel bimodules. Let W be a finite Coxeter group with a fixed geometric rep-
resentation. To these data, one associates the so-called 2-category SW of Soergel
bimodules over the coinvariant algebra of the geometric representation, see Soergel
(2007) and [Mazorchuk and Miemietz (2011), Sect. 7.1]. This is a finitary 2-category.
This 2-category categorifies the integral group ring of W in the sense that there is
an isomorphism between the ring [C ]⊕(i,i) and the ring Z[W ] given in terms of
the Kazhdan–Lusztig basis in Z[W ], see Kazhdan and Lusztig (1979). Therefore the
multi-multisemigroup (S(SW ), μ) records exactly the information about the structure
constants of the ring Z[W ] with respect to the Kazhdan–Lusztig basis. As far as we
know, there is no explicit combinatorial formula for such structure constants, however,
they can be determined using a recursive algorithm.

In the special case of a Dihedral group Dn , where n ≥ 3,

W = Dn = {s, t : s2 = t2 = (st)n = e},

the Kazhdan–Lusztig basis has particularly simple form. Elements of the group Dn

can be listed as

Dn = {e, s, t, st, ts, . . . , w0},

where w0 = stst · · · = tsts . . ., where the length of both words is n. Then, for each
w ∈ Dn , the corresponding Kazhdan-Lusztig basis element w ∈ Z[Dn] is the sum of
w with all elements of strictly smaller length.
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Let l : Dn → Z≥0 be the length function with respect to generators s and t . A
direct calculation then shows that

s · w =

⎧
⎪⎨

⎪⎩

2w, l(sw) < l(w);
sw, w = e or w = t;
sw + tw, otherwise;

t · w =

⎧
⎪⎨

⎪⎩

2w, l(tw) < l(w);
tw, w = e or w = s;
sw + tw, otherwise.

This already shows that the multi-multisemigroup structure is non-trivial in the sense
that it is not reducible to a multisemigroup structure. The above formulae determine
the multiplicity functions μs,w and μt,w. As any element in Dn is a product of s and
t , all remaining multiplicity functions can be determined inductively. However, we
do not know of any explicit formulae. For n = 3, the answer is given in (2). More
information on the Dn case can be found in Elias (2011).

5.3 Catalan monoid

Let n be a positive integer. Consider the path algebra A = An over C of the quiver

1 2 3 . . . n

Let C be a small category equivalent to A-mod. FollowingGrensing andMazorchuk
(2014a), we define the 2-category Gn as a subcategory in Cat (not full) such that:

• CA has one object i, which we identify with C;
• 1-morphisms inCA are functors isomorphic to direct sums of functors of tensoring
with subbimodules of A AA;

• 2-morphisms in CA are natural transformations of functors.

The main result of Grensing and Mazorchuk (2014a) asserts that the multisemigroup
S(Gn) (with added zero) is isomorphic to the Catalan monoid Cn+1 of all order-
preserving and order-decreasing transformation of a finite chain with n + 1 elements.
In particular, the multisemigroup S(Gn) is a semigroup.

Moreover, in Grensing and Mazorchuk (2014a) it is also shown that the composi-
tion of indecomposable 1-morphism in Gn is indecomposable (or zero). This means
that, in this case, the multi-multisemigroup structure on S(Gn) coincides with the
multisemigroup structure.

A similar phenomenon was observed in some other cases in Zhang (2015a, b).

6 Multi-multisemigroups with different multiplicities

6.1 Cardinal reduction

Let λ < κ be two cardinal numbers. Then there is a canonical homomorphism

�λ,κ : Cardκ → Cardλ
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of complete semirings defined as follows:

�λ,κ(ν) =
{

ν, ν ≤ λ;
λ, otherwise.

Proposition 11 Let (S, μ) be amultisemigroupwithmultiplicities bounded by κ . Then
(S,�λ,κ ◦ μ) is a multisemigroup with multiplicities bounded by λ.

Proof The axiom (4) in the new situation (for λ) follows from the axiom (4) in the
old situation (for κ) by applying the homomorphism �λ,κ of complete semirings to
both sides. ��

A special case of this construction was mentioned in Sect. 4.1, in that case κ = ω

and λ = 1. A natural question is whether this construction is “surjective” in the sense
that any multisemigroups with multiplicities bounded by λ can be obtained in this way
from a multisemigroups with multiplicities bounded by κ . If λ = 1, the answer is yes
due to the following construction:

Let κ be a nonzero cardinal numbers. Then there is a canonical homomorphism


κ : Card1 ∼= B → Cardκ

which sends 0 to 0 and also sends 1 to κ . Given a multisemigroup (S, ∗), we thus may
define

μs,t (r) :=
{
0, r /∈ s ∗ t;
κ, r ∈ s ∗ t.

In other words, we define μ as the composition of ∗ followed by 
κ . Similarly to the
proof of Proposition 11we thus get that (S, μ) is a multisemigroups withmultiplicities
bounded by κ . As the homomorphism �1,κ ◦ 
κ is the identity on B, we obtain
(S, ∗) = (S,�1,κ ◦ μ).

6.2 Finitary cardinal reduction

To avoid degenerate examples above, it is natural to rephrase the question as follows:
Given amultisemigroup (S, ∗), whether there is a finitarymulti-multisemigroup (S, μ)

such that (S, ∗) = (S,�1,ω ◦μ). The following example shows that this is, in general,
not the case.

Proposition 12 (i) There is a multisemigroup ({a, b}, ∗) with the following multipli-
cation table:

∗ a b

a {a} {a, b}
b {a, b} {a, b}

(10)
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(ii) The multisemigroup ({a, b}, ∗) is not of the form (S,�1,ω ◦ μ), for any finitary
multisemigroup (S, μ) with multiplicities.

Proof It is clear that the multiplication table (10) defines a multisemigroup, as any
product x ∗ y ∗ z is a if x = y = z = a, and {a, b} otherwise.

Now assume that ({a, b}, μ) is a finitary multisemigroup with multiplicities. Then
μa,b(a) 
= 0 because a ∈ a ∗ b, moreover, we have μa,b(b) 
= 0 as b ∈ a ∗ b.

We want to compute μaab(a) in two different ways, namely, using the decom-
positions (aa)b and a(ab). In the first case, we get μaab(a) = μa,a(a)μa,b(a). In
the second case, we obtain μaab(a) = μa,a(a)μa,b(a) + μa,b(b)μa,b(a). As both
μa,b(a) 
= 0 and μa,b(b) 
= 0, we get a contradiction. The claim follows. ��

6.3 Deformation of multisemigroups

Let (S, ∗) be a finite multisemigroup. A finitary multi-multisemigroup (S, μ) such
that (S, ∗) = (S,�1,ω ◦ μ) is called a deformation of (S, ∗). As we saw above,
not every finite multisemigroup admits a deformation. It would be interesting to find
some sufficient and necessary conditions for a multisemigroup to admit a non-trivial
deformation. Ideally, it would be really interesting to find some way to describe all
possible deformations of a given multisemigroup. The following is a corollary from
the result in the previous section.

Corollary 13 Let (S, ∗) be a multisemigroup containing two different elements a and
b such that a ∗ a = {a} and {a, b} ⊂ a ∗ b or {a, b} ⊂ b ∗ a. Then (S, ∗) does not
admit any deformation.

Proof In the case {a, b} ⊂ a ∗ b, the claim follows from the arguments in the proof
of Proposition 12. In case {a, b} ⊂ b ∗ a the proof is similar. ��

Another obvious observation is the following.

Proposition 14 LetC be a finitary 2-category. Then (S(C ), ∗) admits a deformation.

Proof By construction, (S(C ), μ) is a deformation of (S(C ), ∗). ��

6.4 Connection to twisted semigroup algebras

In case a finite multisemigroup (S, ∗) is a semigroup, deformations of (S, ∗) can be
understood as integral twisted semigroup algebras in the sense of Guo and Xi (2009).
Indeed, according to the above definition, a deformation of a finite semigroup (S, ∗)

is given by a map

μ : S × S → Z≥0,

which satisfies axiom (4) (the associativity axiom). This is a special case of the defini-
tion of twisted semigroup algebras, see [Guo andXi (2009), Sect. 3] or [Wilcox (2007),
Eq. (1)]. Typical examples of semigroups which admit non-trivial twisted semigroup
algebras (and hence also non-trivial deformations) are various diagram algebras, see
Martin and Mazorchuk (2013); Wilcox (2007) for details.
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7 Multi-multisemigroups and modules over complete semirings

7.1 Modules over semirings

Let R be a unital semiring. A (left) R-module is a commutative monoid (M,+, 0)
together with the map · : R × M → M , written (r,m) �→ r · m, such that

• (rs) · m = r · (s · m), for all r, s ∈ R and m ∈ M ;
• (r + s) · m = r · m + s · m, for all r, s ∈ R and m ∈ M ;
• r · (m + n) = r · m + r · n, for all r ∈ R and m, n ∈ M ;
• 0 · m = 0, for all m ∈ M ;
• 1 · m = m, for all m ∈ M .

We refer, for example, to Johnson and Manes (1970) for more details. For instance,
the multiplication on R defines on R the structure of a left R-module R R, called the
regular module.

7.2 Modules over complete semirings

Let R be a complete unital semiring. A (left) complete R-module is an R-module
(M,+, 0, ·) such that

• M is complete;
• r ·

∑

i∈I
mi =

∑

i∈I
r · mi , for all r ∈ R and mi ∈ M ;

•
(

∑

i∈I
ri

)
· m =

∑

i∈I
ri · m, for all ri ∈ R and m ∈ M .

For example, the regular R-module is complete. Another important example of a
complete R-module is the following.

Example 15 Let R be a complete unital semiring and X a non-empty set. Then the set
RX of all functions f : X → R from X to R is a complete abelian group with respect
to component-wise addition

(
∑

i∈I
fi

)
(x) :=

∑

i∈I
fi (x),

moreover, it has the natural structure of a complete R-module given by component-
wise multiplication with elements in R,

(r · f )(x) = r · f (x).

This module has, as an incomplete submodule, the set of all functions in RX with
finitely many non-zero values.
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7.3 Algebras over complete semirings

For a complete unital semiring R and a non-empty set X , consider the complete
R-module RX as in Example 15 above. An algebra structure on RX is a map • :
RX × RX → RX such that, for all fi , f, g, h ∈ RX , we have

(
∑

i∈I
fi

)
• g =

∑

i∈I
fi • g; (11)

g •
(

∑

i∈I
fi

)
=

∑

i∈I
g • fi ; (12)

f • (g • h) = ( f • g) • h. (13)

For example, if X = {a}, then RX = R and the multiplication · on R defines on R the
structure of a complete R-algebra.

7.4 Connection to multi-multisemigroups

If R is a semiring and X a set, then, for x ∈ X , we denote by χx : X → R the indicator
function of x defined as follows:

χx (y) =
{
1, x = y;
0, x 
= y.

Our main result in this section is the following:

Theorem 16 (i) Let κ be a cardinal and (S, μ) be a multisemigroup with multiplici-
ties boundedbyκ . ThenCardSκ has aunique structure of a completeCardκ -algebra
such that χs • χt = μs,t , for all s, t ∈ S.

(ii) Conversely, any complete CardSκ -algebra (CardSκ , •) defines a unique structure
of a multisemigroup with multiplicities bounded by κ on S via μs,t := χs • χt ,
for s, t ∈ S.

Proof Toprove claim (i), we first note that uniquenesswould followdirectly from exis-
tence as any element in CardSκ can be written as a sum, over S, of indicator functions.
To prove existence, we note that each function can be uniquely written as a sum, over
S, of indicator functions. Therefore, there is a unique way to extend χs • χt := μs,t ,
for s, t ∈ S, to a map • : CardSκ × CardSκ → CardSκ which satisfies (11) and (12).
Using (11) and (12), it is enough to check the axiom (13) for the indicator functions,
where it is equivalent to the axiom (4), by definition. This proves claim (i).

To prove claim (ii), we only need to check the axiom (4). This axiom follows from
the axiom (13) applied to the indicator functions. This completes the proof. ��

Theorem 16 suggests that one could define multisemigroups with multiplicities
from any complete semiring, not necessarily Cardκ .
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